Support for mesh sub-cycling has been removed from Lagrangian. Various
Lagrangian processes already support sub-dividing the time-step. It is
easier and more efficient to extend that support all the way to the
high-level cloud objects, rather than to sub-cycle the mesh.
This has additional benefits. The cloud now no longer needs to reset the
step fraction at the start of every sub-motion. Injection can take
advantage of this by modifying particles' step fractions in order to
distribute them uniformly through the time-step. This is a simple and
efficient method. Previously, injection would track the particles some
distance after injection. This was more expensive to do, it resulted in
spatial artefacts in the injected Lagrangian field, and it did not
correctly handle interactions with patches or parallel transfers.
The lack of injection tracking also means that particles injected
through patches now start their simulation topologically connected to
the face on which they are created. This means that they correctly
trigger cloud functions associated with that face and/or patch.
The injection models now also return barycentric coordinates directly,
rather than the global position of injected particles. For methods that
initially generate locations naturally in terms of barycentric
coordinates, this prevents unnecessary and potentially fragile
conversion from barycentric to Cartesian and back again. These are
typically the methods that "fill" some sort of space; e.g., patch or
cell-zone injections.
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
Function objects now write to the following path when applied to a
non-default region of a multi-region case:
postProcessing/<regionName>/<functionName>/<time>/
Previously the order of <regionName> and <functionName> was not
consistent between the various function objects.
Resolves bug report https://bugs.openfoam.org/view.php?id=3907
This reference represents unnecessary storage. The mesh can be obtained
from tracking data or passed to the particle evolution functions by
argument.
In addition, removing the mesh reference makes it possible to construct
as particle from an Istream without the need for an iNew class. This
simplifies stream-based transfer, and makes it possible for particles to
be communicated by a polyDistributionMap.
Mapping with interpolation now behaves correctly when a single cell maps
to multiple faces. In addition, the mapping structure is more compact
and no longer results in copies being made of entire internal fields.
This has been achieved by rewriting the mapping strategy in
mappedPatchBase so that it maps from a reduced set of sampling locations
to the patch faces, rather than directly from the cells/faces to the
patch faces. This is more efficient, but it also permits multiple
sampling locations to be sent to a single cell/face. Values can then be
interpolated to these points before being sent back to the patch faces.
Previously a single cell/face could only be sent a single location onto
which to interpolate; typically that of the first associated patch face.
The resulting interpolated value was then sent back to all associated
patch faces. This meant that some (potentially most) patch faces did
receive a value interpolated to the correct position.
The functionality provided by 'cyclicACMI' and 'cyclicRepeatAMI' has
been entirely superseded by non-conformal coupled (NCC). All references
to 'cyclicACMI' and 'cyclicRepeatAMI' have therefore been removed.
See previous commits 569fa31d and 420866cf for more explanation,
instructions on updating, and relevant tutorial cases.
This major development provides coupling of patches which are
non-conformal, i.e. where the faces of one patch do not match the faces
of the other. The coupling is fully conservative and second order
accurate in space, unlike the Arbitrary Mesh Interface (AMI) and
associated ACMI and Repeat AMI methods which NCC replaces.
Description:
A non-conformal couple is a connection between a pair of boundary
patches formed by projecting one patch onto the other in a way that
fills the space between them. The intersection between the projected
surface and patch forms new faces that are incorporated into the finite
volume mesh. These new faces are created identically on both sides of
the couple, and therefore become equivalent to internal faces within the
mesh. The affected cells remain closed, meaning that the area vectors
sum to zero for all the faces of each cell. Consequently, the main
benefits of the finite volume method, i.e. conservation and accuracy,
are not undermined by the coupling.
A couple connects parts of mesh that are otherwise disconnected and can
be used in the following ways:
+ to simulate rotating geometries, e.g. a propeller or stirrer, in which
a part of the mesh rotates with the geometry and connects to a
surrounding mesh which is not moving;
+ to connect meshes that are generated separately, which do not conform
at their boundaries;
+ to connect patches which only partially overlap, in which the
non-overlapped section forms another boundary, e.g. a wall;
+ to simulate a case with a geometry which is periodically repeating by
creating multiple couples with different transformations between
patches.
The capability for simulating partial overlaps replaces the ACMI
functionality, currently provided by the 'cyclicACMI' patch type, and
which is unreliable unless the couple is perfectly flat. The capability
for simulating periodically repeating geometry replaces the Repeat AMI
functionality currently provided by the 'cyclicRepeatAMI' patch type.
Usage:
The process of meshing for NCC is very similar to existing processes for
meshing for AMI. Typically, a mesh is generated with an identifiable set
of internal faces which coincide with the surface through which the mesh
will be coupled. These faces are then duplicated by running the
'createBaffles' utility to create two boundary patches. The points are
then split using 'splitBaffles' in order to permit independent motion of
the patches.
In AMI, these patches are assigned the 'cyclicAMI' patch type, which
couples them using AMI interpolation methods.
With NCC, the patches remain non-coupled, e.g. a 'wall' type. Coupling
is instead achieved by running the new 'createNonConformalCouples'
utility, which creates additional coupled patches of type
'nonConformalCyclic'. These appear in the 'constant/polyMesh/boundary'
file with zero faces; they are populated with faces in the finite volume
mesh during the connection process in NCC.
For a single couple, such as that which separates the rotating and
stationary sections of a mesh, the utility can be called using the
non-coupled patch names as arguments, e.g.
createNonConformalCouples -overwrite rotatingZoneInner rotatingZoneOuter
where 'rotatingZoneInner' and 'rotatingZoneOuter' are the names of the
patches.
For multiple couples, and/or couples with transformations,
'createNonConformalCouples' should be run without arguments. Settings
will then be read from a configuration file named
'system/createNonConformalCouplesDict'. See
'$FOAM_ETC/caseDicts/annotated/createNonConformalCouplesDict' for
examples.
Boundary conditions must be specified for the non-coupled patches. For a
couple where the patches fully overlap, boundary conditions
corresponding to a slip wall are typically applied to fields, i.e
'movingWallSlipVelocity' (or 'slip' if the mesh is stationary) for
velocity U, 'zeroGradient' or 'fixedFluxPressure' for pressure p, and
'zeroGradient' for other fields. For a couple with
partially-overlapping patches, boundary conditions are applied which
physically represent the non-overlapped region, e.g. a no-slip wall.
Boundary conditions also need to be specified for the
'nonConformalCyclic' patches created by 'createNonConformalCouples'. It
is generally recommended that this is done by including the
'$FOAM_ETC/caseDicts/setConstraintTypes' file in the 'boundaryField'
section of each of the field files, e.g.
boundaryField
{
#includeEtc "caseDicts/setConstraintTypes"
inlet
{
...
}
...
}
For moving mesh cases, it may be necessary to correct the mesh fluxes
that are changed as a result of the connection procedure. If the
connected patches do not conform perfectly to the mesh motion, then
failure to correct the fluxes can result in noise in the pressure
solution.
Correction for the mesh fluxes is enabled by the 'correctMeshPhi' switch
in the 'PIMPLE' (or equivalent) section of 'system/fvSolution'. When it
is enabled, solver settings are required for 'MeshPhi'. The solution
just needs to distribute the error enough to dissipate the noise. A
smooth solver with a loose tolerance is typically sufficient, e.g. the
settings in 'system/fvSolution' shown below:
solvers
{
MeshPhi
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-2;
relTol 0;
}
...
}
PIMPLE
{
correctMeshPhi yes;
...
}
The solution of 'MeshPhi' is an inexpensive computation since it is
applied only to a small subset of the mesh adjacent to the
couple. Conservation is maintained whether or not the mesh flux
correction is enabled, and regardless of the solution tolerance for
'MeshPhi'.
Advantages of NCC:
+ NCC maintains conservation which is required for many numerical
schemes and algorithms to operate effectively, in particular those
designed to maintain boundedness of a solution.
+ Closed-volume systems no longer suffer from accumulation or loss of
mass, poor convergence of the pressure equation, and/or concentration
of error in the reference cell.
+ Partially overlapped simulations are now possible on surfaces that are
not perfectly flat. The projection fills space so no overlaps or
spaces are generated inside contiguously overlapping sections, even if
those sections have sharp angles.
+ The finite volume faces created by NCC have geometrically accurate
centres. This makes the method second order accurate in space.
+ The polyhedral mesh no longer requires duplicate boundary faces to be
generated in order to run a partially overlapped simulation.
+ Lagrangian elements can now transfer across non-conformal couplings in
parallel.
+ Once the intersection has been computed and applied to the finite
volume mesh, it can use standard cyclic or processor cyclic finite
volume boundary conditions, with no need for additional patch types or
matrix interfaces.
+ Parallel communication is done using the standard
processor-patch-field system. This is more efficient than alternative
systems since it has been carefully optimised for use within the
linear solvers.
+ Coupled patches are disconnected prior to mesh motion and topology
change and reconnected afterwards. This simplifies the boundary
condition specification for mesh motion fields.
Resolved Bug Reports:
+ https://bugs.openfoam.org/view.php?id=663
+ https://bugs.openfoam.org/view.php?id=883
+ https://bugs.openfoam.org/view.php?id=887
+ https://bugs.openfoam.org/view.php?id=1337
+ https://bugs.openfoam.org/view.php?id=1388
+ https://bugs.openfoam.org/view.php?id=1422
+ https://bugs.openfoam.org/view.php?id=1829
+ https://bugs.openfoam.org/view.php?id=1841
+ https://bugs.openfoam.org/view.php?id=2274
+ https://bugs.openfoam.org/view.php?id=2561
+ https://bugs.openfoam.org/view.php?id=3817
Deprecation:
NCC replaces the functionality provided by AMI, ACMI and Repeat AMI.
ACMI and Repeat AMI are insufficiently reliable to warrant further
maintenance so are removed in an accompanying commit to OpenFOAM-dev.
AMI is more widely used so will be retained alongside NCC for the next
version release of OpenFOAM and then subsequently removed from
OpenFOAM-dev.
With fvMeshTopoChangers::meshToMesh it is now possible to map the solution to a
specified sequence of pre-generated meshes at run-time to support arbitrary mesh
changes, refinements, un-refinements, changes in region topology, geometry,
etc. Additionally mesh-motion between the sequence of meshes is supported to
allow for e.g. piston and valve motion in engines.
The tutorials/incompressible/pimpleFoam/laminar/movingCone case has been updated
to provide a demonstration of the advantages of this run-time mesh-mapping by
mapping to meshes that are finer behind the cone and coarser in front of the
cone as the cone approaches the end of the domain, thus maintaining good
resolution while avoiding excessive cell aspect ratio as the mesh is squeezed.
The dynamicMeshDict for the movingCone case is;
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");
motionSolver velocityComponentLaplacian;
component x;
diffusivity directional (1 200 0);
}
topoChanger
{
type meshToMesh;
libs ("libmeshToMeshTopoChanger.so");
times (0.0015 0.003);
timeDelta 1e-6;
}
which lists the mesh mapping times 0.0015s 0.003s and meshes for these times in
directories constant/meshToMesh_0.0015 and constant/meshToMesh_0.003 are
generated in the Allrun script before the pimpleFoam run:
runApplication -a blockMesh -dict blockMeshDict.2
rm -rf constant/meshToMesh_0.0015
mkdir constant/meshToMesh_0.0015
mv constant/polyMesh constant/meshToMesh_0.0015
runApplication -a blockMesh -dict blockMeshDict.3
rm -rf constant/meshToMesh_0.003
mkdir constant/meshToMesh_0.003
mv constant/polyMesh constant/meshToMesh_0.003
runApplication -a blockMesh -dict blockMeshDict.1
runApplication $application
Note: This functionality is experimental and has only undergone basic testing.
It is likely that it does not yet work with all functionObject, fvModels
etc. which will need updating to support this form of mesh topology change.
This new mapping structure is designed to support run-time mesh-to-mesh mapping
to allow arbitrary changes to the mesh structure, for example during extreme
motion requiring significant topology change including region disconnection etc.
The polyTopoChangeMap is the map specifically relating to polyMesh topological
changes generated by polyTopoChange and used to update and map mesh related
types and fields following the topo-change.
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.
"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.
Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.
Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.
The raw set writer now aligns columns correctly.
The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.
Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:
setWriter::New("gnuplot")->write
(
directoryName,
graphName,
coordSet(true, "X", X), // <-- "true" indicates a contiguous
"A", // line, "false" would mean
A, // disconnected points
"B",
B
);
This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.
Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.
The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
With this change each functionObject provides the list of fields required so
that the postProcess utility can pre-load them before executing the list of
functionObjects. This provides a more convenient interface than using the
-field or -fields command-line options to postProcess which are now redundant.
The writer class has been renamed setWriter in order to clarify its
usage. The coordSet and setWriter classes have been moved into the
sampling library, as this fits their usage.
Originally the only supported geometry specification were triangulated surfaces,
hence the name of the directory: constant/triSurface, however now that other
surface specifications are supported and provided it is much more logical that
the directory is named accordingly: constant/geometry. All tutorial and
template cases have been updated.
Note that backward compatibility is provided such that if the constant/geometry
directory does not exist but constant/triSurface does then the geometry files
are read from there.
The patch triangulation done as part of this set construction is now
done using polyMeshTetDecomposition. This has simplified the
implementation and permitted the addition of a small tolerance to move
the points within the mesh bounds, resulting in the removal of a number
of warning messages.
Added sets for sampling the cell-centres and face-centres of a cellSet
or faceSet. Example usage:
sets
(
c0
{
type cellSet;
set c0;
axis xyz;
}
f0
{
type faceSet;
set f0;
axis xyz;
}
);
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Sometimes the initial point and boundary intersection searches can
generate duplicate information which can lead to line-type sampled sets
having duplicated points. This change explicitly filters these
additional points out, so that the resulting set is optimal.
Resolves bug report https://bugs.openfoam.org/view.php?id=3161
This fix changes how the intersections loop ignores previously
intersected faces. It now marks them by their index so that subsequent
iterations ignore them.
Before this change, after an intersection was found the start point was
advanced by a small amount to move the past the intersection. The
problem with this was if multiple boundary faces or the end point were
in close proximity to the intersection then the move forward might span
them. This could lead to intersections being missed or counted multiple
times, in some cases indefinitely.
Based on a patch contributed by Mattijs Janssens
Resolves bug report https://bugs.openfoam.org/view.php?id=1147
The sampled sets have been renamed in a more explicit and consistent
manner, and two new ones have also been added. The available sets are as
follows:
arcUniform: Uniform samples along an arc. Replaces "circle", and
adds the ability to sample along only a part of the circle's
circumference. Example:
{
type arcUniform;
centre (0.95 0 0.25);
normal (1 0 0);
radial (0 0 0.25);
startAngle -1.57079633;
endAngle 0.52359878;
nPoints 200;
axis x;
}
boundaryPoints: Specified point samples associated with a subset of
the boundary. Replaces "patchCloud". Example:
{
type boundaryPoints;
patches (inlet1 inlet2);
points ((0 -0.05 0.05) (0 -0.05 0.1) (0 -0.05 0.15));
maxDistance 0.01;
axis x;
}
boundaryRandom: Random samples within a subset of the boundary.
Replaces "patchSeed", but changes the behaviour to be entirely
random. It does not seed the boundary face centres first. Example:
{
type boundaryRandom;
patches (inlet1 inlet2);
nPoints 1000;
axis x;
}
boxUniform: Uniform grid of samples within a axis-aligned box.
Replaces "array". Example:
{
type boxUniform;
box (0.95 0 0.25) (1.2 0.25 0.5);
nPoints (2 4 6);
axis x;
}
circleRandom: Random samples within a circle. New. Example:
{
type circleRandom;
centre (0.95 0 0.25);
normal (1 0 0);
radius 0.25;
nPoints 200;
axis x;
}
lineFace: Face-intersections along a line. Replaces "face". Example:
{
type lineFace;
start (0.6 0.6 0.5);
end (0.6 -0.3 -0.1);
axis x;
}
lineCell: Cell-samples along a line at the mid-points in-between
face-intersections. Replaces "midPoint". Example:
{
type lineCell;
start (0.5 0.6 0.5);
end (0.5 -0.3 -0.1);
axis x;
}
lineCellFace: Combination of "lineFace" and "lineCell". Replaces
"midPointAndFace". Example:
{
type lineCellFace;
start (0.55 0.6 0.5);
end (0.55 -0.3 -0.1);
axis x;
}
lineUniform: Uniform samples along a line. Replaces "uniform".
Example:
{
type lineUniform;
start (0.65 0.3 0.3);
end (0.65 -0.3 -0.1);
nPoints 200;
axis x;
}
points: Specified points. Replaces "cloud" when the ordered flag is
false, and "polyLine" when the ordered flag is true. Example:
{
type points;
points ((0 -0.05 0.05) (0 -0.05 0.1) (0 -0.05 0.15));
ordered yes;
axis x;
}
sphereRandom: Random samples within a sphere. New. Example:
{
type sphereRandom;
centre (0.95 0 0.25);
radius 0.25;
nPoints 200;
axis x;
}
triSurfaceMesh: Samples from all the points of a triSurfaceMesh.
Replaces "triSurfaceMeshPointSet". Example:
{
type triSurfaceMesh;
surface "surface.stl";
axis x;
}
The headers have also had documentation added. Example usage and a
description of the control parameters now exists for all sets.
In addition, a number of the algorithms which generate the sets have
been refactored or rewritten. This was done either to take advantage of
the recent changes to random number generation, or to remove ad-hoc
fixes that were made unnecessary by the barycentric tracking algorithm.