Commit Graph

245 Commits

Author SHA1 Message Date
25a6d068f0 sampledSets, streamlines: Various improvements
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.

"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.

Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.

Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.

The raw set writer now aligns columns correctly.

The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.

Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:

    setWriter::New("gnuplot")->write
    (
        directoryName,
        graphName,
        coordSet(true, "X", X), // <-- "true" indicates a contiguous
        "A",                    //     line, "false" would mean
        A,                      //     disconnected points
        "B",
        B
    );

This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.

Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.

The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
2021-12-07 11:18:27 +00:00
730b8163b5 engineCompRatio: Updated to use the engine fvMeshMover 2021-11-06 00:39:04 +00:00
e10830632e engineTime: Completely replaced engineTime derived from Time
with the run-time selectable engine userTime embedded in Time.

All parts of the original engineTime relating to the engine geometry have been
moved to engineMesh.  This is part of the process of integrating engine
simulations within the standard moving-mesh solvers.
2021-11-03 19:33:41 +00:00
c01118589f functionObjects: Added fields() function to provide list of required fields to postProcess
With this change each functionObject provides the list of fields required so
that the postProcess utility can pre-load them before executing the list of
functionObjects.  This provides a more convenient interface than using the
-field or -fields command-line options to postProcess which are now redundant.
2021-10-21 09:23:34 +01:00
3ef3e96c3f Time: Added run-time selectable userTime option
replacing the virtual functions overridden in engineTime.

Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.

For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:

userTime
{
    type     engine;
    rpm      1500;
}

The default specification is real-time:

userTime
{
    type     real;
}

but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
2021-10-19 09:09:01 +01:00
cf3d6cd1e9 fvMeshMovers, fvMeshTopoChangers: General mesh motion and topology change replacement for dynamicFvMesh
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.

All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger.  These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.

When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh.  The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport.  If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.

The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:

/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  dev
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    format      ascii;
    class       dictionary;
    location    "constant";
    object      dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

mover
{
    type    motionSolver;

    libs    ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    solidBody;

    solidBodyMotionFunction SDA;

    CofG            (0 0 0);
    lamda           50;
    rollAmax        0.2;
    rollAmin        0.1;
    heaveA          4;
    swayA           2.4;
    Q               2;
    Tp              14;
    Tpn             12;
    dTi             0.06;
    dTp             -0.001;
}

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (meshPhi_0 none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

// ************************************************************************* //

Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.

All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
2021-10-01 15:50:06 +01:00
b9123328fb typeIOobject: Template typed form of IOobject for type-checked object file and header reading
used to check the existence of and open an object file, read and check the
header without constructing the object.

'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.

'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
2021-08-12 10:12:03 +01:00
cc92330253 IOobject, regIOobject: rationalised handling of paths for global and local objects
now all path functions in 'IOobject' are either templated on the type or require a
'globalFile' argument to specify if the type is case global e.g. 'IOdictionary' or
decomposed in parallel, e.g. almost everything else.

The 'global()' and 'globalFile()' virtual functions are now in 'regIOobject'
abstract base-class and overridden as required by derived classes.  The path
functions using 'global()' and 'globalFile()' to differentiate between global
and processor local objects are now also in 'regIOobject' rather than 'IOobject'
to ensure the path returned is absolutely consistent with the type.

Unfortunately there is still potential for unexpected IO behaviour inconsistent
with the global/local nature of the type due to the 'fileOperation' classes
searching the processor directory for case global objects before searching the
case directory.  This approach appears to be a work-around for incomplete
integration with and rationalisation of 'IOobject' but with the changes above it
is no longer necessary.  Unfortunately this "up" searching is baked-in at a low
level and mixed-up with various complex ways to pick the processor directory
name out of the object path and will take some unravelling but this work will
undertaken as time allows.
2021-08-09 21:23:12 +01:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
25d274736f MeshZones: Renamed ZoneMesh to MeshZones 2021-07-14 14:10:28 +01:00
677defdc5c particleTracks, steadyParticleTracks: Standardised dictionary locations
Settings for the particleTracks utility are now specified in
system/particleTracksDict. Correspondingly, settings for
steadyParticleTracks are now specified in
system/steadyParticleTracksDict.
2021-07-02 17:09:31 +01:00
c63c1a90c2 systemDict: Consistent handling of the -dict option
The -dict option is now handled correctly and consistently across all
applications with -dict options. The logic associated with doing so has
been centralised.

If a relative path is given to the -dict option, then it is assumed to
be relative to the case directory. If an absolute path is given, then it
is used without reference to the case directory. In both cases, if the
path is found to be a directory, then the standard dictionary name is
appended to the path.

Resolves bug report http://bugs.openfoam.org/view.php?id=3692
2021-07-02 15:11:06 +01:00
dae463dbd8 TimePaths: Rationalised path methods 2021-06-24 14:20:00 +01:00
02b97a714a polygonTriangulate: Added robust polygon triangulation algorithm
The new algorithm provides robust quality triangulations of non-convex
polygons. It also produces a best attempt for polygons that are badly
warped or self intersecting by minimising the area in which the local
normal is in the opposite direction to the overal polygon normal. It is
memory efficient when applied to multiple polygons as it maintains and
reuses its workspace.

This algorithm replaces implementations in the face and
faceTriangulation classes, which have been removed.

Faces can no longer be decomposed into mixtures of tris and
quadrilaterals. Polygonal faces with more than 4 sides are now
decomposed into triangles in foamToVTK and in paraFoam.
2021-06-24 10:08:38 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
f4a65fbada sampling: Renamed and moved classes from fileFormats
The writer class has been renamed setWriter in order to clarify its
usage. The coordSet and setWriter classes have been moved into the
sampling library, as this fits their usage.
2021-06-18 13:57:11 +01:00
77f3c014bc searchableSurfaces: Removed dependence on the set writers 2021-06-18 13:57:09 +01:00
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
55f751641e Standardise on British spelling: initialize -> initialise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 14:51:48 +01:00
8a5ee8aac1 MomentumTransportModels: Library builds of multiphase models
The MomentumTransportModels library now builds of a standard set of
phase-incompressible and phase-compressible models. This replaces most
solver-specific builds of these models.

This has been made possible by the addition of a new
"dynamicTransportModel" interface, from which all transport classes used
by the momentum transport models now derive. For the purpose of
disambiguation, the old "transportModel" has also been renamed
"kinematicTransportModel".

This change has been made in order to create a consistent definition of
phase-incompressible and phase-compressible MomentumTransportModels,
which can then be looked up by functionObjects, fvModels, and similar.

Some solvers still build specific momentum transport models, but these
are now in addition to the standard set. The solver does not build all
the models it uses.

There are also corresponding centralised builds of phase dependent
ThermophysicalTransportModels.
2021-03-30 13:27:20 +01:00
da3f4cc92e fvModels, fvConstraints: Rational separation of fvOptions between physical modelling and numerical constraints
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation.  This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc.  For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.

fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution.  This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run.  Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.

fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
2021-03-07 22:45:01 +00:00
30e6e02d29 wmake: Removed the cpp processing of the Make/options file
so that it can be included directly into the wmake Makefile to allow full
support of gmake syntax, variables, functions etc.

The Make/files file handled in the same manner as the Make/options file if it
contains the SOURCE entry otherwise it is first processed by cpp for backward
compatibility.
2020-12-09 13:35:14 +00:00
4e183e33d4 Function1::Table: simplified and rationalised
TableBase, TableFile and Table now combined into a single simpler Table class
which handle both the reading of embedded and file data using the generalised
TableReader.  The new EmbeddedTableReader handles the embedded data reading
providing the functionality of the original Table class within the same
structure that can read the data from separate files.

The input format defaults to 'embedded' unless the 'file' entry is present and
the Table class is added to the run-time selection table under the name 'table'
and 'tableFile' which provides complete backward comparability.  However it is
advisable to migrate cases to use the new 'table' entry and all tutorial cases
have been updated.
2020-11-16 23:48:47 +00:00
37ebdfe36e Function1::TableReader: Added EmbeddedTableReader so that TableFile can read embedded table data 2020-11-16 21:01:41 +00:00
2f4f358411 foamToVTK: Minor rationalisation to improve maintainability 2020-11-11 12:25:03 +00:00
93357284db vtk: Write VERTICES section in point-only files
This improves paraview's handling of VTK files which only contain
points. It means the points are visible without glyph-ing, and provides
the necessary input for some filters to operate correctly.
2020-11-11 11:21:51 +00:00
48c06ad843 PVReaders: Remove old libvtkPV* libraries during build or clean
This is to make sure the old paths do not get linked in preference,
which could cause errors on updating
2020-10-13 08:29:09 +01:00
abac2a03f5 PVReaders: Moved vtk libraries into $PV_PLUGIN_PATH
The vtk libraries are not fully independent of the paraview
installation, so in order to have multiple valid compilations of the
PVReaders (which is useful for testing) we need multiple versions of
these libraries, too. So, these libraries have been put into
$PV_PLUGIN_PATH, which is a paraview-version-specific subdirectory of
$FOAM_LIBBIN.
2020-09-11 11:50:18 +01:00
def4772281 Documentation: Centred the Class Declaration comment
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2020-08-28 13:28:58 +01:00
d82d47c74b regIOobject.H: Rationalised includes 2020-08-21 08:40:47 +01:00
1eab1b7ffe tutorials/lagrangian/.../verticalChannel*: Updated particle tracks configuration
Resolves bug report https://bugs.openfoam.org/view.php?id=3528
2020-08-06 14:32:58 +01:00
0257ab1459 Updated to C++14 standard
gcc version 5 and above and clang version 3.4 and above fully support the C++14
standard and the compilation rules of OpenFOAM-dev now require this support
allowing for further development and maintenance to benefit from the additional
language features provided in C++14.
2020-07-23 15:31:07 +01:00
9fabb9b002 paraview: Upgrade to 5.8.0
PVReaders now support compilation against ParaView version 5.7.0 and
greater. All references to ParaView versions less than 4.0.0 have been
removed.

Based on a patch contributed by CFD Support
2020-04-16 13:45:37 +01:00
de66b1be68 MomentumTransportModels: Update of the TurbulenceModels library for all flow types
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.

The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately.  The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.

For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.

During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance.  All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.

Henry G. Weller
CFD Direct Ltd.
2020-04-14 20:44:22 +01:00
9ff1e2e168 foamToVTK: Rationalised the low-level write function to avoid 3x duplication
Moved the writeFuns into the vtkWriteOps namespace which is extensible, see the
the write functions in setSet as an example of this.
2020-01-28 16:12:57 +00:00
f4e47fccbc Corrected typos in comments
Patch contributed by Timo Niemi, VTT.
Resolves patch request https://bugs.openfoam.org/view.php?id=3437
2020-01-26 13:40:14 +00:00
c8a1c95b06 IOobject: Added localPath and localObjectPath member functions
For many information and diagnostic messages the absolute path of the object is
not required and the local path relative to the current case is sufficient; the
new localObjectPath() member function of IOobject provides a convenient way of
printing this.
2020-01-24 11:52:45 +00:00
5eaf74c3a4 dictionary scalar lookup: simplified syntax using the type templated lookup function
Replaced
    readScalar(dict.lookup("name"))
with
    dict.lookup<scalar>("name")
2019-11-27 14:56:32 +00:00
d987648ef4 dictionary label lookup: simplified syntax using the type templated lookup function
Replaced
    readLabel(dict.lookup("name"))
with
    dict.lookup<label>("name)
2019-11-27 11:38:59 +00:00
c1820f19d3 postProcessing::noise: Improved robustness of the uniform time-step check 2019-10-31 14:48:31 +00:00
7ab73932cf Function1: Generalisation and removal of unused code
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.

The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.

Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.

In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
2019-10-23 13:13:53 +01:00
81fca4c43a Corrected typos in comments
found using cspell.

Patch contributed by Timo Niemi, VTT.
2019-10-18 11:46:20 +01:00
43566c7f40 particleTracks, steadyParticleTracks: Write the tracks into the <case>/VTK directory
when running serial or parallel as the tracks are reconstructed automatically.

Resolves bug-report https://bugs.openfoam.org/view.php?id=3333
2019-08-22 22:29:23 +01:00
0b6346c721 keyType: Added proper type handling and formalised construction from the string types
Rationalised IO of keyType so the internal structure is not duplicated in
if-else structures in dictionary::entry.
2019-08-17 10:57:22 +01:00
53e8458153 foamToVTK: Added support for vol internal fields 2019-07-20 20:16:18 +01:00
67d3a8dc1b paraFoam: Added support to read vol internal fields
This is useful to visualise sources which are created as
volScalarField::Internal, e.g. the turbulence generation term for models like
kEpsilon in which it is named kEpsilon:G.
2019-07-15 22:26:34 +01:00
b7c0646ed9 PVFoamReader: Added support for visualising surfaceFields
To avoid additional clutter in the interface volFields, surfaceFields and
pointFields are now selected from a single fields selection box consistent with
the single directory with guaranteed unique names in which they are stored.

Note that when visualising the "phi" flux fields that these are extensive, the
value depends directly on the face area, so unless the mesh is uniform
interpolated continuous colour plots are not physical or informative.

Based on proposal contributed by Mattijs Janssens
2019-07-15 11:16:35 +01:00
213319ae30 Standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-19 15:01:35 +01:00
8e9f692aa4 Standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-13 21:26:33 +01:00
fc4d7b92c3 Corrected documentation comment for disabled copy constructors 2019-05-29 15:58:42 +01:00