The utilised static parts of polyMeshGeometry are now part of a
polyMeshCheck namespace. Everything else has been removed, as they were
unused, out of date, and/or duplicated elsewhere.
For example in the new tutorial case:
tutorials/incompressible/pimpleFoam/laminar/pitzDailyPulse
a cosine bell velocity pulse is specified at the inlet by directly defining the
code for it:
inlet
{
type uniformFixedValue;
uniformValue coded;
name pulse;
codeInclude
#{
#include "mathematicalConstants.H"
#};
code
#{
return vector
(
0.5*(1 - cos(constant::mathematical::twoPi*min(x/0.3, 1))),
0,
0
);
#};
}
which is then compiled automatically and linked into the running pimpleFoam
dynamically and executed to set the inlet velocity.
For complex geometries the calculation of surface face and point "closeness" can
be quite time consuming and usually only one or other is required; the new
options allow the user to specify which should be calculated and written.
All of the film transport equations are now formulated with respect to the film
volume fraction in the region cell layer rather than the film thickness which
ensures mass conservation of the film even as it flows over curved surfaces and
around corners. (In the previous formulation the conservation error could be as
large as 15% for a film flowing around a corner.)
The film Courant number is now formulated in terms of the film cell volumetric
flux which avoids the stabilised division by the film thickness and provides a
more reliable estimate for time-step evaluation. As a consequence the film
solution is substantially more robust even though the time-step is now
significantly higher. For film flow dominated problem the simulations now runs
10-30x faster.
The inconsistent extended PISO controls have been replaced by the standard
PIMPLE control system used in all other flow solvers, providing consistent
input, a flexible structure and easier maintenance.
The momentum corrector has been re-formulated to be consistent with the momentum
predictor so the optional PIMPLE outer-corrector loop converges which it did not
previously.
nonuniformTransformCyclic patches and corresponding fields are no longer needed
and have been removed which paves the way for a future rationalisation of the
handling of cyclic transformations in OpenFOAM to improve robustness, usability
and maintainability.
Film sources have been simplified to avoid the need for fictitious boundary
conditions, in particular mappedFixedPushedInternalValueFvPatchField which has
been removed.
Film variables previously appended with an "f" for "film" rather than "face"
have been renamed without the unnecessary and confusing "f" as they are
localised to the film region and hence already directly associated with it.
All film tutorials have been updated to test and demonstrate the developments
and improvements listed above.
Henry G. Weller
CFD Direct Ltd.
This change formalises the usage of the "log" keyword in function
objects. By default, logging to stdout is activated when running
"postProcess" or "<solver> -postProcess", and deactivated when a
function is being executed as part of a run.
This behaviour can now be overridden in the function object dictionary
when operating in either mode.
When reading dimensionSets and dimensionedConstants the name of the
dimensionedScalar is no longer required in addition to the dictionary keyword,
e.g.
c c [0 1 -1 0 0 0 0] 2.99792e+08;
can now be specified as
c [0 1 -1 0 0 0 0] 2.99792e+08;
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.
The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.
Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.
In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
e.g. given a vol pressure field p
functions
{
// Interpolate the pressure field to the faces
surfacep
{
type surfaceInterpolate;
libs ("libfieldFunctionObjects.so");
fields ((p surfacep));
writeControl none;
}
// Average the surface pressure field over the centre faceZone
#includeFunc faceZoneAverage(name=centre, surfacep)
.
.
.
}
Both the functionObject call context (the command line for postProcess, and the
controlDict path for run-time post-precessing) and the configuration file
context where the arguments are substituted are now printed in the error
message, e.g.
postProcess -func 'patchAverage(name=inlet, ields=(p U))'
generates the message
--> FOAM FATAL IO ERROR:
Essential value for keyword 'fields' not set in function entry
patchAverage(name=inlet, ields=(p U))
in command line postProcess -func patchAverage(name=inlet, ields=(p U))
Placeholder value is <field_names>
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/etc/caseDicts/postProcessing/surfaceFieldValue/patchAverage from line 13 to line 17.
and with the following in controlDict
functions
{
#includeFunc patchAverage(name=inlet, ields=(p U))
}
generates the message
--> FOAM FATAL IO ERROR:
Essential value for keyword 'fields' not set in function entry
patchAverage(name=inlet, ields=(p U))
in file /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/incompressible/pimpleFoam/RAS/pitzDaily/system/controlDict at line 55
Placeholder value is <field_names>
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/etc/caseDicts/postProcessing/surfaceFieldValue/patchAverage from line 13 to line 17.
kappa is now obtained from the fluidThermo for laminar regions, the turbulence
model for turbulent regions and the solidThermo for solid regions. The "lookup"
option previously supported allowed for energy-temperature inconsistent and
incorrect specification of kappa and was not used. Without this incorrect
option there is now no need to specify a kappaMethod thus significantly
simplifying the use boundary conditions derived from temperatureCoupledBase.
This allows much greater flexibility in the instantiation of reaction system
which may in general depend on fields other than the thermodynamic state. This
also simplifies mixture thermodynamics removing the need for the reactingMixture
and the instantiation of all the thermodynamic package combinations depending on
it.
which are now read directly from the thermophysicalProperties dictionary for
consistency with non-reacting mixture thermodynamics. The species thermo and
reactions lists can still be in separate files if convenient and included into
the thermophysicalProperties file using the standard dictionary #include.
A new optional "slash" scoping syntax is now provided which is more intuitive
than the current "dot" syntax as it corresponds to the common directory/file
access syntax used in UNIX, and avoids limitations of the "dot" (see below)
e.g.
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $../active/value.air;
anotherValue $:active/value.air;
sub
{
value $../../active/value.air;
anotherValue $:active/value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
// This does expand
$U.air;
}
"#inputSyntax slash;" selects the new "slash" syntax.
"../" refers to the parent directory.
":" refers to the top-level directory.
The corresponding dictionary using the current "dot" syntax is
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $..active.value.air;
anotherValue $:active.value.air;
sub
{
value $...active.value.air;
anotherValue $:active.value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
// This doesn't expand
$U.air;
}
Note that the "$U.air" expansion does not work in this case due to the
interference between the use of '.' for scoping and phase-name.
This is a fundamental problem which prompted the development of the new more
intuitive and flexible "slash" syntax.
The new syntax also allows a for planned future development to access entries
in directories in other files, e.g.
active
{
type fixedValue;
value.air $FOAM_CASE/internalFieldValues/value.air;
}
or
active
{
type fixedValue;
value.air :../internalFieldValues/value.air;
}
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
With the selection of the Boussinesq equation of state the general buoyancy
solvers buoyantSimpleFoam and buoyantPimpleFoam can be used instead of the
specialised Boussinesq solvers avoiding the need for special implementation of
thermal and pressure boundary conditions and providing support for radiation and
fvOptions which would not have been feasible or practical in the Boussinesq
solvers.
Other incompressible equations of state are also supported; for most gaseous
problems the incompressiblePerfectGas equation of state is likely to be more
accurate than the Boussinesq equation of state.
The buoyantBoussinesq[SP]impleFoam tutorials have been updated and moved to the
corresponding buoyant[SP]impleFoam directories.
The writeEntry form is now defined and used consistently throughout OpenFOAM
making it easier to use and extend, particularly to support binary IO of complex
dictionary entries.
This is like the scalarTrasport function except that the transported
scalar is confined to a single phase of a multiphase simulation. In
addition to the usual specification for the scalarTransport function
(i.e., a field, schemes and solution parameters), the user needs to
specify the phase-flux or a pressure field which can be used to generate
it.
Example usage for interFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
p p_rgh;
}
Example usage for reactingTwoPhaseEulerFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
alphaPhi alphaRhoPhi.water;
rho thermo:rho.water;
}
The function will write out both the per-unit-phase field that is solved
for (s.water in the above examples) and also the mixture-total field
(alphaS.water), which is often more convenient for post-processing.
The dynamic code functionality has been generalised so that the names of
the code entries in the specifying dictionary can be set by the caller.
This means that functions which utilise dynamic code but use different
entry names (e.g., codedFunctionObject uses codeExecute, codeEnd,
etc..., instead of code) now function correctly. The differently named
entries now form part of the library hash, and re-building triggers
appropriately as they are modified.
to rationalise the structure and class names to avoid the need for the confusing
addNamedToRunTimeSelectionTable and use instead use the standard
addToRunTimeSelectionTable to populate the run-time selection table.
The construction of some patch fields has been corrected so that the
patchType setting always propagates on mapping, IO, clone, etc...
Dictionary and mapping-based patch field constructors now call the
corresponding constructor from the base class, regardless of whether
dictionary settings or mapping are actually needed.
A "mappingRequired" flag has been added to some of the base constructors
in order to prevent unecessary mapping of field data and retain the
previous level of optimisation.
Resolves bug report https://bugs.openfoam.org/view.php?id=3144