used to check the existence of and open an object file, read and check the
header without constructing the object.
'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.
'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
Robustness improvements have been made to the "behind" system which
prevents the tracking system from hanging. Addition protections have
also been added to prevent division by subnormal numbers and associated
floating point errors.
Warning messages for faces which cannot be tetrahedralised with purely
positive tetrahedra are now generated once per face at each timestep.
This means they do not fill the log if the same face is encountered
multiple times, and they are also are visible throughout a log.
now all path functions in 'IOobject' are either templated on the type or require a
'globalFile' argument to specify if the type is case global e.g. 'IOdictionary' or
decomposed in parallel, e.g. almost everything else.
The 'global()' and 'globalFile()' virtual functions are now in 'regIOobject'
abstract base-class and overridden as required by derived classes. The path
functions using 'global()' and 'globalFile()' to differentiate between global
and processor local objects are now also in 'regIOobject' rather than 'IOobject'
to ensure the path returned is absolutely consistent with the type.
Unfortunately there is still potential for unexpected IO behaviour inconsistent
with the global/local nature of the type due to the 'fileOperation' classes
searching the processor directory for case global objects before searching the
case directory. This approach appears to be a work-around for incomplete
integration with and rationalisation of 'IOobject' but with the changes above it
is no longer necessary. Unfortunately this "up" searching is baked-in at a low
level and mixed-up with various complex ways to pick the processor directory
name out of the object path and will take some unravelling but this work will
undertaken as time allows.
for local and global files so that the reading and writing of local files to
processor directories and global files to the case directory are consistent.
to the <case>/<time>/uniform or <case>/<processor>/<time>/uniform directory.
Adding a new form of IOdictionary for this purpose allows significant
simplification and rationalisation of regIOobject::writeObject, removing the
need for explicit treatment of different file types.
so that in parallel time-dependent global objects are written to the
processor?/<time>/uniform directory and constant global objects are written to
the case/constant directory.
// Reset the seed of the pseudo-random generator used by the graph
// partitioning routines of the libScotch library. Two consecutive calls to
// the same libScotch partitioning routines, and separated by a call to
// SCOTCH randomReset, will always yield the same results, as if the
// equivalent standalone Scotch programs were used twice, independently,
SCOTCH_randomReset();
The OpenFOAM convention is to keep the model-base class in the parent
rather than the models namespace to simplify construction:
Foam::regionModels::thermalBaffleModel::New
rather than
Foam::regionModels::thermalBaffleModels::thermalBaffleModel::New
Provided for use with mixture turbulence models in interFoam and
compressibleInterFoam.
Class
Foam::fv::VoFTurbulenceDamping
Description
Free-surface turbulence damping function
Adds an extra source term to the mixture or phase epsilon or omega
equation to reduce turbulence generated near a free-surface. The
implementation is based on
Reference:
\verbatim
Frederix, E. M. A., Mathur, A., Dovizio, D., Geurts, B. J.,
& Komen, E. M. J. (2018).
Reynolds-averaged modeling of turbulence damping
near a large-scale interface in two-phase flow.
Nuclear engineering and design, 333, 122-130.
\endverbatim
but with an improved formulation for the coefficient \c A appropriate for
unstructured meshes including those with split-cell refinement patterns.
However the dimensioned length-scale coefficient \c delta remains and must
be set appropriatly for the case by performing test runs and comparing with
known results. Clearly this model is far from general and more research is
needed in order that \c delta can be obtained directly from the interface
flow and turbulence conditions.
Usage
Example usage:
\verbatim
VoFTurbulenceDamping
{
type VoFTurbulenceDamping;
libs ("libVoFTurbulenceDamping.so");
// Interface turbulence damping length scale
// This is a required input as described in section 3.3 of the paper
delta 1e-4;
// phase water; // Optional phase name
}
\endverbatim
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
For a set to zone conversion the name of the zone is now specified with the
'zone' keyword.
For a patch to set conversion the name of the patch is now specified with the
'patch' keyword.
Backward-compatibility is supported for both these changes.
Additionally the file name of a searchableSurface file is specified with the
'file' keyword. This should be 'surface' but that keyword is currently and
confusingly used for the surface type rather than name and this cannot be
changed conveniently while maintaining backward compatibility.
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":
{
name rotorCells;
type cellSet;
action new;
source zoneToCell;
sourceInfo
{
name cylinder;
}
}
Description
A topoSetSource to select patch faces according to the flux direction.
Usage
Example topoSetDict to generate faceSets for inflow and outflow faces
on the outlet patch:
\verbatim
actions
(
{
action new;
type faceSet;
name inflow;
source patchFluxToFace;
sourceInfo
{
field phi;
patch outlet;
inflow true;
}
}
{
action new;
type faceSet;
name outflow;
source patchFluxToFace;
sourceInfo
{
field phi;
patch outlet;
inflow false;
}
}
);
\endverbatim
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet. This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
The icx and icpx Intel compilers are selected by
WM_COMPILER=Icx
These compilers are based on the Clang front-end and hence the configuration
files are based on and nearly identical to those for Clang.
Support for the new OneAPI compilers replaces the now deprecated Intel icc, icpc
compilers.