Tracking through an inverted region of the mesh happens in a reversed
direction relative to a non-inverted region. Usually, this allows the
tracking to propagate normally, regardless of the sign of the space.
However, in rare cases, it is possible for a straight trajectory to form
a closed loop through both positive and negative regions. This causes
the tracking to loop indefinitely.
To fix this, the displacement through inverted regions has been
artifically increased by a small amount (1% at the moment). This has the
effect that the change in track fraction over the negative part of the
loop no longer exactly cancels the change over the positive part, and
the track therefore terminates.
The KinematicCloud::patchData method has been made consistent on moving
meshes and/or when the time-step is being sub-cycled.
It has also been altered to calculate the normal component of a moving
patch's velocity directly from the point motions. This prevents an
infinite loop occuring due to inconsistency between the velocity used to
calculate a rebound and that used when tracking.
Some minor style improvements to the particle class have also been made.
Currently heat is assumed to be removed by heat-transfer to the wall so the
energy remains unchanged by the phase-change. This approximation can only be
removed if the interface to the transfer models is extended to support transfers
to and from the film AND the primary region.
The particle collector was collecting some particles twice due to a
tolerance extending the tracked path. This has been removed. The new
tracking algorithm does not generate the same sorts of spurious
tolerance-scale motions that the old one did, so this extension of the
tracking path is unnecessary.
Some particles were also not being collected at all as they were hitting
a diagonal of the collection polygon and registering as not having hit
either of the adjacent triangles. The hit criteria has been rewritten. A
hit now occurs when the normals of the triangles created by joining the
intersection point with the polygon edges are all in the same direction
as the overall polygon normal. This calculation is not affected by the
polygon's diagonals.
The issue was raised by, and resolved with support from, Karl Meredith
at FM Global.
This resolves bug-report https://bugs.openfoam.org/view.php?id=2595
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
This change changes the point-tetIndices-face interpolation function
method to take barycentric-tetIndices-face arguments instead. This
function is, at present, only used for interpolating Eulerian data to
Lagrangian particles.
This change prevents an inefficiency in cellPointInterpolation whereby
the position of the particle is calculated from it's barycentric
coordinates, before immediately being converted back to barycentric
coordinates to perform the interpolation.
Updated the tetrahedron and triangle classes to use the barycentric
primitives. Removed duplicate code for generating random positions in
tets and tris, and fixed bug in tri random position.
The averaging methods now take the particle barycentric coordinates as
inputs rather than global positions. This change significantly optimises
Dual averaging, which is the most commonly used method. The run time of
the lagrangian/MPPICFoam/Goldschmidt tutorial has been reduced by a
factor of about two.