Commit Graph

976 Commits

Author SHA1 Message Date
a346040bcb MomentumTransportModels::ReynoldsStress: Improved the R-U coupling stabilisation algorithm
On unstructured collocated meshes the Reynolds stress tends to decouple from the
velocity creating pronounced staggering patterns in the solution.  This effect
is reduced or eliminated by a special coupling algorithm which replaces the
gradient diffusion component of the Reynolds stress with the equivalent compact
representation on the mesh, i.e. div-grad with Laplacian in the DivDevRhoReff function:

template<class BasicMomentumTransportModel>
template<class RhoFieldType>
Foam::tmp<Foam::fvVectorMatrix>
Foam::ReynoldsStress<BasicMomentumTransportModel>::DivDevRhoReff
(
    const RhoFieldType& rho,
    volVectorField& U
) const
{
    tmp<volTensorField> tgradU = fvc::grad(U);
    const volTensorField& gradU = tgradU();
    const surfaceTensorField gradUf(fvc::interpolate(gradU));

    // Interpolate Reynolds stress to the faces
    // with either a stress or velocity coupling correction
    const surfaceVectorField Refff
    (
        (this->mesh().Sf() & fvc::interpolate(R_))

        // Stress coupling
      + couplingFactor_
       *(this->mesh().Sf() & fvc::interpolate(this->nut()*gradU))

        // or velocity gradient coupling
   // + couplingFactor_
   //  *fvc::interpolate(this->nut())*(this->mesh().Sf() & gradUf)

      - fvc::interpolate(couplingFactor_*this->nut() + this->nu())
       *this->mesh().magSf()*fvc::snGrad(U)
      - fvc::interpolate(this->nu())*(this->mesh().Sf() & dev2(gradUf.T()))
    );

    return
    (
        fvc::div(fvc::interpolate(this->alpha_*rho)*Refff)
      - correction(fvm::laplacian(this->alpha_*rho*this->nuEff(), U))
    );
}

In the above two options for the coupling term are provided, one based on the
stress correction (un-commented) and an alternative based an the velocity
gradient correction (commented).  Tests run so far indicate that the stress
correction provides better coupling while minimising the error introduced.

A new tutorial case ductSecondaryFlow is provided which demonstrates the updated
coupling algorithm on the simulation of the classic secondary flow generated in
rectangular ducts.
2022-05-10 15:54:03 +01:00
55533d2872 tutorials/multiphase/interFoam: Removed unused rhoInf entries from forces functionObject spec 2022-05-06 10:13:54 +01:00
376b51b58b multiphaseEulerFoam::populationBalanceModel: improved dilatation treatment
The population balance model considers dilatation originating from density
change and mass transfer via source terms describing nucleation as well as
"drift" of the size distribution to smaller or larger sizes. Numerically, the
treatment does not necessarily equal the total dilatation, hence a correction is
introduced to ensure boundedness of the size group fractions.

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
and VTT Technical Research Centre of Finland Ltd.
2022-04-29 16:18:03 +01:00
58444464aa initialConditions: Corrected header
Resolves bug-report https://bugs.openfoam.org/view.php?id=3831
2022-04-29 12:29:05 +01:00
95b6b0c003 tutorials: Renamed 2D MRF mixer vessel cases to mixerVessel2DMRF 2022-04-27 12:31:09 +01:00
2beec217d9 tutorials: interFoam: mixerVessel2D: Fix typo 2022-04-27 12:17:21 +01:00
b92fdc82f5 tutorials: pipeCyclic: Overhaul
The refinement cell set is now generated directly using boxToCell. The
mesh now uses cyclic, rather than cyclicAMI, patches so that propagation
of the refinement across the coupling can be tested. Field files have
been simplified by using #includeEtc to set constraints. A best practice
velocity/pressure specification has been set for the outlet boundary.
Unused fields and settings have been removed.
2022-04-27 11:54:41 +01:00
8aecadcafd particleTracks: Made compatible with dynamicMesh and updated annotated dictionary 2022-04-26 17:19:56 +01:00
3bac211785 epsilonmWallFunction: New wall-function specifically for the mixtureKEpsilon model
epsilonm is obtained by combining epsilon.gas and epsilon.liquid in a two-phase
system, each of which will apply the epsilonWallFunction at walls; the
epsilonmWallFunction propagates the resulting wall epsilonm into the near-wall
cells.

If the 0/epsilonm file is provided the epsilonmWallFunction should be specified
for walls, if the 0/epsilonm file is not provided it will be generated
automatically and the epsilonmWallFunction applied to walls for which the
epsilonWallFunction is specified in the epsilon.liquid file.
2022-04-20 18:48:35 +01:00
5e99344348 multiphaseEulerFoam::populationBalanceModel: Removed temporary dilatation correction
and updated tutorials to work with the current phase limit stabilisation.
2022-04-12 10:23:42 +01:00
b8ce733e4b fvMesh: Separated fvMesh::move() and fvMesh::update()
fvMesh::update() now executes at the beginning of the time-step, before time is
incremented and handles topology change, mesh to mesh mapping and redistribution
without point motion.  Following each of these mesh changes fields are mapped
from the previous mesh state to new mesh state in a conservative manner.  These
mesh changes not occur at most once per time-step.

fvMesh::move() is executed after time is incremented and handles point motion
mesh morphing during the time-step in an Arbitrary Lagrangian Eulerian approach
requiring the mesh motion flux to match the cell volume change.  fvMesh::move()
can be called any number of times during the time-step to allow iterative update
of the coupling between the mesh motion and field solution.
2022-04-08 18:46:12 +01:00
47b0cd54dd fvMeshTopoChangers::meshToMesh: New fvMesh topoChanger which maps to a sequence of meshes at run-time
With fvMeshTopoChangers::meshToMesh it is now possible to map the solution to a
specified sequence of pre-generated meshes at run-time to support arbitrary mesh
changes, refinements, un-refinements, changes in region topology, geometry,
etc.  Additionally mesh-motion between the sequence of meshes is supported to
allow for e.g. piston and valve motion in engines.

The tutorials/incompressible/pimpleFoam/laminar/movingCone case has been updated
to provide a demonstration of the advantages of this run-time mesh-mapping by
mapping to meshes that are finer behind the cone and coarser in front of the
cone as the cone approaches the end of the domain, thus maintaining good
resolution while avoiding excessive cell aspect ratio as the mesh is squeezed.
The dynamicMeshDict for the movingCone case is;

mover
{
    type            motionSolver;

    libs            ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    velocityComponentLaplacian;

    component       x;
    diffusivity     directional (1 200 0);
}

topoChanger
{
    type    meshToMesh;

    libs    ("libmeshToMeshTopoChanger.so");

    times   (0.0015 0.003);

    timeDelta 1e-6;
}

which lists the mesh mapping times 0.0015s 0.003s and meshes for these times in
directories constant/meshToMesh_0.0015 and constant/meshToMesh_0.003 are
generated in the Allrun script before the pimpleFoam run:

runApplication -a blockMesh -dict blockMeshDict.2
rm -rf constant/meshToMesh_0.0015
mkdir constant/meshToMesh_0.0015
mv constant/polyMesh constant/meshToMesh_0.0015

runApplication -a blockMesh -dict blockMeshDict.3
rm -rf constant/meshToMesh_0.003
mkdir constant/meshToMesh_0.003
mv constant/polyMesh constant/meshToMesh_0.003

runApplication -a blockMesh -dict blockMeshDict.1

runApplication $application

Note: This functionality is experimental and has only undergone basic testing.
It is likely that it does not yet work with all functionObject, fvModels
etc. which will need updating to support this form of mesh topology change.
2022-04-06 16:37:22 +01:00
b9b8a8ac12 Alltest: added -from and -to options for specifying the directory to run tests from and in
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2022-03-25 23:25:24 +00:00
19b3b2e563 tutorials: reverseBurner: Ignite with temperature constraint
This method of igniting is easier to control than a heat-source based
method. A suitable temperature at which the reaction will take is
typically fairly easy to estimate, whilst determining a heat source
value which achieves the same effect is difficult and is often requires
trial and error.

The new fractional control of value constraints has permitted the use of
fixedTemperatureConstraint in this way; both because it allows for
ramping and for limiting the duration over which the constraint is
applied.
2022-03-23 13:03:42 +00:00
87855d849e tutorials/multiphase/interFoam/RAS/floatingObject: Added controlDict.sixDoF
to be used with dynamicMeshDict.sixDoF to test the deprecated
sixDoFRigidBodyMotion motion solver.
2022-03-19 09:54:13 +00:00
fbf7374bef driftFluxFoam: Added MRF centrifugal acceleration effect to the relativeVelocityModels
This required changing the formulation of the relative velocity in terms of a
scalar velocity coefficient Vc rather than the velocity V0 such that

    V0 = Vc*g

where g is the acceleration due to gravity.  With MRF rotation

    V0 = Vc*(g + <MRF centrifugal acceleration>)
2022-03-17 17:35:15 +00:00
0f88d03f5a tutorials/multiphase/interFoam/RAS/planingHullW3/Allmesh.*: Remove sets after refinement
otherwise renumberMesh fails due to the refinement sets being inconsistent with
the final mesh.
2022-03-16 10:43:27 +00:00
a08bb7bae1 meshQualityDict: Switch off the minVol control by default
It is not clear for what cases the minVol control is useful or necessary and for
some cases it causes problems with snapping and layer addition if not set to a
sufficiently small value.
2022-03-15 14:50:12 +00:00
f2bf348ab2 tutorials/incompressible/icoFoam/cavity: Updated transportProperties -> physicalProperties 2022-03-14 13:50:30 +00:00
bbaba1a645 topoSetDict: Corrected/updated formatting
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
2022-03-14 13:49:07 +00:00
373c4993a8 externalWallHeatFluxTemperature: Removed "mode"
Heat power (Q), heat flux (q) and heat transfer coefficient (h)
can now all be specified simultaneously. Their effects will be summed
into a single heat transfer rate. The "mode" keyword is no longer
required.
2022-03-08 10:19:47 +00:00
e7aaae76ac tutorials: reverseBurner: Fix warnings about wedge geometry 2022-03-08 09:16:51 +00:00
16788ffc36 fvMeshDistributorsDistributor: Changed decompose call to support constraints
Resolves bug-report https://bugs.openfoam.org/view.php?id=3812
2022-03-04 18:34:32 +00:00
8cecaa8b6e MultiComponentPhaseModel: Replaced local residualAlpha_ with phase.residualAlpha()
There is no clear need for a residualAlpha to be defined specifically for Yi and
read from the fvSolution dictionary, the phase.residualAlpha() should be
suitable to stabilise the Yi equations.
2022-03-01 18:00:06 +00:00
99cfbd818f blockMesh: Added warning to set defaultPatch appropriately for snappyHexMesh and 2D cases
The defaultPatch type currently defaults to empty which is appropriate for 1D
and 2D cases but not when creating the initial blockMesh for snappyHexMesh as
the presence of empty patches triggers the inappropriate application of 2D point
constraint corrections following snapping and morphing.  To avoid this hidden
problem a warning is now generated from blockMesh when the defaultPatch is not
explicitly set for cases which generate a default patch, i.e. for which the
boundary is not entirely defined.  e.g.

.
.
.
Creating block mesh topology

--> FOAM FATAL IO ERROR:
The 'defaultPatch' type must be specified for the 'defaultFaces' patch, e.g. for snappyHexMesh

    defaultPatch
    {
        name default; // optional
        type patch;
    }

or for 2D meshes

    defaultPatch
    {
        name frontAndBack; // optional
        type empty;
    }
.
.
.

All the tutorials have been update to include the defaultPatch specification as
appropriate.
2022-02-24 21:35:09 +00:00
32e7b52c81 motionSmootherAlgoCheck::checkMesh: improved minVol test and removed unused tests
motionSmootherAlgoCheck::checkMesh is used by snappyHexMesh to check the mesh
after snapping and morphing.  The minVol test which checks for collapsed cells
is now relative to the cube of the minimum bounding box length so that it is
less dependent on the size of the geometry and less likely to need changing for
very small geometries.

The default value is set in
etc/caseDicts/mesh/generation/meshQualityDict
etc/caseDicts/mesh/generation/meshQualityDict.cfg

//- Minimum cell pyramid volume relative to min bounding box length^3
//  Set to a fraction of the smallest cell volume expected.
//  Set to very negative number (e.g. -1e30) to disable.
minVol 1e-10;

The unused minArea and minTriangleTwist tests have been removed
2022-02-24 16:44:34 +00:00
b827c0d740 Compressible solvers: Improved transonic option in the pressure equation
The handling of the div(phid,p) term for transonic support in the pressure
equation is now consistent such that conservation is achieved at convergence of
the pressure system irrespective of the scheme chosen for div(phid,p) and the
relaxation of the pressure equation.

The rhoSimpleFoam tutorials have been updated and improved.
2022-02-22 13:05:40 +00:00
d40ecd78eb buoyantFoam: Merged buoyantSimpleFoam and buoyantPimpleFoam
Solver for steady or transient buoyant, turbulent flow of compressible fluids
for ventilation and heat-transfer, with optional mesh motion and mesh topology
changes.  Created by merging buoyantSimpleFoam and buoyantPimpleFoam to provide
a more general solver and simplify maintenance.
2022-02-18 12:20:54 +00:00
46895490c7 Compressible solver pEqn.H: Standardised the treatment of density
In rhoPimpleFoam, rhoSimpleFoam, buoyantPimpleFoam and buoyantSimpleFoam the
density prediction step at the start of pEqn.H is now consistent between these
solvers and the other compressible solvers.  If the density is relaxed in the
corrector it is now also relaxed following the predictor which improves
consistency, stability and convergence.
2022-02-18 10:33:40 +00:00
fd3cfe4364 tutorials::buoyantCavity::createGraphs: Updated for new sample file format 2022-02-17 09:33:28 +00:00
dbc4b4b20b tutorials::wingMotion_snappyHexMesh::blockMeshDict: replaced symmetryPlane with patch
to ensure createPatch removes the original front and back patches after
extrusion.
2022-02-10 19:54:58 +00:00
c468a63830 compressibleInterFoam::VoFSurfaceFilm: Added maxDeltaT
to limit the time-step by comparing the film Courant number with the maximum
Courant number obtain from the optional maxCo entry in the system/<film
region>/fvSolution file.  If maxCo is not provided the film model does not limit
the time-step.

See tutorials/multiphase/compressibleInterFoam/laminar/cylinder as an example
demonstrating this functionality.
2022-02-09 11:45:42 +00:00
fec6837f8f tutorials/multiphase: totalPressure -> prghTotalPressure
For most multiphase flows it is more appropriate to evaluate the total pressure
from the static pressure obtained from p_rgh rather than from p_rgh directly.
2022-02-07 12:32:20 +00:00
f85f45fe4b tutorials/multiphase/interFoam/laminar/wave: Added tangentialVelocity to top boundary
to match the air flow in the domain.
2022-02-06 19:21:33 +00:00
5df9ec5b1e tutorials/heatTransfer/buoyantSimpleFoam: Updated solver settings to improve convergence
Also changed from internal energy to enthalpy which is preferable for
steady-state simulations.
2022-02-06 11:44:07 +00:00
6d91cb289c tutorials::counterFlowFlame2D_GRI, floatingObject: Added -cellDist
to write the cellDist processor distribution files for
decomposition/redistribution post-processing and diagnostics.
2022-02-01 11:33:02 +00:00
360fd3f804 tutorials/multiphase/interFoam/RAS/DTCHull: Improved LTS settings
Following a rationalisation of the Courant number used to set the LTS time-step
the LTS settings needed to be changed to improve convergence.
2022-01-29 09:10:39 +00:00
ba130ec083 multiphase: Rationalised alphaContactAngle handling
Alpha contact angle boundaries are now specified in the following way
for multiphase solvers (i.e., multiphaseInterFoam,
compressibleMultiphaseInterFoam, and multiphaseEulerFoam):

   boundaryField
   {
       wall
       {
           type            alphaContactAngle;
           contactAngleProperties
           {
               water
               {
                   // Constant contact angle
                   theta0 90;
               }
               oil
               {
                   // Dynamic contact angle
                   theta0 90;
                   uTheta 1;
                   thetaA 125;
                   thetaR 85;
               }
           }
           value           uniform 0;
       }
   }

All solvers now share the same implementation of the alphaContactAngle
boundary condition and the contact angle correction algorithm.

If alpha contact angle boundary conditions are used they must be
specified for all phases or an error will result. The consistency of the
input will also be checked. The angles given for water in the alpha.air
file must be 180 degrees minus the angles given for air in the
alpha.water file.
2022-01-28 17:25:22 +00:00
fbe65c0865 tutorials/multiphase/multiphaseEulerFoam: Multiphase blending changes
Updated tutorials for the changes to the blending system. Cases using
"none" blending have been updated to use "continuous" or "segregated" as
appropriate.

The bed tutorial has been extended to include a proper switch to a bed
drag model (AttouFerschneider) when the solid phase displaces the
fluids. This change made the trickleBed case a subset of the bed case,
so the trickleBed has been removed.
2022-01-28 09:24:28 +00:00
64a6562a1e tutorials/multiphase/multiphaseEulerFoam: Backwards compatible changes
These changes are not required for the cases to run with the new
phaseInterface system. The syntax prior to this commit will be read in
the new phaseInterface system's backwards compatibility mode.
2022-01-28 09:24:28 +00:00
807e517274 tutorials/multiphase/multiphaseEulerFoam: Non-backwards compatible changes
These changes are required for the cases to run with the new
phaseInterface system.
2022-01-28 09:24:28 +00:00
8bb48df87f flowRateInletVelocityFvPatchVectorField: Added optional profile entry to specify the velocity profile
The unreliable extrapolateProfile option has been replaced by the more flexible
and reliable profile option which allows the velocity profile to be specified as
a Function1 of the normalised distance to the wall.  To simplify the
specification of the most common velocity profiles the new laminarBL (quadratic
profile) and turbulentBL (1/7th power law) Function1s are provided.

In addition to the new profile option the flow rate can now be specified as a
meanVelocity, volumetricFlowRate or massFlowRate, all of which are Function1s of
time.

The following tutorials have been updated to use the laminarBL profile:
    multiphase/multiphaseEulerFoam/laminar/titaniaSynthesis
    multiphase/multiphaseEulerFoam/laminar/titaniaSynthesisSurface

The following tutorials have been updated to use the turbulentBL profile:
    combustion/reactingFoam/Lagrangian/verticalChannel
    combustion/reactingFoam/Lagrangian/verticalChannelLTS
    combustion/reactingFoam/Lagrangian/verticalChannelSteady
    compressible/rhoPimpleFoam/RAS/angledDuct
    compressible/rhoPimpleFoam/RAS/angledDuctLTS
    compressible/rhoPimpleFoam/RAS/squareBendLiq
    compressible/rhoPorousSimpleFoam/angledDuctImplicit
    compressible/rhoSimpleFoam/angledDuctExplicitFixedCoeff
    compressible/rhoSimpleFoam/squareBend
    compressible/rhoSimpleFoam/squareBendLiq
    heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger
    heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger
    incompressible/porousSimpleFoam/angledDuctImplicit
    incompressible/porousSimpleFoam/straightDuctImplicit
    multiphase/interFoam/RAS/angledDuct

Class
    Foam::flowRateInletVelocityFvPatchVectorField

Description
    Velocity inlet boundary condition creating a velocity field with
    optionally specified profile normal to the patch adjusted to match the
    specified mass flow rate, volumetric flow rate or mean velocity.

    For a mass-based flux:
    - the flow rate should be provided in kg/s
    - if \c rho is "none" the flow rate is in m3/s
    - otherwise \c rho should correspond to the name of the density field
    - if the density field cannot be found in the database, the user must
      specify the inlet density using the \c rhoInlet entry

    For a volumetric-based flux:
    - the flow rate is in m3/s

Usage
    \table
        Property     | Description             | Required    | Default value
        massFlowRate | Mass flow rate [kg/s]   | no          |
        volumetricFlowRate | Volumetric flow rate [m^3/s]| no |
        meanVelocity | Mean velocity [m/s]| no |
        profile      | Velocity profile        | no          |
        rho          | Density field name      | no          | rho
        rhoInlet     | Inlet density           | no          |
        alpha        | Volume fraction field name | no       |
    \endtable

    Example of the boundary condition specification for a volumetric flow rate:
    \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        volumetricFlowRate  0.2;
        profile             laminarBL;
    }
    \endverbatim

    Example of the boundary condition specification for a mass flow rate:
     \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        massFlowRate        0.2;
        profile             turbulentBL;
        rho                 rho;
        rhoInlet            1.0;
    }
    \endverbatim

    Example of the boundary condition specification for a volumetric flow rate:
    \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        meanVelocity        5;
        profile             turbulentBL;
    }
    \endverbatim

    The \c volumetricFlowRate, \c massFlowRate or \c meanVelocity entries are
    \c Function1 of time, see Foam::Function1s.

    The \c profile entry is a \c Function1 of the normalised distance to the
    wall.  Any suitable Foam::Function1s can be used including
    Foam::Function1s::codedFunction1 but Foam::Function1s::laminarBL and
    Foam::Function1s::turbulentBL have been created specifically for this
    purpose and are likely to be appropriate for most cases.

Note
    - \c rhoInlet is required for the case of a mass flow rate, where the
      density field is not available at start-up
    - The value is positive into the domain (as an inlet)
    - May not work correctly for transonic inlets
    - Strange behaviour with potentialFoam since the U equation is not solved

See also
    Foam::fixedValueFvPatchField
    Foam::Function1s::laminarBL
    Foam::Function1s::turbulentBL
    Foam::Function1s
    Foam::flowRateOutletVelocityFvPatchVectorField
2022-01-24 19:10:39 +00:00
66f325fc41 multiphaseEulerFoam: Add "none" diameterModel for phases that are always continuous
This model will generate an error if the diameter is requested. This
will happen if another sub model is included that depends on the
diameter of the continuous phase. It therefore provides a check that the
sub-modelling combination is valid.

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2022-01-19 15:21:06 +00:00
ded017b762 mapFields: Corrected handling of userTime
Resolves bug-report https://bugs.openfoam.org/view.php?id=3786
2022-01-18 10:52:06 +00:00
c104aac1da Removed duplicate file 2022-01-17 23:58:32 +00:00
472ce5ace6 fvMeshDistributors::loadBalancer: Prototype general CPU load balancer
used in conjunction with the new loadBalancing option in constant/chemistryProperties:

    loadBalancing   on;

which enables per-cell CPU time caching used by the loadBalancer to redistribute
the mesh.  Currently this option is only provided for chemistry integration but
the implementation is general and in future options will be provided to balance
other local cell loads, in particular Lagrangian particles.

The loadBalancer in enabled by specifying a distributor entry in
constant/dynamicMeshDict, e.g.

distributor
{
    type            loadBalancer;

    libs            ("libfvMeshDistributors.so");

    multiConstraint true;

    // How often to redistribute
    redistributionInterval  10;

    // Maximum fractional cell distribution imbalance
    // before rebalancing
    maxImbalance    0.1;
}

with which the mesh is checked for more than 10% load-imbalance every 10
time-steps and redistributed using a multi-constraint method, i.e. separate CPU
load weights are provided for each of the loads, currently that is the chemistry
integration load and the CPU time taken for the rest of the simulation,
transport equations solution etc.

The fvMeshDistributors::loadBalancer uses the distributor specified in
system/decomposeParDict to redistribute the mesh based on the cell CPU loads,
e.g. to use the Zoltan RCB method specify:

distributor     zoltan;
libs            ("libzoltanDecomp.so");

zoltanCoeffs
{
    lb_method   rcb;
}

Unfortunately only a few available redistribution methods support
multi-constraints: Zoltan::RCB, MeTiS, parMeTiS and xtraPuLP, of these only
Zoltan::RCB is currently available in OpenFOAM.  Load-balancing is possible
without using a multi-constraint method (i.e. using any of the other
decomposition methods provided with OpenFOAM and Zoltan) by summing the various
CPU loads which is selected by setting:

    multiConstraint false;

but the load-balancing is likely to be a lot less effective with this option.

Due to the licencing issues with parMeTiS interfacing to xtraPuLP might be the
best option for further work on load-balancing in OpenFOAM, or MeTiS could be
used in parallel by first agglomerating the distribution graph on the master
processor and redistributing the result; this pseudo-parallel option is already
provided for the Scotch method.
2022-01-17 11:31:12 +00:00
3c353761ed tutorials::dynamicMeshDict: Corrected dictionary name 2022-01-17 10:54:11 +00:00
cc96abda03 basicThermo: Cache thermal conductivity kappa rather than thermal diffusivity alpha
Now that Cp and Cv are cached it is more convenient and consistent and slightly
more efficient to cache thermal conductivity kappa rather than thermal
diffusivity alpha which is not a fundamental property, the appropriate form
depending on the energy solved for.  kappa is converted into the appropriate
thermal diffusivity for the energy form solved for by dividing by the
corresponding cached heat capacity when required, which is efficient.
2022-01-10 20:19:00 +00:00
794255284f multiphaseEulerFoam: revised sizeDistribution functionObject
Following the addition of the new moments functionObject, all related
functionality was removed from sizeDistribution.

In its revised version, sizeDistribution allows for different kinds of
weighted region averaging in case of field-dependent representative
particle properties.

A packaged function has also been added to allow for command line solver
post-processing.

For example, the following function object specification returns the
volume-based number density function:

    numberDensity
    {
        type                sizeDistribution;
        libs                ("libmultiphaseEulerFoamFunctionObjects.so");
        writeControl        writeTime;
        populationBalance   bubbles;
        functionType        numberDensity;
        coordinateType      volume;
        setFormat           raw;
    }

The same can be achieved using a packaged function:

    #includeFunc sizeDistribution
    (
        populationBalance=bubbles,
        functionType=numberDensity,
        coordinateType=volume,
        funcName=numberDensity
    )

Or on the command line:

    multiphaseEulerFoam -postProcess -func "
    sizeDistribution
    (
        populationBalance=bubbles,
        functionType=numberDensity,
        coordinateType=volume,
        funcName=numberDensity
    )"

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2022-01-07 09:48:30 +00:00
ef9707eaa7 tutorials/multiphase/interFoam/RAS/waterChannel: Now calculates the volumetric flux of the water
Resolves bug-report https://bugs.openfoam.org/view.php?id=3774
2022-01-05 19:02:22 +00:00