The mergePatchPairs functionality in blockMesh also now uses patchIntersection.
The new mergePatchPairs and patchIntersection replaces the old, fragile and
practically unusable polyTopoChanger::slidingInterface functionality the removal
of which has allowed the deletion of a lot of other ancient and otherwise unused
clutter including polyTopoChanger, polyMeshModifier, polyTopoChange::setAction
and associated addObject/*, modifyObject/* and removeObject/*. This
rationalisation paves the way for the completion of the update of zone handling
allowing mesh points, faces and cells to exist in multiple zones which is
currently not supported with mesh topology change.
Application
stitchMesh
Description
Utility to stitch or conform pairs of patches,
converting the patch faces either into internal faces
or conformal faces or another patch.
Usage
\b stitchMesh (\<list of patch pairs\>)
E.g. to stitch patches \c top1 to \c top2 and \c bottom1 to \c bottom2
stitchMesh "((top1 top2) (bottom1 bottom2))"
Options:
- \par -overwrite \n
Replace the old mesh with the new one, rather than writing the new one
into a separate time directory
- \par -region \<name\>
Specify an alternative mesh region.
- \par -fields
Update vol and point fields
- \par -tol
Merge tolerance relative to local edge length (default 1e-4)
See also
Foam::mergePatchPairs
The legacy fvMeshTopoChangersMovingCone removed, replaced by the more general
mesh mapping approach, see tutorials incompressibleFluid/movingCone and
shockFluid/movingCone.
A number of fixes have been made in order to make non-conformal cyclic
patches compatible with run-time distribution.
A tutorial case, incompressibleVoF/rotatingCube, has been added which
demonstrates simultaneous usage of motion, non-conformal couplings,
adaptive refinement and load-balancing.
Now both the checkMesh utility and functionObject operate in the same manner
with the same controls, executing the same checkGeometry and checkTopology
functions from the new meshCheck library. The controls have been updated and
made more consistent and flexible, in particular by the addition of optional
user specification for the non-orthogonality and skewness error thresholds:
Application
checkMesh
Description
Checks validity of a mesh.
Usage
\b checkMesh [OPTION]
Options:
- \par noTopology
Skip checking the mesh topology
- \par -allTopology
Check all (including non finite-volume specific) addressing
- \par -allGeometry
Check all (including non finite-volume specific) geometry
- \par -meshQuality
Check against user defined (in \a system/meshQualityDict) quality
settings
- \par -region \<name\>
Specify an alternative mesh region.
- \par -writeSurfaces
Reconstruct cellSets and faceSets of problem faces and write to
postProcessing directory.
- \par -surfaceFormat <format>
Format used to write the cellSets and faceSets surfaces
e.g. vtk or ensight.
- \par -writeSets
Reconstruct pointSets of problem points nd write to
postProcessing directory.
- \par -setFormat <format>
Format used to write the pointSets
e.g. vtk or ensight.
- \par -nonOrthThreshold <threshold value in degrees>
Threshold in degrees for reporting non-orthogonality errors,
default: 70"
- \par -skewThreshold <threshold value>
Threshold for reporting skewness errors, default: 4.
Class
Foam::functionObjects::checkMesh
Description
Executes primitiveMesh::checkMesh(true) every execute time for which the
mesh changed, i.e. moved or changed topology.
Useful to check the correctness of changing and morphing meshes.
Usage
\table
Property | Description | Required | Default value
type | type name: checkMesh | yes |
noTopology | Skip checking the mesh topology | no | false
allTopology | Check all addressing | no | false
allGeometry | Check all geometry | no | false
writeSurfaces | Reconstruct and write problem faces | no | false
surfaceFormat | Format for problem faceSets | no | vtk
writeSets | Reconstruct and write problem points | no | false
setFormat | Format used to write the problem pointSets | no | vtk
nonOrthThreshold | Threshold for non-orthogonality errors | no | 70 deg
skewThreshold | Threshold for reporting skewness errors | no | 4
\endtable
Example of checkMesh specification:
\verbatim
checkMesh
{
type checkMesh;
libs ("libutilityFunctionObjects.so");
executeControl timeStep;
executeInterval 10;
allGeometry true;
allTopology true;
writeSurfaces true;
surfaceFormat vtk;
writeSets true;
setFormat vtk;
}
\endverbatim
or using the standard configuration file:
\verbatim
#includeFunc checkMesh(executeInterval=10, allGeometry=true)
\endverbatim
This avoids potential hidden run-time errors caused by solvers running with
boundary conditions which are not fully specified. Note that "null-constructor"
here means the constructor from patch and internal field only, no data is
provided.
Constraint and simple BCs such as 'calculated', 'zeroGradient' and others which
do not require user input to fully specify their operation remain on the
null-constructor table for the construction of fields with for example all
'calculated' or all 'zeroGradient' BCs.
A special version of the 'inletOutlet' fvPatchField named 'zeroInletOutlet' has
been added in which the inlet value is hard-coded to zero which allows this BC
to be included on the null-constructor table. This is useful for the 'age'
functionObject to avoid the need to provide the 'age' volScalarField at time 0
unless special inlet or outlet BCs are required. Also for isothermalFilm in
which the 'alpha' field is created automatically from the 'delta' field if it is
not present and can inherit 'zeroInletOutlet' from 'delta' if appropriate. If a
specific 'inletValue' is require or other more complex BCs then the 'alpha'
field file must be provided to specify these BCs as before.
Following this improvement it will now be possible to remove the
null-constructors from all fvPatchFields not added to the null-constructor
table, which is most of them, thus reducing the amount of code and maintenance
overhead and making easier and more obvious to write new fvPatchField types.
This completes commit 381e0921 and permits patches on the "top" of
extruded regions to determine the point locations opposite as well as
the face centres and areas. This means that patches with dissimilar
meshes can now be coupled via the patchToPatch interpolation engine.
A few fixes have also been applied to extrudeToRegionMesh to make the
intrude option compatibile with extrusion into internal faces and
between opposing zones/sets/patches. The 'shadow' entries used for
extrusion inbetween opposing zones/sets/patches have also been renamed
to 'opposite' for consistency with the patch names and patch types
entries; e.g.,
faceZones (fz1 fz3);
oppositeFaceZones (fz2 fz4); // <-- was 'faceZonesShadow'
faceSets (fs1 fs3);
oppositeFaceSets (fs2 fs4); // <-- was 'faceSetsShadow'
patches (p1 p3);
oppositePatches (p2 p4); // <-- was 'patchesShadow'
With the new film implementation the single cell layer film region is extruded
into (overlapping with) the primary/fluid region which can now be generated with
extrudeToRegionMesh using the new 'intrude' option, e.g. for the
tutorials/modules/multiRegion/film/splashPanel case the extrudeToRegionMeshDict
contains:
region film;
patches (film);
extrudeModel linearNormal;
intrude yes;
adaptMesh no;
patchTypes (mappedExtrudedWall);
patchNames (film);
regionPatchTypes (filmWall);
regionPatchNames (wall);
regionOppositePatchTypes (mappedFilmSurface);
regionOppositePatchNames (surface);
nLayers 1;
expansionRatio 1;
linearNormalCoeffs
{
thickness 0.002;
}
genericPatches is linked into mesh generation and manipulation utilities but not
solvers so that the solvers now check for the availability of the specified
patch types. Bugs in the tutorials exposed by this check have been corrected.
e.g. in extrudeToRegionMeshDict:
// Generate the region named film
region film;
// from the patch extrudeWall
patches (extrudeWall);
// generating mapped patches for the extruded region
adaptMesh yes;
// New options:
// Set the type of the mapped patch on the existing mesh to mappedWall ...
patchTypes (mappedWall);
// ... and name to wall
patchNames (wall);
// Set the type of the mapped patch on the region mesh to mappedFilmWall ...
regionPatchTypes (mappedFilmWall);
// ... and name to wall
regionPatchNames (wall);
// Set the type of the opposite patch on the region mesh to empty ...
regionOppositePatchTypes (empty);
// ... and name to empty
regionOppositePatchNames (empty);
All the above entries are optional and if not present the previous behaviour is
reproduced.