With the new fvModels framework it is now possible to implement complex models
and wrappers around existing complex models which can then be optionally
selected in any general solver which provides compatible fields and
thermophysical properties. This simplifies code development and maintenance by
significantly reducing complex code duplication and also provide the opportunity
of running these models in other solvers without the need for code duplication
and alteration.
The immediate advantage of this development is the replacement of the
specialised Lagrangian solvers with their general counterparts:
reactingParticleFoam -> reactingFoam
reactingParcelFoam -> reactingFoam
sprayFoam -> reactingFoam
simpleReactingParticleFoam -> reactingFoam
buoyantReactingParticleFoam -> buoyantReactingFoam
For example to run a reactingParticleFoam case in reactingFoam add the following
entries in constant/fvModels:
buoyancyForce
{
type buoyancyForce;
}
clouds
{
type clouds;
libs ("liblagrangianParcel.so");
}
which add the acceleration due to gravity needed by Lagrangian clouds and the
clouds themselves.
See the following cases for examples converted from reactingParticleFoam:
$FOAM_TUTORIALS/combustion/reactingFoam/Lagrangian
and to run a buoyantReactingParticleFoam case in buoyantReactingFoam add the
following entry constant/fvModels:
clouds
{
type clouds;
libs ("liblagrangianParcel.so");
}
to add support for Lagrangian clouds and/or
surfaceFilm
{
type surfaceFilm;
libs ("libsurfaceFilmModels.so");
}
to add support for surface film. The buoyancyForce fvModel is not required in
this case as the buoyantReactingFoam solver has built-in support for buoyancy
utilising the p_rgh formulation to provide better numerical handling for this
force for strongly buoyancy-driven flows.
See the following cases for examples converted from buoyantReactingParticleFoam:
$FOAM_TUTORIALS/combustion/buoyantReactingFoam/Lagrangian
All the tutorial cases for the redundant solvers have been updated and converted
into their new equivalents and redirection scripts replace these solvers to
provide users with prompts on which solvers have been replaced by which and
information on how to upgrade their cases.
To support this change and allow all previous Lagrangian tutorials to run as
before the special Lagrangian solver fvSolution/PIMPLE control
solvePrimaryRegion has been replaced by the more general and useful controls:
models : Enable the fvModels
thermophysics : Enable thermophysics (energy and optional composition)
flow : Enable flow (pressure/velocity system)
which also replace the fvSolution/PIMPLE control frozenFlow present in some
solvers. These three controls can be used in various combinations to allow for
example only the fvModels to be evaluated, e.g. in
$FOAM_TUTORIALS/combustion/buoyantReactingFoam/Lagrangian/rivuletPanel
PIMPLE
{
models yes;
thermophysics no;
flow no;
.
.
.
so that only the film is solved. Or during the start-up of a case it might be
beneficial to run the pressure-velocity system for a while without updating
temperature which can be achieved by switching-off thermophysics. Also the
behaviour of the previous frozenFlow switch can be reproduced by switching flow
off with the other two switches on, allowing for example reactions, temperature
and composition update without flow.
The reduced SLGThermo has been renamed parcelThermo to better represent the
purpose.
parcelThermo is not created and stored in the cloud that requires it rather than
requiring it to be created in the solver createFields and passed to the cloud on
construction.
To provide more flexibility, extensibility, run-time modifiability and
consistency the handling of optional pressure limits has been moved from
pressureControl (settings in system/fvSolution) to the new limitPressure
fvConstraint (settings in system/fvConstraints).
All tutorials have been updated which provides guidance when upgrading cases but
also helpful error messages are generated for cases using the old settings
providing specific details as to how the case should be updated, e.g. for the
tutorials/compressible/rhoSimpleFoam/squareBend case which has the pressure
limit specification:
SIMPLE
{
...
pMinFactor 0.1;
pMaxFactor 2;
...
generates the error message
--> FOAM FATAL IO ERROR:
Pressure limits should now be specified in fvConstraints:
limitp
{
type limitPressure;
minFactor 0.1;
maxFactor 2;
}
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/compressible/rhoSimpleFoam/squareBend/system/fvSolution/SIMPLE from line 41 to line 54.
The MomentumTransportModels library now builds of a standard set of
phase-incompressible and phase-compressible models. This replaces most
solver-specific builds of these models.
This has been made possible by the addition of a new
"dynamicTransportModel" interface, from which all transport classes used
by the momentum transport models now derive. For the purpose of
disambiguation, the old "transportModel" has also been renamed
"kinematicTransportModel".
This change has been made in order to create a consistent definition of
phase-incompressible and phase-compressible MomentumTransportModels,
which can then be looked up by functionObjects, fvModels, and similar.
Some solvers still build specific momentum transport models, but these
are now in addition to the standard set. The solver does not build all
the models it uses.
There are also corresponding centralised builds of phase dependent
ThermophysicalTransportModels.
SLGThermo has been moved to lagrangian, which still depends on it, pending
complete removal and replacement with a more rational interface to the carrier
phase thermodynamics.
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation. This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc. For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.
fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution. This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run. Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.
fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
Field corrections are effectively explicit constraints applied to the field
after solution rather than to the equation and it significantly simplifies the
implementation to treat them as a special case of constraints. To implement
this the fvOption::correct(<field>) function has been renamed
fvOption::constrain(<field>) and uses constrainsField and constrainedFields.
This simplifies and standardises the handling of radiation in all solvers which
include an energy equation, all of which now support radiation via the
'radiation' fvOption which is selected in the constant/fvOption or
constant/<region>/fvOption file:
radiation
{
type radiation;
libs ("libradiationModels.so");
}
The radiation model, parameters, settings and sub-models are specified in the
'radiationProperties' file as before.
and renamed defaultSpecie as its mass fraction is derived from the sum of the
mass fractions of all other species and it need not be inert but must be present
everywhere, e.g. N2 in air/fuel combustion which can be involved in the
production of NOx.
The previous name inertSpecie in thermophysicalProperties is supported for
backward compatibility.
psiReactionThermo- and rhoReactionThermo-s now derive from an additional
fluidReactionThermo class and are included on a corresponding run-time
selection table.
This means all multi-specie solvers can now be used with either
compressibility/psi- or density/rho-based thermodynamic models, in the
same way that non-reacting solvers can.
rhoReactingFoam has been removed, as it is no longer necessary now that
reactingFoam can operate with density-based thermodynamics.
rhoReactingBuoyantFoam has also been renamed buoyantReactingFoam to
reflect the fact that it is no longer a variant specific to
density-based thermodynamics; it can now operate with
compressibility-based thermodynamic models as well.
The change is fully backwards compatible. All cases should continue to
run without modification, apart from the fact that a different solver
might need to be called.
This is useful for testing purposes in comparison with rhoPimpleFoam.
Also made a fix to the handling of multivariate convection schemes in
chtMultiRegionFoam.
The standard set of Lagrangian clouds are now selectable at run-time.
This means that a solver that supports Lagrangian modelling can now use
any type of cloud (with some restrictions). Previously, solvers were
hard-coded to use specific cloud modelling. In addition, a cloud-list
structure has been added so that solvers may select multiple clouds,
rather than just one.
The new system is controlled as follows:
- If only a single cloud is required, then the settings for the
Lagrangian modelling should be placed in a constant/cloudProperties
file.
- If multiple clouds are required, then a constant/clouds file should be
created containing a list of cloud names defined by the user. Each
named cloud then reads settings from a corresponding
constant/<cloudName>Properties file. Clouds are evolved sequentially
in the order in which they are listed in the constant/clouds file.
- If no clouds are required, then the constant/cloudProperties file and
constant/clouds file should be omitted.
The constant/cloudProperties or constant/<cloudName>Properties files are
the same as previous cloud properties files; e.g.,
constant/kinematicCloudProperties or constant/reactingCloud1Properties,
except that they now also require an additional top-level "type" entry
to select which type of cloud is to be used. The available options for
this entry are:
type cloud; // A basic cloud of solid
// particles. Includes forces,
// patch interaction, injection,
// dispersion and stochastic
// collisions. Same as the cloud
// previously used by
// rhoParticleFoam
// (uncoupledKinematicParticleFoam)
type collidingCloud; // As "cloud" but with resolved
// collision modelling. Same as the
// cloud previously used by DPMFoam
// and particleFoam
// (icoUncoupledKinematicParticleFoam)
type MPPICCloud; // As "cloud" but with MPPIC
// collision modelling. Same as the
// cloud previously used by
// MPPICFoam.
type thermoCloud; // As "cloud" but with
// thermodynamic modelling and heat
// transfer with the carrier phase.
// Same as the limestone cloud
// previously used by
// coalChemistryFoam.
type reactingCloud; // As "thermoCloud" but with phase
// change and mass transfer
// coupling with the carrier
// phase. Same as the cloud
// previously used in fireFoam.
type reactingMultiphaseCloud; // As "reactingCloud" but with
// particles that contain multiple
// phases. Same as the clouds
// previously used in
// reactingParcelFoam and
// simpleReactingParcelFoam and the
// coal cloud used in
// coalChemistryFoam.
type sprayCloud; // As "reactingCloud" but with
// additional spray-specific
// collision and breakup modelling.
// Same as the cloud previously
// used in sprayFoam and
// engineFoam.
The first three clouds are not thermally coupled, so are available in
all Lagrangian solvers. The last four are thermally coupled and require
access to the carrier thermodynamic model, so are only available in
compressible Lagrangian solvers.
This change has reduced the number of solvers necessary to provide the
same functionality; solvers that previously differed only in their
Lagrangian modelling can now be combined. The Lagrangian solvers have
therefore been consolidated with consistent naming as follows.
denseParticleFoam: Replaces DPMFoam and MPPICFoam
reactingParticleFoam: Replaces sprayFoam and coalChemistryFoam
simpleReactingParticleFoam: Replaces simpleReactingParcelFoam
buoyantReactingParticleFoam: Replaces reactingParcelFoam
fireFoam and engineFoam remain, although fireFoam is likely to be merged
into buoyantReactingParticleFoam in the future once the additional
functionality it provides is generalised.
Some additional minor functionality has also been added to certain
solvers:
- denseParticleFoam has a "cloudForceSplit" control which can be set in
system/fvOptions.PIMPLE. This provides three methods for handling the
cloud momentum coupling, each of which have different trade-off-s
regarding numerical artefacts in the velocity field. See
denseParticleFoam.C for more information, and also bug report #3385.
- reactingParticleFoam and buoyantReactingParticleFoam now support
moving mesh in order to permit sharing parts of their implementation
with engineFoam.
Updated reacting solvers to use psiReactionThermophysicalTransportModel or
rhoReactionThermophysicalTransportModel as appropriate to provide support for
interacting heat and specie transport.
ThermophysicalTransportModel is now instantiated on both the
MomentmumTransportModel and also the particular thermo model model rather than
obtaining the fluidThermo from the MomentmumTransportModel. This gives direct
access to the higher-level thermo model used in the solver, for example
rhoReactionThermo so that complex ThermophysicalTransportModels requiring access
to the composition for example are instantiated only for thermo models that
provide it and also avoiding run-time up-casting of the thermo model.
Provides an abstraction of specie transport to support run-times selectable and
extensible multi-component thermal and specie laminar and turbulent transport.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
The simplistic energy transport support in compressibleTurbulenceModels has been
abstracted and separated into the new ThermophysicalTransportModels library in
order to provide a more general interface to support complex energy and specie
transport models, in particular multi-component diffusion. Currently only the
Fourier for laminar and eddyDiffusivity for RAS and LES turbulent flows are
provided but the interface is general and the set of models will be expanded in
the near future.
The ThermalDiffusivity and EddyDiffusivity modelling layers remain in
compressibleTurbulenceModels but will be removed shortly and the alphat boundary
conditions will be moved to ThermophysicalTransportModels.
A clause preventing solution of the density equation has been removed
from reactingParcelFoam and chtMultiRegionFoam, so that they are nore
consistent with other compressible solvers. In general, the density
equation is solved before the pimple loop is entered to make sure that
the flux and the density derivative are consistent during the first
pimple iteration.
Changed the interpolation of HbyA from
fvc::flux(rho*HbyA)
to
fvc::interpolate(rho)*fvc::flux(HbyA)
for consistency with the latest compressible p-U algorithm in rhoPimpleFoam.
For most cases this change does not affect the results but test on highly
compressible, transonic and supersonic cases have shown a small but clear
benefit in the new form.
All multi-specie solvers function on the assumption that the
mass-diffusivities of the different species are the same. A consequence
of this is that the diffusivities of energy and mass must be the same,
otherwise mass diffusivity results in unphysical temperature
fluctuations. This change enforces this requirement across all
multi-species solvers.
For the same reason, the turbulent Schmidt number has been removed from
the multi-component phase model in reactingEulerFoam. In order to obey
physical constraints this Schmidt number had to be exactly the same as
the Prandtl number. This condition is now enforced by the solver, rather
than relying on the input being correct.
This switch should be on for phi-correction within the time loop, where
the correction simply serves to keep the phi-field up to date before the
U-equation is solved. It should be off for initialisation
phi-correction, as the necessary data to update the conditions may not
yet exist.
Resolves bug report https://bugs.openfoam.org/view.php?id=3198
The sub-loops of the solution control are now named more consistently,
with ambiguously named methods such as finalIter replaced with ones
like finalPimpleIter, so that it is clear which loop they represent.
In addition, the final logic has been improved so that it restores state
after a sub-iteration, and so that sub-iterations can be used on their
own without an outer iteration in effect. Previously, if the
non-orthogonal loop were used outside of a pimple/piso iteration, the
final iteration would not execute with final settings.
The radiation modelling library has been moved out of
thermophysicalProperties into the top-level source directory. Radiation
is a process, not a property, and belongs alongside turbulence,
combustion, etc...
The namespaces used within the radiation library have been made
consistent with the rest of the code. Selectable sub-models are in
namespaces named after their base classes. Some models have been
renamed remove the base type from the suffix, as this is unnecessary.
These renames are:
Old name: New name:
binaryAbsorptionEmission binary
cloudAbsorptionEmission cloud
constantAbsorptionEmission constant
greyMeanAbsorptionEmission greyMean/greyMeanCombustion
greyMeanSolidAbsorptionEmission greyMeanSolid
wideBandAbsorptionEmission wideBand/wideBandCombustion
cloudScatter cloud
constantScatter constant
mixtureFractionSoot mixtureFraction
Some absorption-emission models have been split into versions which do
and don't use the heat release rate. The version that does has been
given the post-fix "Combustion" and has been moved into the
combustionModels library. This removes the dependence on a registered
Qdot field, and makes the models compatible with the recent removal of
that field from the combustion solvers.
The Qdot field has been removed from all reacting solvers, in favour of
computing on the fly whenever it is needed. It can still be generated
for post-processing purposes by means of the Qdot function object. This
change reduces code duplication and storage for all modified solvers.
The Qdot function object has been applied to a number of tutorials in
order to retain the existing output.
A fix to Qdot has also been applied for multi-phase cases.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
The selection of the "Final" solver settings is now handled automatically within
the "<equation>.solve()" call and there is no longer any need no provide a bool
argument for specific cases. This simplifies the solution algorithm loop
structures and ensures consistency in behaviour across all solvers.
All tutorials have been updated to correspond to the now consistent rules.
Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.
However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied. Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required. For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both. In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.