Commit Graph

946 Commits

Author SHA1 Message Date
1c48685b09 waves: Improved reverse flow formulation and new test cases
It is now possible to use waveVelocity and waveAlpha boundary conditions
in cases in which the waves generate localised flow reversals along the
boundary. This means waves can be speficied at arbitrary directions and
with zero mean flow. Previously and integral approach, similar to
flowRateOutlet, was used, which was only correct when the direction of
wave propagation was aligned with the boundary normal.

This improvement has been achieved by reformulating the waveVelocity and
waveAlpha boundary conditions in terms of a new fixedValueInletOutlet
boundary condition type. This condition enforces a fixed value in all
cases except that of advection terms in the presence of outflow. In this
configuration a gradient condition is applied that will relax towards
the desired fixed value.

The wavePressure boundary condition has been removed, as it is no longer
necessary or advisable to locally switch between velocity and pressure
formulations along a wave boundary. Wave boundaries should now have the
general fixedFluxPressure or fixedFluxExtrapolatedPressure conditions
applied to the pressure field.

Two new tutorial cases have been created to demonstrate the new
functionality. The multiphase/interFoam/laminar/wave3D case demonstrates
wave generation with zero mean flow and at arbitrary angles to the
boundaries, and incompressible/pimpleFoam/RAS/waveSubSurface
demonstrates usage for sub-surface problems.
2021-09-01 10:55:23 +01:00
24a359af70 fvModels: clouds: Added example usage to pimpleFoam/RAS/TJunction tutorial 2021-08-24 09:34:02 +01:00
393023e81e tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D(LTS): changed to Wilke transport mixing
Changed the laminar methane combustion cases to use the Wilke mixing rule for
the transport properties obtained from the Sutherland model but with coefficient
mixing for thermodynamic properties for efficient evaluation of reaction
equilibria.

This provides significantly more accurate results for laminar combustion,
producing a thinner flame and a 10K reduction in peak temperature.
2021-08-16 17:35:55 +01:00
d1ebcad3ca tutorials/combustion: Added Sutherland coefficients for all methane combustion species 2021-08-16 17:34:27 +01:00
0bd7d96387 tutorials/multiphase/interFoam/laminar/damBreak/damBreak/system/decomposeParDict: reinstated 2021-08-06 17:57:00 +01:00
1278c865aa timeIOdictionary: New global IOdictionary type to handle writing of time-dependent global data
to the <case>/<time>/uniform or <case>/<processor>/<time>/uniform directory.

Adding a new form of IOdictionary for this purpose allows significant
simplification and rationalisation of regIOobject::writeObject, removing the
need for explicit treatment of different file types.
2021-08-05 22:28:05 +01:00
1502ad7b17 dynamicMeshDict: Updated alphaPhi0.water -> alphaPhi.water 2021-08-03 17:11:02 +01:00
a3e21c6bce tutorials/heatTransfer/buoyantSimpleFoam/circuitBoardCooling: Simplified directory structure 2021-07-31 22:05:42 +01:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
254b99357d tutorials: Updated for changes to topoSet 2021-07-27 17:03:53 +01:00
6a657c4338 topoSet: Rationalised the name keyword for zones and patches
For a set to zone conversion the name of the zone is now specified with the
'zone' keyword.

For a patch to set conversion the name of the patch is now specified with the
'patch' keyword.

Backward-compatibility is supported for both these changes.

Additionally the file name of a searchableSurface file is specified with the
'file' keyword.  This should be 'surface' but that keyword is currently and
confusingly used for the surface type rather than name and this cannot be
changed conveniently while maintaining backward compatibility.
2021-07-27 15:44:08 +01:00
ff36c94456 tutorials: Corrected #includeFunc usage of flow rate functions 2021-07-27 14:37:58 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
8d887e0a86 Completed the replacement of setSet with topoSet
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet.  This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
2021-07-23 19:22:50 +01:00
6b31a866d7 Corrected headers 2021-07-15 15:34:07 +01:00
bf6734ff4e plateHole: use a file-based graphUniform function object 2021-07-14 13:46:43 +01:00
e9733e50ba functionObjects: Renamed streamLine and streamLines to streamlines 2021-07-14 10:35:02 +01:00
bf3c2e7ba9 tutorials: Removed unnecessary and unused files
Removed the combustion/reactingFoam/Lagrangian/counterFlowFlame2DLTS
case as it was originally a consistency check between reactingFoam and
reactingParcelFoam. It is not necessary now these solvers have been
combined.

Removed an unused fvModels file in the
reactingFoam/Lagrangian/simplifiedSiwek tutorial.
2021-07-14 10:35:02 +01:00
98b90398f1 tutorials: Updated for new preconfigurations 2021-07-14 10:35:02 +01:00
056cc20f34 functionObjects: surfaceFieldValue, volFieldValue: Various improvements
A number of changes have been made to the surfaceFieldValue and
volFieldValue function objects to improve their usability and
performance, and to extend them so that similar duplicate functionality
elsewhere in OpenFOAM can be removed.

Weighted operations have been removed. Weighting for averages and sums
is now triggered simply by the existence of the "weightField" or
"weightFields" entry. Multiple weight fields are now supported in both
functions.

The distinction between oriented and non-oriented fields has been
removed from surfaceFieldValue. There is now just a single list of
fields which are operated on. Instead of oriented fields, an
"orientedSum" operation has been added, which should be used for
flowRate calculations and other similar operations on fluxes.

Operations minMag and maxMag have been added to both functions, to
calculate the minimum and maximum field magnitudes respectively. The min
and max operations are performed component-wise, as was the case
previously.

In volFieldValue, minMag and maxMag (and min and mag operations when
applied to scalar fields) will report the location, cell and processor
of the maximum or minimum value. There is also a "writeLocation" option
which if set will write this location information into the output file.
The fieldMinMax function has been made obsolete by this change, and has
therefore been removed.

surfaceFieldValue now operates in parallel without accumulating the
entire surface on the master processor for calculation of the operation.
Collecting the entire surface on the master processor is now only done
if the surface itself is to be written out.
2021-07-13 16:51:33 +01:00
cfd11c035b createBafflesDict: removed matchTolerance entries since they default to 1e-4 2021-07-08 12:14:00 +01:00
6b2dfd218a scripts: Replaced 'cp -r' with the POSIX compliant 'cp -R' 2021-07-06 17:41:08 +01:00
013bc08399 Moved tutorials/IO -> test/IO
The tutorials/IO/fileHandler case is a set of simple test for fileHandler not a
tutorial
2021-07-06 14:46:15 +01:00
163eb1c0ef tutorials/combustion/buoyantReactingFoam/RAS/smallPoolFire3D/Allrun: Added reconstructPar 2021-07-06 11:34:53 +01:00
cce3e1b1d0 systemDict: Include region in the default directory for the -dict option
With this change both of the following commands are equivalent:

    topoSet -region air -dict topoSetDict1
    topoSet -region air -dict system/air/topoSetDict1

I.e., if the system/<regionName> path is not specified then it is
assumed.
2021-07-06 08:08:30 +01:00
500f1ee9f4 tutorials reconstructParMesh: Removed redundant -mergeTol option 2021-07-05 22:38:13 +01:00
abe505ffaf tutorials/compressible/rhoSimpleFoam/squareBendLiq: Added setting to test sensibleEnthalpy 2021-07-05 15:36:23 +01:00
78977d3259 systemDict: Added support for system as the default directory for the -dict option
With this change both

    blockMesh -dict fineBlockMeshDict
    blockMesh -dict system/fineBlockMeshDict

are supported, if the system/ path is not specified it is assumed
2021-07-02 21:05:47 +01:00
677defdc5c particleTracks, steadyParticleTracks: Standardised dictionary locations
Settings for the particleTracks utility are now specified in
system/particleTracksDict. Correspondingly, settings for
steadyParticleTracks are now specified in
system/steadyParticleTracksDict.
2021-07-02 17:09:31 +01:00
c63c1a90c2 systemDict: Consistent handling of the -dict option
The -dict option is now handled correctly and consistently across all
applications with -dict options. The logic associated with doing so has
been centralised.

If a relative path is given to the -dict option, then it is assumed to
be relative to the case directory. If an absolute path is given, then it
is used without reference to the case directory. In both cases, if the
path is found to be a directory, then the standard dictionary name is
appended to the path.

Resolves bug report http://bugs.openfoam.org/view.php?id=3692
2021-07-02 15:11:06 +01:00
10a6e7a46b kOmega2006: New RAS turbulence model
This is the 2006 version of Wilcox's k-omega RAS turbulence model which has some
similarities in formulation and behaviour to the k-omega-SST model but is much
simpler and cleaner.  This model is likely to perform just as well as the
k-omega-SST model for a wide range of engineering cases.

Description
    Standard (2006) high Reynolds-number k-omega turbulence model for
    incompressible and compressible flows.

    References:
    \verbatim
        Wilcox, D. C. (2006).
        Turbulence modeling for CFD, 3rd edition
        La Canada, CA: DCW industries, Inc.

        Wilcox, D. C. (2008).
        Formulation of the kw turbulence model revisited.
        AIAA journal, 46(11), 2823-2838.
    \endverbatim

    The default model coefficients are
    \verbatim
        kOmega2006Coeffs
        {
            Cmu         0.09;
            beta0       0.0708;
            gamma       0.52;
            Clim        0.875;
            alphak      0.6;
            alphaOmega  0.5;
        }
    \endverbatim
2021-06-29 15:24:51 +01:00
45a0059026 splitBaffles, mergeBaffles: New utilities to replace mergeOrSplitBaffles
splitBaffles identifies baffle faces; i.e., faces on the mesh boundary
which share the exact same set of points as another boundary face. It
then splits the points to convert these faces into completely separate
boundary patches. This functionality was previously provided by calling
mergeOrSplitBaffles with the "-split" option.

mergeBaffles also identifes the duplicate baffle faces, but then merges
them, converting them into a single set of internal faces. This
functionality was previously provided by calling mergeOrSplitBaffles
without the "-split" option.
2021-06-25 10:30:39 +01:00
9c73d4d206 decomposeParDict: The 'delta' entry for geometric decomposition is no option and defaults to 0.001
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries.  The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
2021-06-24 10:18:20 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
4af28562c5 tutorials/multiphase/multiphaseEulerFoam/laminar/mixerVesselAMI2D: Changed to enthalpy
Solving for enthalpy provides better convergence and stability than internal
energy.  Also correctPhi is now off pending the addition of compressibility
effects to the pcorr equation.
2021-06-22 22:04:05 +01:00
ace45a5f35 Merge branch 'master' of github.com:OpenFOAM/OpenFOAM-dev 2021-06-22 10:39:19 +01:00
a172463bd0 tutorials: added multiregion support to CleanFunctions and
removed redundant foamCleanPolyMesh script
2021-06-22 10:39:14 +01:00
9283955b99 tutorials/compressible/rhoPimpleFoam/RAS/annularThermalMixer: Removed unnecessary files 2021-06-21 22:39:45 +01:00
5f64d07ca8 tutorials: remove redirects to /dev/null 2021-06-21 16:44:38 +01:00
ca35389788 snappyHexMesh: 'refinementRegions', 'refinementSurfaces' and 'features' are now optional
entries in 'castellatedMeshControls' in snappyHexMeshDict to remove unnecessary clutter.
2021-06-21 13:30:53 +01:00
4b01e40a93 Dictionaries: use 'e' rather than 'E' in exponential floating point numbers 2021-06-15 18:25:51 +01:00
926ba22b74 refineMesh: Rationalised and standardised the coordinate axes naming to e1, e2 and e3
the previous naming tan1, tan2, normal was non-intuitive and very confusing.

It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
2021-06-15 16:08:55 +01:00
be9fb841a1 snappyHexMesh: Simplified and rationalised the region refinement level specification
The inside or outside region refinement level is now specified using the simple
"level <level>" entry in refinementRegions e.g.

    refinementRegions
    {
        refinementBox
        {
            mode    inside;
            level   5;
        }
    }

rather than

    refinementRegions
    {
        refinementBox
        {
            mode    inside;
            levels  ((1E15 5));
        }
    }

where the spurious "1E15" number is not used and the '((...))' is unnecessary clutter.
2021-06-15 13:20:44 +01:00
28745eca4b multiphaseEulerFoam: Updated tutorials for improved internal energy pressure work term 2021-06-11 23:23:17 +01:00
6c0087d005 multiphaseEulerFoam: Updated the internal energy pressure work term
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho).  A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.

This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.

For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:

    "div\(alphaPhi.*,p\)" -> "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)"

and all the tutorials have been updated accordingly.
2021-06-11 19:36:33 +01:00
90831fbb55 Compressible and reacting flow solvers: Changed the internal energy pressure work for consistency with enthalpy
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho).  A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.

This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.

For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:

    div(phiv,p) -> div(phi,(p|rho))

and all the tutorials have been updated accordingly.
2021-06-11 11:34:38 +01:00
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
55f751641e Standardise on British spelling: initialize -> initialise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 14:51:48 +01:00
789bdc02c3 fluidThermo::hydrostaticInitialisation: Generalised hydrostatic initialisation of pressure
for buoyant solvers buoyantPimpleFoam, buoyantSimpleFoam and
buoyantReactingFoam:

Class
    Foam::hydrostaticInitialisation

Description
    Optional hydrostatic initialisation of p_rgh and p by solving for and
    caching the hydrostatic ph_rgh and updating the density such that

        p = ph_rgh + rho*gh + pRef

    This initialisation process is applied at the beginning of the run (not on
    restart) if the \c hydrostaticInitialisation switch is set true in
    fvSolution/PIMPLE or fvSolution/SIMPLE.  The calculation is iterative if the
    density is a function of pressure and an optional number of iterations \c
    nHydrostaticCorrectors may be specified which defaults to 5.
2021-06-01 11:57:55 +01:00
a997ddae5f buoyantReactingFoam: Added optional hydrostatic initialisation and replaced fireFoam
The fireFoam solver has solver has been replaced by the more general
buoyantReactingFoam solver, which supports buoyant compressible reacting flow
coupled to multiple run-time-selectable lagrangian clouds and surface film
modelling and optional hydrostatic initialisation of the pressure and p_rgh.

Hydrostatic initialisation of the pressure fields is useful for large fires in
open domains where the stability of the initial flow is dominated by the initial
pressure distribution in the domain and at the boundaries.  The optional
hydrostaticInitialization switch in fvSolution/PIMPLE with
nHydrostaticCorrectors enables hydrostatic initialisation, e.g.

PIMPLE
{
    momentumPredictor yes;
    nOuterCorrectors  1;
    nCorrectors       2;
    nNonOrthogonalCorrectors 0;

    hydrostaticInitialization yes;
    nHydrostaticCorrectors 5;
}

and the resulting ph_rgh field can be used with the prghTotalHydrostaticPressure
p_rgh boundary condition to apply this hydrostatic pressure distribution at the
boundaries throughout the simulation.

See the following cases for examples transferred from fireFoam:

    $FOAM_TUTORIALS/combustion/buoyantReactingFoam/RAS
2021-05-31 15:05:19 +01:00