Commit Graph

156 Commits

Author SHA1 Message Date
b9123328fb typeIOobject: Template typed form of IOobject for type-checked object file and header reading
used to check the existence of and open an object file, read and check the
header without constructing the object.

'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.

'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
2021-08-12 10:12:03 +01:00
976de0baf5 topoSetSources: Removed redundant code 2021-07-26 16:48:14 +01:00
8d887e0a86 Completed the replacement of setSet with topoSet
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet.  This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
2021-07-23 19:22:50 +01:00
25d274736f MeshZones: Renamed ZoneMesh to MeshZones 2021-07-14 14:10:28 +01:00
d1d5092550 fvMeshDistribute: Cleaned-up handling of processorPatchFields 2021-06-25 22:28:20 +01:00
934fa98b97 fvMesh::updateMesh: Only store the old-time volumes if they are already present
i.e. if mesh-morphing is active
2021-06-25 18:11:20 +01:00
800f37b892 fvMeshDistribute: Update processorPatchFields correctly rather than set to Zero 2021-06-24 14:58:48 +01:00
e566172eda MapFvSurfaceField: Generalised the mapping of surfaceField
to differentiate between flux field which require face-flipping and
non-extensive surface fields which do not.  Currently flux fields are
distinguished by being surfaceScalarField with dimensions of either volumetric
or mass flux.

This change corrects the handling of the surfaceVectorField Uf which was
previously mapped incorrectly on faces requiring the flipping of the flux
orientation.
2021-06-22 19:31:53 +01:00
3baba56734 dynamicMesh: Renamed boundaryMesh to repatchMesh and removed unused code 2021-06-22 09:48:36 +01:00
5204403f3e fvMeshSubset: Added new constraint patch type 'internal' into which exposed internal faces are added
This new constraint type is preferable to the 'empty' type used previously as it
support patch field values for post-processing and other purposes.

The internalFvPatchField operates as a 'zeroGradient' type so that the adjacent
cell values are displayed on the faces exposed by the sub-setting.

The internalFvsPatchField operates as a 'calculated' type so that the internal
face values are displayed on the faces exposed by the sub-setting.

The immediate benefit of this change can be seen when using 'subsetMesh' without
the '-noFields' option to create and write a sub-set of an 'fvMesh' with field
values, now the face values of the 'exposed' internal faces can be visualised.
2021-06-16 19:05:58 +01:00
926ba22b74 refineMesh: Rationalised and standardised the coordinate axes naming to e1, e2 and e3
the previous naming tan1, tan2, normal was non-intuitive and very confusing.

It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
2021-06-15 16:08:55 +01:00
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
55f751641e Standardise on British spelling: initialize -> initialise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 14:51:48 +01:00
199e53fd0d dynamicMotionSolverFvMesh: Removed unsupported motion solver keywords
A dynamicMotionSolverFvMesh must now use a "motionSolver" or
"motionSolvers" entry to select the underlying motion solver. For
example, in constant/dynamicMeshDict:

    dynamicFvMesh   dynamicMotionSolverFvMesh;
    motionSolverLibs ("librigidBodyMeshMotion.so");
    motionSolver    rigidBodyMotion;
    ...

Previously the motion solver could also be specified with the keyword
"solver", but this resulted in a name clash with rigid body solvers
which are frequently specified in the same scope. For this reason, the
"solver" and "solvers" entries have been removed.
2021-01-14 08:33:57 +00:00
f1086e51e5 Converting conditional lookups to new dictionary::*BackwardsCompatibility methods 2021-01-14 08:33:57 +00:00
9e740b286f reconstructParMesh, fvMeshDistribute: Removed all geometric point merging
Geometric point merging has an inherent chance of failure that occurs
when a mesh contains valid distinct points that are closer together than
the supplied tolerance. It is beneficial to avoid such merging whenever
possible.

reconstructParMesh does not need explicit point merging any more. Points
may be duplicated temporarily when processor meshes are combined which
share points and edges but not faces. Ultimately, however,
reconstructParMesh reconstructs the entire mesh so everything eventually
gets face-connected and all point duplications get resolved.

fvMeshDistribute requires point-merging, as the entire mesh is not
constructed. However, since 5d4c8f5d, this process has been purely
topological and has not relied on any of the geometric merging processes
triggered by utilised code.

As such, all geometric point merging operations and tolerances have been
removed from these two implementations, as well as in lower level code
in faceCoupleInfo and polyMeshAdder. faceCoupleInfo has also had support
for face and edge splits removed as this was not being used. This change
will have improved the robustness of both reconstruction and
redistributuon and has greatly reduced the total amount of code
involved.

The only geometric tolerance-based matching still being performed by
either of these processes is as a result of coupled patch ordering in
fvMeshDistribute. It is possible that this is not necessary either
(though at present coupled patch ordering is certainly needed
elsewhere). This warrants further investigation.
2021-01-06 11:32:54 +00:00
aaf054c8fd Function1s::NonUniformTable, UniformTable: Templated on Type
Function1s::NonUniformTable,UniformTable can now be used for any primitive type
used for fields.
2020-12-18 18:40:20 +00:00
0bf60492fa sixDoFMotion, sixDoFAccelerationSource:: Added None Function1 2020-12-09 15:54:57 +00:00
90497c9ce7 Function1::PolynomialEntry: Renamed Polynomial1 2020-12-07 10:35:07 +00:00
b07fbddf4f faceCoupleInfo: Bypass geometric matching if faces are already ordered 2020-12-03 08:30:51 +00:00
57b1655934 Function1: Renamed integrate -> integral for consistency with value
The integral function returns the integral as the value function returns the
value.
2020-12-02 16:15:55 +00:00
685664b3ca fvMeshDistribute: Corrected ordering of processor cyclics 2020-12-02 11:01:55 +00:00
0d42b151f0 ZoneMesh: Changed zone selection from keyType to wordRe
It is more logical to use wordRe rather than keyType for name-based selection
including regular expression support as keyType now support other forms of
dictionary keyword including function and variable names which are not
relevant for selecting zones by name.
2020-11-25 15:10:22 +00:00
4e183e33d4 Function1::Table: simplified and rationalised
TableBase, TableFile and Table now combined into a single simpler Table class
which handle both the reading of embedded and file data using the generalised
TableReader.  The new EmbeddedTableReader handles the embedded data reading
providing the functionality of the original Table class within the same
structure that can read the data from separate files.

The input format defaults to 'embedded' unless the 'file' entry is present and
the Table class is added to the run-time selection table under the name 'table'
and 'tableFile' which provides complete backward comparability.  However it is
advisable to migrate cases to use the new 'table' entry and all tutorial cases
have been updated.
2020-11-16 23:48:47 +00:00
37ebdfe36e Function1::TableReader: Added EmbeddedTableReader so that TableFile can read embedded table data 2020-11-16 21:01:41 +00:00
ba823900eb sixDoFMotion, sixDoFAccelerationSource: Avoid construction order dependency for global constants 2020-11-15 22:33:59 +00:00
bfedfcde55 dynamicMesh::sixDoFMotion: Generalised replacement for tabulated6DoFMotion
using Function1 and supporting all the standard Function1s including tabulated
and coded.

tutorials/multiphase/interFoam/laminar/sloshingTank3D6DoF updated to use
sixDoFMotion.
2020-11-13 21:12:15 +00:00
e3d6c695c7 displacementInterpolationMotionSolver: Superseded by better interpolating motion solvers 2020-11-13 16:21:36 +00:00
bf10406cf7 Corrected file formatting 2020-10-30 12:38:15 +00:00
7e3f4976a8 PatchFields: Removed simple copy constructors and clone functions
These do not necessarily set the internal field reference correctly and it is
safer that the correct internal field is provided as an argument.
2020-10-03 22:16:10 +01:00
def4772281 Documentation: Centred the Class Declaration comment
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2020-08-28 13:28:58 +01:00
44cf9977c3 Use the new primitive mesh magFaceAreas where appropriate 2020-06-03 17:11:56 +01:00
2d3b02c130 primitiveMeshGeometry, polyMeshGeometry: Removed unused code
The utilised static parts of polyMeshGeometry are now part of a
polyMeshCheck namespace. Everything else has been removed, as they were
unused, out of date, and/or duplicated elsewhere.
2020-02-13 14:33:18 +00:00
aff00a2e7e dlLibraryTable: Simplified and rationalised the handling of dynamic library loading
Rather than being tied to the Time class the dlLibraryTable libs is now a global
variable in the Foam namespace which is accessable by any class needing to load
dynamic libraries, in particular argList, Time and codeStream.
2020-01-31 08:18:10 +00:00
87bce82854 coupledPolyPatch: Rewrite transformations and ordering
The calculation and input/output of transformations has been rewritten
for all coupled patches. This replaces multiple duplicated, inconsistent
and incomplete implementations of transformation handling which were
spread across the different coupled patch types.

Transformations are now calculated or specified once, typically during
mesh construction or manipulation, and are written out with the boundary
data. They are never re-calculated. Mesh changes should not change the
transformation across a coupled interface; to do so would violate the
transformation.

Transformations are now calculated using integral properties of the
patches. This is more numerically stable that the previous methods which
functioned in terms of individual faces. The new routines are also able
to automatically calculate non-zero centres of rotation.

The user input of transformations is backwards compatible, and permits
the user to manually specify varying amounts of the transformation
geometry. Anything left unspecified gets automatically computed from the
patch geometry. Supported specifications are:

    1) No specification. Transformations on cyclics are automatically
    generated, and cyclicAMI-type patches assume no transformation. For
    example (in system/blockMeshDict):

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            faces               ((4 5 6 7));
        }

    2) Partial specification. The type of transformation is specified
    by the user, as well as the coordinate system if the transform is
    rotational. The rotation angle or separation vector is still
    automatically generated. This form is useful as the signs of the
    angle and separation are opposite on different sides of an interface
    and can be difficult to specify correctly. For example:

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            transformType       translational;
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            transformType       translational;
            faces               ((4 5 6 7));
        }

        cyclicAMILeft
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMIRight;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            faces               ((8 9 10 11));
        }

        cyclicAMIRight
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMILeft;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            faces               ((12 13 14 15));
        }

    3) Full specification. All parameters of the transformation are
    given. For example:

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            transformType       translational;
            separaion           (-0.01 0 0);
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            transformType       translational;
            separaion           (0.01 0 0);
            faces               ((4 5 6 7));
        }

        cyclicAMILeft
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMIRight;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            rotationAngle       60;
            faces               ((8 9 10 11));
        }

        cyclicAMIRight
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMILeft;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            rotationAngle       60;
            faces               ((12 13 14 15));
        }

Automatic ordering of faces and points across coupled patches has also
been rewritten, again replacing multiple unsatisfactory implementations.

The new ordering method is more robust on poor meshes as it
geometrically matches only a single face (per contiguous region of the
patch) in order to perform the ordering, and this face is chosen to be
the one with the highest quality. A failure in ordering now only occurs
if the best face in the patch cannot be geometrically matched, whether
as previously the worst face could cause the algorithm to fail.

The oldCyclicPolyPatch has been removed, and the mesh converters which
previously used it now all generate ordered cyclic and baffle patches
directly. This removes the need to run foamUpgradeCyclics after
conversion. In addition the fluent3DMeshToFoam converter now supports
conversion of periodic/shadow pairs to OpenFOAM cyclic patches.
2020-01-22 11:45:18 +00:00
4f0e38ce4a cyclic patches: Rationalised the handling of transformation
A single transformer object is now maintained within cyclic patches and returned
from a single virtual functions massively simplifying the interface and allowing
for further rationalisation of the calculation of the transformation.
2020-01-02 17:05:01 +00:00
02fc637645 coupledPolyPatch: Separated ordering from transformation controls
which will allow the transformation calculation functionality to be moved into
cyclic patches.
2019-12-31 20:24:52 +00:00
5eaf74c3a4 dictionary scalar lookup: simplified syntax using the type templated lookup function
Replaced
    readScalar(dict.lookup("name"))
with
    dict.lookup<scalar>("name")
2019-11-27 14:56:32 +00:00
d987648ef4 dictionary label lookup: simplified syntax using the type templated lookup function
Replaced
    readLabel(dict.lookup("name"))
with
    dict.lookup<label>("name)
2019-11-27 11:38:59 +00:00
7ab73932cf Function1: Generalisation and removal of unused code
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.

The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.

Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.

In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
2019-10-23 13:13:53 +01:00
4e6695e32d Corrected typos in comments
found using cspell.

Patch contributed by Timo Niemi, VTT.
Resolves patch request https://bugs.openfoam.org/view.php?id=3372
2019-10-18 11:57:11 +01:00
81fca4c43a Corrected typos in comments
found using cspell.

Patch contributed by Timo Niemi, VTT.
2019-10-18 11:46:20 +01:00
0c66eb9f94 finiteVolume: Use the GeometricField::New method to construct temporary fields
Avoids database registration of temporary fields, simplifies the code and
improves maintainability.
2019-07-18 09:32:12 +01:00
0101722b0f Standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-19 16:45:21 +01:00
213319ae30 Standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-19 15:01:35 +01:00
8e9f692aa4 Standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-13 21:26:33 +01:00
00ae415b71 Added copy constructors to classes with copy assignment operator defined
and copy assignment operator for classes with a copy constructor

This is often described as the rule of 3 (or rule of 5 in C++11 if move
constructors and assignment operators are also defined) and makes good sense in
ensuring consistency.  For classes in which the default bitwise copy constructor
or assignment operator are appropriate these are now specified explicitly using
the "= default" keyword if the other is explicitly defined fulfilling the rule
of 3 without the need to define the body of the function.
2019-06-05 23:32:22 +01:00
fc4d7b92c3 Corrected documentation comment for disabled copy constructors 2019-05-29 15:58:42 +01:00
9140984cf4 Added "= delete" to disabled bitwise copy constructors and assignment operators
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
2019-05-28 15:26:45 +01:00
3ecef91e72 Standardised copy constructor documentation comment 2019-05-27 22:34:32 +01:00