used to check the existence of and open an object file, read and check the
header without constructing the object.
'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.
'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet. This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
to differentiate between flux field which require face-flipping and
non-extensive surface fields which do not. Currently flux fields are
distinguished by being surfaceScalarField with dimensions of either volumetric
or mass flux.
This change corrects the handling of the surfaceVectorField Uf which was
previously mapped incorrectly on faces requiring the flipping of the flux
orientation.
This new constraint type is preferable to the 'empty' type used previously as it
support patch field values for post-processing and other purposes.
The internalFvPatchField operates as a 'zeroGradient' type so that the adjacent
cell values are displayed on the faces exposed by the sub-setting.
The internalFvsPatchField operates as a 'calculated' type so that the internal
face values are displayed on the faces exposed by the sub-setting.
The immediate benefit of this change can be seen when using 'subsetMesh' without
the '-noFields' option to create and write a sub-set of an 'fvMesh' with field
values, now the face values of the 'exposed' internal faces can be visualised.
the previous naming tan1, tan2, normal was non-intuitive and very confusing.
It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
A dynamicMotionSolverFvMesh must now use a "motionSolver" or
"motionSolvers" entry to select the underlying motion solver. For
example, in constant/dynamicMeshDict:
dynamicFvMesh dynamicMotionSolverFvMesh;
motionSolverLibs ("librigidBodyMeshMotion.so");
motionSolver rigidBodyMotion;
...
Previously the motion solver could also be specified with the keyword
"solver", but this resulted in a name clash with rigid body solvers
which are frequently specified in the same scope. For this reason, the
"solver" and "solvers" entries have been removed.
Geometric point merging has an inherent chance of failure that occurs
when a mesh contains valid distinct points that are closer together than
the supplied tolerance. It is beneficial to avoid such merging whenever
possible.
reconstructParMesh does not need explicit point merging any more. Points
may be duplicated temporarily when processor meshes are combined which
share points and edges but not faces. Ultimately, however,
reconstructParMesh reconstructs the entire mesh so everything eventually
gets face-connected and all point duplications get resolved.
fvMeshDistribute requires point-merging, as the entire mesh is not
constructed. However, since 5d4c8f5d, this process has been purely
topological and has not relied on any of the geometric merging processes
triggered by utilised code.
As such, all geometric point merging operations and tolerances have been
removed from these two implementations, as well as in lower level code
in faceCoupleInfo and polyMeshAdder. faceCoupleInfo has also had support
for face and edge splits removed as this was not being used. This change
will have improved the robustness of both reconstruction and
redistributuon and has greatly reduced the total amount of code
involved.
The only geometric tolerance-based matching still being performed by
either of these processes is as a result of coupled patch ordering in
fvMeshDistribute. It is possible that this is not necessary either
(though at present coupled patch ordering is certainly needed
elsewhere). This warrants further investigation.
It is more logical to use wordRe rather than keyType for name-based selection
including regular expression support as keyType now support other forms of
dictionary keyword including function and variable names which are not
relevant for selecting zones by name.
TableBase, TableFile and Table now combined into a single simpler Table class
which handle both the reading of embedded and file data using the generalised
TableReader. The new EmbeddedTableReader handles the embedded data reading
providing the functionality of the original Table class within the same
structure that can read the data from separate files.
The input format defaults to 'embedded' unless the 'file' entry is present and
the Table class is added to the run-time selection table under the name 'table'
and 'tableFile' which provides complete backward comparability. However it is
advisable to migrate cases to use the new 'table' entry and all tutorial cases
have been updated.
using Function1 and supporting all the standard Function1s including tabulated
and coded.
tutorials/multiphase/interFoam/laminar/sloshingTank3D6DoF updated to use
sixDoFMotion.
The utilised static parts of polyMeshGeometry are now part of a
polyMeshCheck namespace. Everything else has been removed, as they were
unused, out of date, and/or duplicated elsewhere.
Rather than being tied to the Time class the dlLibraryTable libs is now a global
variable in the Foam namespace which is accessable by any class needing to load
dynamic libraries, in particular argList, Time and codeStream.
The calculation and input/output of transformations has been rewritten
for all coupled patches. This replaces multiple duplicated, inconsistent
and incomplete implementations of transformation handling which were
spread across the different coupled patch types.
Transformations are now calculated or specified once, typically during
mesh construction or manipulation, and are written out with the boundary
data. They are never re-calculated. Mesh changes should not change the
transformation across a coupled interface; to do so would violate the
transformation.
Transformations are now calculated using integral properties of the
patches. This is more numerically stable that the previous methods which
functioned in terms of individual faces. The new routines are also able
to automatically calculate non-zero centres of rotation.
The user input of transformations is backwards compatible, and permits
the user to manually specify varying amounts of the transformation
geometry. Anything left unspecified gets automatically computed from the
patch geometry. Supported specifications are:
1) No specification. Transformations on cyclics are automatically
generated, and cyclicAMI-type patches assume no transformation. For
example (in system/blockMeshDict):
cyclicLeft
{
type cyclic;
neighbourPatch cyclicRight;
faces ((0 1 2 3));
}
cyclicRight
{
type cyclic;
neighbourPatch cyclicLeft;
faces ((4 5 6 7));
}
2) Partial specification. The type of transformation is specified
by the user, as well as the coordinate system if the transform is
rotational. The rotation angle or separation vector is still
automatically generated. This form is useful as the signs of the
angle and separation are opposite on different sides of an interface
and can be difficult to specify correctly. For example:
cyclicLeft
{
type cyclic;
neighbourPatch cyclicRight;
transformType translational;
faces ((0 1 2 3));
}
cyclicRight
{
type cyclic;
neighbourPatch cyclicLeft;
transformType translational;
faces ((4 5 6 7));
}
cyclicAMILeft
{
type cyclicAMI;
neighbourPatch cyclicAMIRight;
transformType rotational;
rotationAxis (0 0 1);
rotationCentre (0.05 -0.01 0);
faces ((8 9 10 11));
}
cyclicAMIRight
{
type cyclicAMI;
neighbourPatch cyclicAMILeft;
transformType rotational;
rotationAxis (0 0 1);
rotationCentre (0.05 -0.01 0);
faces ((12 13 14 15));
}
3) Full specification. All parameters of the transformation are
given. For example:
cyclicLeft
{
type cyclic;
neighbourPatch cyclicRight;
transformType translational;
separaion (-0.01 0 0);
faces ((0 1 2 3));
}
cyclicRight
{
type cyclic;
neighbourPatch cyclicLeft;
transformType translational;
separaion (0.01 0 0);
faces ((4 5 6 7));
}
cyclicAMILeft
{
type cyclicAMI;
neighbourPatch cyclicAMIRight;
transformType rotational;
rotationAxis (0 0 1);
rotationCentre (0.05 -0.01 0);
rotationAngle 60;
faces ((8 9 10 11));
}
cyclicAMIRight
{
type cyclicAMI;
neighbourPatch cyclicAMILeft;
transformType rotational;
rotationAxis (0 0 1);
rotationCentre (0.05 -0.01 0);
rotationAngle 60;
faces ((12 13 14 15));
}
Automatic ordering of faces and points across coupled patches has also
been rewritten, again replacing multiple unsatisfactory implementations.
The new ordering method is more robust on poor meshes as it
geometrically matches only a single face (per contiguous region of the
patch) in order to perform the ordering, and this face is chosen to be
the one with the highest quality. A failure in ordering now only occurs
if the best face in the patch cannot be geometrically matched, whether
as previously the worst face could cause the algorithm to fail.
The oldCyclicPolyPatch has been removed, and the mesh converters which
previously used it now all generate ordered cyclic and baffle patches
directly. This removes the need to run foamUpgradeCyclics after
conversion. In addition the fluent3DMeshToFoam converter now supports
conversion of periodic/shadow pairs to OpenFOAM cyclic patches.
A single transformer object is now maintained within cyclic patches and returned
from a single virtual functions massively simplifying the interface and allowing
for further rationalisation of the calculation of the transformation.
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.
The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.
Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.
In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
and copy assignment operator for classes with a copy constructor
This is often described as the rule of 3 (or rule of 5 in C++11 if move
constructors and assignment operators are also defined) and makes good sense in
ensuring consistency. For classes in which the default bitwise copy constructor
or assignment operator are appropriate these are now specified explicitly using
the "= default" keyword if the other is explicitly defined fulfilling the rule
of 3 without the need to define the body of the function.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.