The total enthalpy is calculated as
Ha = ha + K
where
ha is absolute enthalpy
K is the kinetic energy: 1/2*magSqr(U)
The total enthalpy or a particular phase can be calculated by specifying the
optional "phase" name, e.g.
#includeFunc totalEnthalpy(phase = liquid)
This is particularly useful for multiphase simulations for which integrating the
density weighted phase properties also requires the phase fraction to be
including in the weighting.
A single weight field can be specified as before:
weightField rho;
or a list specified by:
weightFields (alpha.water rho.water);
e.g. in tutorials/incompressible/pisoFoam/LES/motorBike/motorBike/system/cuttingPlane
surfaceFormat vtk;
writeFormat binary;
fields (p U);
selects writing the VTK surface files in binary format which significantly
speeds-up reading of the files in paraview.
Currently binary writing is supported in VTK and EnSight formats.
This change formalises the usage of the "log" keyword in function
objects. By default, logging to stdout is activated when running
"postProcess" or "<solver> -postProcess", and deactivated when a
function is being executed as part of a run.
This behaviour can now be overridden in the function object dictionary
when operating in either mode.
Description
Calculates the thermal comfort quantities predicted mean vote (PMV) and
predicted percentage of dissatisfaction (PPD) based on DIN ISO EN 7730:2005.
Usage
\table
Property | Description | Required | Default value
clothing | The insulation value of the cloth | no | 0
metabolicRate | The metabolic rate | no | 0.8
extWork | The external work | no | 0
Trad | Radiation temperature | no | -1
relHumidity | Relative humidity of the air | no | 50
pSat | Saturation pressure of water | no | -1
tolerance | Residual control for the cloth temperature | no | 1e-5
maxClothIter | Maximum number of iterations | no | 0
meanVelocity | Use a constant mean velocity in the whole domain | no |\
false
\endtable
\table
Predicted Mean Vote (PMV) | evaluation
+ 3 | hot
+ 2 | warm
+ 1 | slightly warm
+ 0 | neutral
- 1 | slightly cool
- 2 | cool
- 3 | cold
\endtable
\verbatim
comfortAnalysis
{
type comfort;
libs ("libfieldFunctionObjects.so");
executeControl writeTime;
writeControl writeTime;
}
\endverbatim
The new tutorial case heatTransfer/buoyantSimpleFoam/comfortHotRoom is provided
to demonstrate the calculation of PMV and PPD using the comfort functionObject.
This work is based on code and case contributed by Tobias Holzmann.
to enable the calculation of the residence time for a fluid; mainly used in HVAC
analysis. E.g. residence time of air inside a ventilated room, see the new
tutorial roomResidenceTime.
Contributed by Tobias Holzmann
By default most functionObjects now execute and write at the start-time except
those that perform averaging (fieldAverage, dsmcFields) which cannot be executed
until the end of the first time-step. There is also a new optional
functionObject dictionary entry "executeAtStart" which defaults to true but can
be set false if the execution and results of the functionObject are not required
or appropriate at the start-time.
A result of this change is that time logs of forces, sampling etc. now include a
values for time 0.
Description
Calculates the natural logarithm of the specified scalar field.
Performs \f$ln(max(x, a))\f$ where \f$x\f$ is the field and \f$a\f$ an
optional clip to handle 0 or negative \f$x\f$. Dimension checking can
optionally be suspended for this operation if \f$x\f$ is dimensioned.
Example of function object specification:
\verbatim
log1
{
type log;
libs ("libfieldFunctionObjects.so");
field p;
clip 1e-3;
checkDimensions no;
}
\endverbatim
or using \c postProcess
\verbatim
postProcess -func 'log(p, clip=1e-3, checkDimensions=no)'
\endverbatim
Usage
\table
Property | Description | Required | Default value
type | Type name: log | yes |
clip | Clip value | no |
checkDimensions | Dimension checking switch | no |
\endtable
The yPlus function object can now take a "phase" keyword which defines
the name of the phase for which to write yPlus. For example, to write
yPlus for a phase named "liquid", the following entry can be used:
yPlus1
{
type yPlus;
libs ("libfieldFunctionObjects.so");
phase liquid;
}
Note that this will only be necessary in Euler-Euler type simulations
where the phases have separate turbulence models. For VoF, the phase
name will not be required.
Patch contributed by Juho Peltola, VTT.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators. Removed the now redundant Xfer class.
This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
This object calculates a field of the age of fluid in the domain; i.e.,
the time taken for a fluid particle to travel to a location from an
inlet. It outputs a field, named age, with dimensions of time, and
requires a solver and a div(phi,age) scheme to be specified. A number of
corrections for the solution procedure can be set, as well as the name
of the flux and density fields.
Example specification:
age1
{
type age;
libs ("libfieldFunctionObjects.so");
nCorr 10;
phi phi;
rho rho;
}
Example usage:
postProcess -func age -fields "(phi)" -latestTime
This work was supported by Robert Secor and Lori Holmes, at 3M
By default the prefix is no longer added to the field names but the previous
behaviour can be reproduced by setting the optional "prefix" entry to "on" or
"yes".