e.g. in tutorials/incompressible/pisoFoam/LES/motorBike/motorBike/system/cuttingPlane
surfaceFormat vtk;
writeFormat binary;
fields (p U);
selects writing the VTK surface files in binary format which significantly
speeds-up reading of the files in paraview.
Currently binary writing is supported in VTK and EnSight formats.
Added sets for sampling the cell-centres and face-centres of a cellSet
or faceSet. Example usage:
sets
(
c0
{
type cellSet;
set c0;
axis xyz;
}
f0
{
type faceSet;
set f0;
axis xyz;
}
);
The filtering level for an iso-surface can now be selected. The keyword
is "filtering", and the options are "full", "partial" or "none". The
default is "full". The other options are only retained for debugging and
to provide a fallback if robustness of the full filtering algorithm is
an issue. As of commit 2ee8b7ac, "full" filtering has no known
disadvantages and is recommended in all usage cases.
This setting replaces the "regularise" entry, which switched between
what are now the "full" and "none" settings. "partial" was not
previously an option.
This is a slight rework of commit c81abfef. Instead of adapting tet
base points cell-by-cell, the dangling points are pre-computed and then
the adaptations to the base points are made face-by-face. This correctly
adapts faces which have different dangling points relative to the owner
and neighbour cells.
and copy assignment operator for classes with a copy constructor
This is often described as the rule of 3 (or rule of 5 in C++11 if move
constructors and assignment operators are also defined) and makes good sense in
ensuring consistency. For classes in which the default bitwise copy constructor
or assignment operator are appropriate these are now specified explicitly using
the "= default" keyword if the other is explicitly defined fulfilling the rule
of 3 without the need to define the body of the function.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators. Removed the now redundant Xfer class.
This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
Using the new field mapper framework it is now possible to create specialised
mappers rather than creating a fatter and fatter interface in the base mapper.
This approach is far more extensible, comprehensible and maintainable.
The occurrence is from cells with vertices that are shared between two faces
only (these vertices can originate from hex refinement). Decomposing both faces
can occasionally produce triangles with identical vertices and this results in a
non-manifold edge which triggers the erosion procedure.
Avoided by detecting cells with these special vertices and making sure the tet-decomposition
never uses the same points on the faces using them.
Patch contributed by Mattijs Janssens
Sometimes the initial point and boundary intersection searches can
generate duplicate information which can lead to line-type sampled sets
having duplicated points. This change explicitly filters these
additional points out, so that the resulting set is optimal.
Resolves bug report https://bugs.openfoam.org/view.php?id=3161
to rationalise the structure and class names to avoid the need for the confusing
addNamedToRunTimeSelectionTable and use instead use the standard
addToRunTimeSelectionTable to populate the run-time selection table.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
Includes topological point generation and optional removal of all points (and
triangles) that do not originate from mesh edges. This generates
polygons rather than triangles providing smoother surfaces and significantly
small files (~ factor of 3-4 smaller).
Contributed by Mattijs Janssens
This fix changes how the intersections loop ignores previously
intersected faces. It now marks them by their index so that subsequent
iterations ignore them.
Before this change, after an intersection was found the start point was
advanced by a small amount to move the past the intersection. The
problem with this was if multiple boundary faces or the end point were
in close proximity to the intersection then the move forward might span
them. This could lead to intersections being missed or counted multiple
times, in some cases indefinitely.
Based on a patch contributed by Mattijs Janssens
Resolves bug report https://bugs.openfoam.org/view.php?id=1147
AMI interpolation is only ever constructed between sets of primitive
patches, so templating on the patch type is unnecessary. Templating in
this instance is undesirable; it makes type type/debug/selection system
more complex and increases the number and compilation times of files
which need recompiling when code is modified.