The pressure provided to the patch and cellSet property evaluation functions is
always that stored by the thermodynamics package as is the composition which is
provided internally; given that these functions are used in boundary conditions
to estimate changes in heat flux corresponding to changes in temperature only
there is no need for another pressure to be provided. In order that the
pressure and composition treatment are consistent and to maintain that during
future rationalisation of the handling of composition it makes sense to remove
this unnecessary pressure argument.
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.
The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.
Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.
In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
and removed the need for the direct dependency of Ostream on keyType which is
not a primitive IO type and relates specifically to dictionary and not all IO.
solidChemistryModel is not implemented in a general way but specialised to form
the basis of the highly specific pyrolysis mode. The handling of reactions is
hard-coded for forward reactions only, the Jacobian was present but incomplete
so any ODE solvers requiring the Jacobian would either fail, diverge or produce
incorrect results. It is not clear if many or any parts of the
solidChemistryModel are correct, in particular there is no handling for the
solid surface area per unit volume. After a lot of refactoring work it has
become clear that solidChemistryModel needs a complete rewrite and can benefit
from all the recent development work done on the now more general
StandardChemistryModel.
kappa is now obtained from the fluidThermo for laminar regions, the turbulence
model for turbulent regions and the solidThermo for solid regions. The "lookup"
option previously supported allowed for energy-temperature inconsistent and
incorrect specification of kappa and was not used. Without this incorrect
option there is now no need to specify a kappaMethod thus significantly
simplifying the use boundary conditions derived from temperatureCoupledBase.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
The writeEntry form is now defined and used consistently throughout OpenFOAM
making it easier to use and extend, particularly to support binary IO of complex
dictionary entries.
The radiation modelling library has been moved out of
thermophysicalProperties into the top-level source directory. Radiation
is a process, not a property, and belongs alongside turbulence,
combustion, etc...
The namespaces used within the radiation library have been made
consistent with the rest of the code. Selectable sub-models are in
namespaces named after their base classes. Some models have been
renamed remove the base type from the suffix, as this is unnecessary.
These renames are:
Old name: New name:
binaryAbsorptionEmission binary
cloudAbsorptionEmission cloud
constantAbsorptionEmission constant
greyMeanAbsorptionEmission greyMean/greyMeanCombustion
greyMeanSolidAbsorptionEmission greyMeanSolid
wideBandAbsorptionEmission wideBand/wideBandCombustion
cloudScatter cloud
constantScatter constant
mixtureFractionSoot mixtureFraction
Some absorption-emission models have been split into versions which do
and don't use the heat release rate. The version that does has been
given the post-fix "Combustion" and has been moved into the
combustionModels library. This removes the dependence on a registered
Qdot field, and makes the models compatible with the recent removal of
that field from the combustion solvers.
The new patch field mapping class timeVaryingMappedFvPatchField has been
factored out of the timeVaryingMappedFixedValueFvPatchField BC so that it can be
used to map data onto fields stored within other BCs.
In the process the writeEntryIfDifferent function had to be moved from
fvPatchField to dictionary so that it can still be used in the
timeVaryingMappedFvPatchField class and it made good sense to create the
non-conditional variant writeEntry to simplify the patch field write functions.
This rationalisation has been propagated all other patch fields.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.
However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied. Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required. For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both. In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.
AMI interpolation is only ever constructed between sets of primitive
patches, so templating on the patch type is unnecessary. Templating in
this instance is undesirable; it makes type type/debug/selection system
more complex and increases the number and compilation times of files
which need recompiling when code is modified.
The semiPermeableBaffleMassFraction boundary condition can now calculate
the mass flux as proportional to the difference in mole fraction or
partial pressure. A mass fraction difference driven transfer is also
still possible. An additional keyword, "input" has been added which is
used to select the variable used to calculate the transfer. An example
specification is as follows:
baffle
{
type semiPermeableBaffleMassFraction;
samplePatch membranePipe;
c 0.1;
input massFraction;
value uniform 0;
}
In order to facilitate this, a "W" method to get the molar mass on a
patch has been added to the thermodynamics. To avoid name-clashes,
methods that generate per-species molar masses have been renamed "Wi".
This work was supported by Georg Skillas, at Evonik
This is faster than the library functionality that it replaces, as it
allows the compiler to do inlining. It also does not utilise any static
state so generators do not interfere with each other. It is also faster
than the the array lookup in cachedRandom. The cachedRandom class
therefore offers no advantage over Random and has been removed.
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this. The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:
GREAT -> great
ROOTGREAT -> rootGreat
VGREAT -> vGreat
ROOTVGREAT -> rootVGreat
SMALL -> small
ROOTSMALL -> rootSmall
VSMALL -> vSmall
ROOTVSMALL -> rootVSmall
The original capitalized are still currently supported but their use is
deprecated.
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);