Until C++ supports 'concepts' the only way to support construction from
two iterators is to provide a constructor of the form:
template<class InputIterator>
List(InputIterator first, InputIterator last);
which for some types conflicts with
//- Construct with given size and value for all elements
List(const label, const T&);
e.g. to construct a list of 5 scalars initialized to 0:
List<scalar> sl(5, 0);
causes a conflict because the initialization type is 'int' rather than
'scalar'. This conflict may be resolved by specifying the type of the
initialization value:
List<scalar> sl(5, scalar(0));
The new initializer list contructor provides a convenient and efficient alternative
to using 'IStringStream' to provide an initial list of values:
List<vector> list4(IStringStream("((0 1 2) (3 4 5) (6 7 8))")());
or
List<vector> list4
{
vector(0, 1, 2),
vector(3, 4, 5),
vector(6, 7, 8)
};
References:
Savill, A. M. (1993).
Some recent progress in the turbulence modelling of by-pass transition.
Near-wall turbulent flows, 829-848.
Savill, A. M. (1996).
One-point closures applied to transition.
In Turbulence and transition modelling (pp. 233-268).
Springer Netherlands.
Based on case contributed by Florian Schwertfirm, Kreuzinger und Manhart Turbulenz GmbH.
Description
Langtry-Menter 4-equation transitional SST model
based on the k-omega-SST RAS model.
References:
Langtry, R. B., & Menter, F. R. (2009).
Correlation-based transition modeling for unstructured parallelized
computational fluid dynamics codes.
AIAA journal, 47(12), 2894-2906.
Menter, F. R., Langtry, R., & Volker, S. (2006).
Transition modelling for general purpose CFD codes.
Flow, turbulence and combustion, 77(1-4), 277-303.
Langtry, R. B. (2006).
A correlation-based transition model using local variables for
unstructured parallelized CFD codes.
Phd. Thesis, Universität Stuttgart.
Implemented by Henry G. Weller, CFD Direct in collaboration with Florian
Schwertfirm, Kreuzinger und Manhart Turbulenz GmbH.
- the checking for point-connected multiple-regions now also writes the
conflicting points to a pointSet
- with the -writeSets option it now also reconstructs & writes pointSets
- the checking for point-connected multiple-regions now also writes the
conflicting points to a pointSet
- with the -writeSets option it now also reconstructs & writes pointSets
rather than being calculated on construction and stored as member data.
The convergence warning has be replaced with the 'convergence()' member
function which returns 'true' if the SVD iteration converged, otherwise 'false'.
Provides efficient integration of complex laminar reaction chemistry,
combining the advantages of automatic dynamic specie and reaction
reduction with ISAT (in situ adaptive tabulation). The advantages grow
as the complexity of the chemistry increases.
References:
Contino, F., Jeanmart, H., Lucchini, T., & D’Errico, G. (2011).
Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:
An effective method for solving combustion in engine simulations.
Proceedings of the Combustion Institute, 33(2), 3057-3064.
Contino, F., Lucchini, T., D'Errico, G., Duynslaegher, C.,
Dias, V., & Jeanmart, H. (2012).
Simulations of advanced combustion modes using detailed chemistry
combined with tabulation and mechanism reduction techniques.
SAE International Journal of Engines,
5(2012-01-0145), 185-196.
Contino, F., Foucher, F., Dagaut, P., Lucchini, T., D’Errico, G., &
Mounaïm-Rousselle, C. (2013).
Experimental and numerical analysis of nitric oxide effect on the
ignition of iso-octane in a single cylinder HCCI engine.
Combustion and Flame, 160(8), 1476-1483.
Contino, F., Masurier, J. B., Foucher, F., Lucchini, T., D’Errico, G., &
Dagaut, P. (2014).
CFD simulations using the TDAC method to model iso-octane combustion
for a large range of ozone seeding and temperature conditions
in a single cylinder HCCI engine.
Fuel, 137, 179-184.
Two tutorial cases are currently provided:
+ tutorials/combustion/chemFoam/ic8h18_TDAC
+ tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC
the first of which clearly demonstrates the advantage of dynamic
adaptive chemistry providing ~10x speedup,
the second demonstrates ISAT on the modest complex GRI mechanisms for
methane combustion, providing a speedup of ~4x.
More tutorials demonstrating TDAC on more complex mechanisms and cases
will be provided soon in addition to documentation for the operation and
settings of TDAC. Also further updates to the TDAC code to improve
consistency and integration with the rest of OpenFOAM and further
optimize operation can be expected.
Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
Implementation updated, optimized and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.