Commit Graph

182 Commits

Author SHA1 Message Date
968e60148a New modular solver framework for single- and multi-region simulations
in which different solver modules can be selected in each region to for complex
conjugate heat-transfer and other combined physics problems such as FSI
(fluid-structure interaction).

For single-region simulations the solver module is selected, instantiated and
executed in the PIMPLE loop in the new foamRun application.

For multi-region simulations the set of solver modules, one for each region, are
selected, instantiated and executed in the multi-region PIMPLE loop of new the
foamMultiRun application.

This provides a very general, flexible and extensible framework for complex
coupled problems by creating more solver modules, either by converting existing
solver applications or creating new ones.

The current set of solver modules provided are:

isothermalFluid
    Solver module for steady or transient turbulent flow of compressible
    isothermal fluids with optional mesh motion and mesh topology changes.

    Created from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam solvers but
    without the energy equation, hence isothermal.  The buoyant pressure
    formulation corresponding to the buoyantFoam solver is selected
    automatically by the presence of the p_rgh pressure field in the start-time
    directory.

fluid
    Solver module for steady or transient turbulent flow of compressible fluids
    with heat-transfer for HVAC and similar applications, with optional
    mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of the
    energy equation from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam
    solvers, thus providing the equivalent functionality of these three solvers.

multicomponentFluid
    Solver module for steady or transient turbulent flow of compressible
    reacting fluids with optional mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of
    multicomponent thermophysical properties energy and specie mass-fraction
    equations from the reactingFoam solver, thus providing the equivalent
    functionality in reactingFoam and buoyantReactingFoam.  Chemical reactions
    and/or combustion modelling may be optionally selected to simulate reacting
    systems including fires, explosions etc.

solid
    Solver module for turbulent flow of compressible fluids for conjugate heat
    transfer, HVAC and similar applications, with optional mesh motion and mesh
    topology changes.

    The solid solver module may be selected in solid regions of a CHT case, with
    either the fluid or multicomponentFluid solver module in the fluid regions
    and executed with foamMultiRun to provide functionality equivalent
    chtMultiRegionFoam but in a flexible and extensible framework for future
    extension to more complex coupled problems.

All the usual fvModels, fvConstraints, functionObjects etc. are available with
these solver modules to support simulations including body-forces, local sources,
Lagrangian clouds, liquid films etc. etc.

Converting compressibleInterFoam and multiphaseEulerFoam into solver modules
would provide a significant enhancement to the CHT capability and incompressible
solvers like pimpleFoam run in conjunction with solidDisplacementFoam in
foamMultiRun would be useful for a range of FSI problems.  Many other
combinations of existing solvers converted into solver modules could prove
useful for a very wide range of complex combined physics simulations.

All tutorials from the rhoSimpleFoam, rhoPimpleFoam, buoyantFoam, reactingFoam,
buoyantReactingFoam and chtMultiRegionFoam solver applications replaced by
solver modules have been updated and moved into the tutorials/modules directory:

modules
├── CHT
│   ├── coolingCylinder2D
│   ├── coolingSphere
│   ├── heatedDuct
│   ├── heatExchanger
│   ├── reverseBurner
│   └── shellAndTubeHeatExchanger
├── fluid
│   ├── aerofoilNACA0012
│   ├── aerofoilNACA0012Steady
│   ├── angledDuct
│   ├── angledDuctExplicitFixedCoeff
│   ├── angledDuctLTS
│   ├── annularThermalMixer
│   ├── BernardCells
│   ├── blockedChannel
│   ├── buoyantCavity
│   ├── cavity
│   ├── circuitBoardCooling
│   ├── decompressionTank
│   ├── externalCoupledCavity
│   ├── forwardStep
│   ├── helmholtzResonance
│   ├── hotRadiationRoom
│   ├── hotRadiationRoomFvDOM
│   ├── hotRoom
│   ├── hotRoomBoussinesq
│   ├── hotRoomBoussinesqSteady
│   ├── hotRoomComfort
│   ├── iglooWithFridges
│   ├── mixerVessel2DMRF
│   ├── nacaAirfoil
│   ├── pitzDaily
│   ├── prism
│   ├── shockTube
│   ├── squareBend
│   ├── squareBendLiq
│   └── squareBendLiqSteady
└── multicomponentFluid
    ├── aachenBomb
    ├── counterFlowFlame2D
    ├── counterFlowFlame2D_GRI
    ├── counterFlowFlame2D_GRI_TDAC
    ├── counterFlowFlame2DLTS
    ├── counterFlowFlame2DLTS_GRI_TDAC
    ├── cylinder
    ├── DLR_A_LTS
    ├── filter
    ├── hotBoxes
    ├── membrane
    ├── parcelInBox
    ├── rivuletPanel
    ├── SandiaD_LTS
    ├── simplifiedSiwek
    ├── smallPoolFire2D
    ├── smallPoolFire3D
    ├── splashPanel
    ├── verticalChannel
    ├── verticalChannelLTS
    └── verticalChannelSteady

Also redirection scripts are provided for the replaced solvers which call
foamRun -solver <solver module name> or foamMultiRun in the case of
chtMultiRegionFoam for backward-compatibility.

Documentation for foamRun and foamMultiRun:

Application
    foamRun

Description
    Loads and executes an OpenFOAM solver module either specified by the
    optional \c solver entry in the \c controlDict or as a command-line
    argument.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamRun [OPTION]

      - \par -solver <name>
        Solver name

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To run a \c rhoPimpleFoam case by specifying the solver on the
        command line:
        \verbatim
            foamRun -solver fluid
        \endverbatim

      - To update and run a \c rhoPimpleFoam case add the following entries to
        the controlDict:
        \verbatim
            application     foamRun;

            solver          fluid;
        \endverbatim
        then execute \c foamRun

Application
    foamMultiRun

Description
    Loads and executes an OpenFOAM solver modules for each region of a
    multiregion simulation e.g. for conjugate heat transfer.

    The region solvers are specified in the \c regionSolvers dictionary entry in
    \c controlDict, containing a list of pairs of region and solver names,
    e.g. for a two region case with one fluid region named
    liquid and one solid region named tubeWall:
    \verbatim
        regionSolvers
        {
            liquid          fluid;
            tubeWall        solid;
        }
    \endverbatim

    The \c regionSolvers entry is a dictionary to support name substitutions to
    simplify the specification of a single solver type for a set of
    regions, e.g.
    \verbatim
        fluidSolver     fluid;
        solidSolver     solid;

        regionSolvers
        {
            tube1             $fluidSolver;
            tubeWall1         solid;
            tube2             $fluidSolver;
            tubeWall2         solid;
            tube3             $fluidSolver;
            tubeWall3         solid;
        }
    \endverbatim

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamMultiRun [OPTION]

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To update and run a \c chtMultiRegion case add the following entries to
        the controlDict:
        \verbatim
            application     foamMultiRun;

            regionSolvers
            {
                fluid           fluid;
                solid           solid;
            }
        \endverbatim
        then execute \c foamMultiRun
2022-08-04 21:11:35 +01:00
dafe3fa004 decomposePar, reconstructPar: Renamed cellDist to cellProc
The cellProc field is the field of cell-processor labels.

The names "distribution" and "dist" have been removed as these are
ambiguous in relation to other forms of distribution and to distance.
2022-07-22 09:46:34 +01:00
2db5626304 createNonConformalCouples: Added -fields option
When this option is enabled, non-conformal boundary conditions will be
added to all the fields. It enables exactly the same behaviour as the
"fields" entry that is available when using this utility with a settings
dictionary (system/createNonConformalCouplesDict).
2022-07-21 08:57:32 +01:00
31da3ac2c6 moveMesh: The deprecated moveMesh utility replaced by moveDynamicMesh
and moveDynamicMesh renamed to moveMesh

Description
    Mesh motion and topological mesh change utility.

    Executes the mover, topoChanger and distributor specified in the
    dynamicMeshDict in a time-loop.
2022-07-01 15:51:30 +01:00
eeccdceb26 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2022-06-14 14:10:39 +01:00
f0d3be60da utilities: Updated moveMesh -> setPoints
Mesh manipulation utilities do not need to generate or use mesh-motion fluxes so
it is more efficient to use setPoints rather than moveMesh.
2022-06-14 14:09:06 +01:00
da7286bc1d createNonConformalCyclics: Corrected overwrite
The handling of existing constant/fvMesh/polyFaces data has been
corrected so that it no longer interferes with the construction
of a new couple.
2022-06-14 11:52:16 +01:00
737d737b22 polyMesh::setPoints: New function to reset the points
without calculating the mesh-motion fluxes or cache the old points.  Used for
efficient reconstruction of moving mesh cases run in parallel.
2022-06-14 00:21:51 +01:00
f93300ee11 createBaffles: Simplified input syntax
This utility now always creates two patches, and only creates duplicate
faces when they connect to different cells and point in opposite
directions. Now that ACMI has been removed, there is no need to create
duplicate faces on the same cell and with similar orientations. This is
unituitive and is now considered an invalid mesh topology.

The preferred syntax for createBaffles is now as follows:

    internalFacesOnly true;

    baffles
    {
        cyclics
        {
            type        faceZone;
            zoneName    cyclicFaces;

            owner
            {
                name            cyclicLeft;
                type            cyclic;
                neighbourPatch  cyclicRight;
            }

            neighbour
            {
                name            cyclicRight;
                type            cyclic;
                neighbourPatch  cyclicLeft;
            }
        }
    }

Note that the 'patches' sub-dictionary is not needed any more; the
'owner' and 'neighbour' sub-dictionaries can be in the same dictionary
as the parameters with which faces are selected. For backwards
compatibility, however, a 'patches' sub-dictionary is still permitted,
as are keywords 'master' and 'slave' (in place of 'owner' and
'neighbour', respectively).

The 'patchPairs' syntax has been removed. Whilst consise, this syntax
made a number of assumptions and decisions regarding naming conventions
that were not sufficiently intuitive for the user to understand without
extensive reference to the code. If identical boundaries are desired on
both sides of the patch, dictionary substitution provides a more
intuitive way of minimising the amount of specifiection required. For
example, to create two back-to-back walls, the following specification
could be used:

    internalFacesOnly true;

    fields true;

    baffles
    {
        walls
        {
            type        faceZone;
            zoneName    wallFaces;

            owner
            {
                name            baffleWallLeft;
                type            wall;

                patchFields
                {
                    p
                    {
                        type            zeroGradient;
                    }

                    U
                    {
                        type            noSlip;
                    }
                }
            }

            neighbour
            {
                name            baffleWallRight;
                $owner; // <-- Use the same settings as for the owner
            }
        }
    }
2022-05-27 13:39:34 +01:00
9302074836 createPatch: Simplification and removed unused dictionaries
The 'pointSync' setting in createPatchDict is now optional and defaults
to false. This setting is very rarely used. A number of unused
'createPatchDict' files have also been removed and obsolete information
has been removed from the annotated example dictionaries.
2022-05-20 14:04:17 +01:00
8f8fa29e3e createNonConformalCouples: linked genericPatchFields library 2022-05-19 16:42:52 +01:00
94132c3a55 createNonConformalCouples: Added the option to modify fields
This utility can now add boundary conditions to fields which correspond
to the non-conformal patches that it adds to the mesh. This action is
enabled by means of a 'fields true;' flag which can be added to the
'system/createNonConformalCouplesDict'. No additional control is needed,
because all patches created by this utility are of constraint type.
2022-05-19 11:39:31 +01:00
569fa31d09 Non-Conformal Coupled (NCC): Conservative coupling of non-conforming patches
This major development provides coupling of patches which are
non-conformal, i.e. where the faces of one patch do not match the faces
of the other. The coupling is fully conservative and second order
accurate in space, unlike the Arbitrary Mesh Interface (AMI) and
associated ACMI and Repeat AMI methods which NCC replaces.

Description:

A non-conformal couple is a connection between a pair of boundary
patches formed by projecting one patch onto the other in a way that
fills the space between them. The intersection between the projected
surface and patch forms new faces that are incorporated into the finite
volume mesh. These new faces are created identically on both sides of
the couple, and therefore become equivalent to internal faces within the
mesh. The affected cells remain closed, meaning that the area vectors
sum to zero for all the faces of each cell. Consequently, the main
benefits of the finite volume method, i.e. conservation and accuracy,
are not undermined by the coupling.

A couple connects parts of mesh that are otherwise disconnected and can
be used in the following ways:

+ to simulate rotating geometries, e.g. a propeller or stirrer, in which
  a part of the mesh rotates with the geometry and connects to a
  surrounding mesh which is not moving;
+ to connect meshes that are generated separately, which do not conform
  at their boundaries;
+ to connect patches which only partially overlap, in which the
  non-overlapped section forms another boundary, e.g. a wall;
+ to simulate a case with a geometry which is periodically repeating by
  creating multiple couples with different transformations between
  patches.

The capability for simulating partial overlaps replaces the ACMI
functionality, currently provided by the 'cyclicACMI' patch type, and
which is unreliable unless the couple is perfectly flat. The capability
for simulating periodically repeating geometry replaces the Repeat AMI
functionality currently provided by the 'cyclicRepeatAMI' patch type.

Usage:

The process of meshing for NCC is very similar to existing processes for
meshing for AMI. Typically, a mesh is generated with an identifiable set
of internal faces which coincide with the surface through which the mesh
will be coupled. These faces are then duplicated by running the
'createBaffles' utility to create two boundary patches. The points are
then split using 'splitBaffles' in order to permit independent motion of
the patches.

In AMI, these patches are assigned the 'cyclicAMI' patch type, which
couples them using AMI interpolation methods.

With NCC, the patches remain non-coupled, e.g. a 'wall' type. Coupling
is instead achieved by running the new 'createNonConformalCouples'
utility, which creates additional coupled patches of type
'nonConformalCyclic'. These appear in the 'constant/polyMesh/boundary'
file with zero faces; they are populated with faces in the finite volume
mesh during the connection process in NCC.

For a single couple, such as that which separates the rotating and
stationary sections of a mesh, the utility can be called using the
non-coupled patch names as arguments, e.g.

    createNonConformalCouples -overwrite rotatingZoneInner rotatingZoneOuter

where 'rotatingZoneInner' and 'rotatingZoneOuter' are the names of the
patches.

For multiple couples, and/or couples with transformations,
'createNonConformalCouples' should be run without arguments. Settings
will then be read from a configuration file named
'system/createNonConformalCouplesDict'. See
'$FOAM_ETC/caseDicts/annotated/createNonConformalCouplesDict' for
examples.

Boundary conditions must be specified for the non-coupled patches. For a
couple where the patches fully overlap, boundary conditions
corresponding to a slip wall are typically applied to fields, i.e
'movingWallSlipVelocity' (or 'slip' if the mesh is stationary) for
velocity U, 'zeroGradient' or 'fixedFluxPressure' for pressure p, and
'zeroGradient' for other fields.  For a couple with
partially-overlapping patches, boundary conditions are applied which
physically represent the non-overlapped region, e.g. a no-slip wall.

Boundary conditions also need to be specified for the
'nonConformalCyclic' patches created by 'createNonConformalCouples'. It
is generally recommended that this is done by including the
'$FOAM_ETC/caseDicts/setConstraintTypes' file in the 'boundaryField'
section of each of the field files, e.g.

    boundaryField
    {
        #includeEtc "caseDicts/setConstraintTypes"

        inlet
        {
             ...
        }

        ...
    }

For moving mesh cases, it may be necessary to correct the mesh fluxes
that are changed as a result of the connection procedure. If the
connected patches do not conform perfectly to the mesh motion, then
failure to correct the fluxes can result in noise in the pressure
solution.

Correction for the mesh fluxes is enabled by the 'correctMeshPhi' switch
in the 'PIMPLE' (or equivalent) section of 'system/fvSolution'. When it
is enabled, solver settings are required for 'MeshPhi'. The solution
just needs to distribute the error enough to dissipate the noise. A
smooth solver with a loose tolerance is typically sufficient, e.g. the
settings in 'system/fvSolution' shown below:

    solvers
    {
        MeshPhi
        {
            solver          smoothSolver;
            smoother        symGaussSeidel;
            tolerance       1e-2;
            relTol          0;
        }
        ...
    }

    PIMPLE
    {
         correctMeshPhi      yes;
         ...
    }

The solution of 'MeshPhi' is an inexpensive computation since it is
applied only to a small subset of the mesh adjacent to the
couple. Conservation is maintained whether or not the mesh flux
correction is enabled, and regardless of the solution tolerance for
'MeshPhi'.

Advantages of NCC:

+ NCC maintains conservation which is required for many numerical
  schemes and algorithms to operate effectively, in particular those
  designed to maintain boundedness of a solution.

+ Closed-volume systems no longer suffer from accumulation or loss of
  mass, poor convergence of the pressure equation, and/or concentration
  of error in the reference cell.

+ Partially overlapped simulations are now possible on surfaces that are
  not perfectly flat. The projection fills space so no overlaps or
  spaces are generated inside contiguously overlapping sections, even if
  those sections have sharp angles.

+ The finite volume faces created by NCC have geometrically accurate
  centres. This makes the method second order accurate in space.

+ The polyhedral mesh no longer requires duplicate boundary faces to be
  generated in order to run a partially overlapped simulation.

+ Lagrangian elements can now transfer across non-conformal couplings in
  parallel.

+ Once the intersection has been computed and applied to the finite
  volume mesh, it can use standard cyclic or processor cyclic finite
  volume boundary conditions, with no need for additional patch types or
  matrix interfaces.

+ Parallel communication is done using the standard
  processor-patch-field system. This is more efficient than alternative
  systems since it has been carefully optimised for use within the
  linear solvers.

+ Coupled patches are disconnected prior to mesh motion and topology
  change and reconnected afterwards. This simplifies the boundary
  condition specification for mesh motion fields.

Resolved Bug Reports:

+ https://bugs.openfoam.org/view.php?id=663
+ https://bugs.openfoam.org/view.php?id=883
+ https://bugs.openfoam.org/view.php?id=887
+ https://bugs.openfoam.org/view.php?id=1337
+ https://bugs.openfoam.org/view.php?id=1388
+ https://bugs.openfoam.org/view.php?id=1422
+ https://bugs.openfoam.org/view.php?id=1829
+ https://bugs.openfoam.org/view.php?id=1841
+ https://bugs.openfoam.org/view.php?id=2274
+ https://bugs.openfoam.org/view.php?id=2561
+ https://bugs.openfoam.org/view.php?id=3817

Deprecation:

NCC replaces the functionality provided by AMI, ACMI and Repeat AMI.
ACMI and Repeat AMI are insufficiently reliable to warrant further
maintenance so are removed in an accompanying commit to OpenFOAM-dev.
AMI is more widely used so will be retained alongside NCC for the next
version release of OpenFOAM and then subsequently removed from
OpenFOAM-dev.
2022-05-18 10:25:43 +01:00
137a40ef56 Documentation: Moved "Notes" entries into the corresponding "Description" or "Usage"
This simplifies parsing the headers and ensures the notes are included in the
text they relate to by both Doxygen and foamInfo.
2022-05-12 09:51:14 +01:00
774ff647b0 transformPoints: Added option to restrict transformation to a point set
Transformation can now be restricted to a specific point set by means of
a new -pointSet option. For example, to move the rotating part of a
geometry through 45 degrees around the Z axis, the following command
could be used:

    transformPoints -pointSet rotating "Rz=45"

This assumes a point set called "rotating" has been defined during
meshing or by calling topoSet.
2022-05-07 15:21:16 +01:00
b8ce733e4b fvMesh: Separated fvMesh::move() and fvMesh::update()
fvMesh::update() now executes at the beginning of the time-step, before time is
incremented and handles topology change, mesh to mesh mapping and redistribution
without point motion.  Following each of these mesh changes fields are mapped
from the previous mesh state to new mesh state in a conservative manner.  These
mesh changes not occur at most once per time-step.

fvMesh::move() is executed after time is incremented and handles point motion
mesh morphing during the time-step in an Arbitrary Lagrangian Eulerian approach
requiring the mesh motion flux to match the cell volume change.  fvMesh::move()
can be called any number of times during the time-step to allow iterative update
of the coupling between the mesh motion and field solution.
2022-04-08 18:46:12 +01:00
98fa8df9a1 motionSolvers::motionSolverList: Updated as a PtrDictionary
so that the input is now dictionary rather than list of dictionaries which
provides support for dictionary substitutions within the motionSolver
sub-dictionaries and also simplifies lookup of specific motionSolvers within the
list.  For example the dynamicMeshDict for the floatingObject case with a second
floating object would be:

mover
{
    type            motionSolver;

    libs            ("libfvMeshMovers.so" "librigidBodyMeshMotion.so");

    motionSolver       motionSolverList;

    solvers
    {
        floatingObject
        {
            motionSolver rigidBodyMotion;

            report          on;

            solver
            {
                type Newmark;
            }

            accelerationRelaxation 0.7;

            bodies
            {
                floatingObject
                {
                    type            cuboid;
                    parent          root;

                    // Cuboid dimensions
                    Lx              0.3;
                    Ly              0.2;
                    Lz              0.5;

                    // Density of the cuboid
                    rho             500;

                    // Cuboid mass
                    mass            #calc "$rho*$Lx*$Ly*$Lz";
                    L               ($Lx $Ly $Lz);
                    centreOfMass    (0 0 0.25);
                    transform       (1 0 0 0 1 0 0 0 1) (0.5 0.45 0.1);

                    joint
                    {
                        type            composite;
                        joints
                        (
                            {
                                type Py;
                            }
                            {
                                type Ry;
                            }
                        );
                    }

                    patches         (floatingObject);
                    innerDistance   0.05;
                    outerDistance   0.35;
                }
            }
        }

        anotherFloatingObject
        {
        .
        .
        .
        }
    }
}
2022-04-04 16:38:20 +01:00
7592a81c6e polyMeshMap: New mesh to mesh map for the new mapping update function mapMesh(const polyMeshMap&)
This new mapping structure is designed to support run-time mesh-to-mesh mapping
to allow arbitrary changes to the mesh structure, for example during extreme
motion requiring significant topology change including region disconnection etc.
2022-04-04 11:15:41 +01:00
6047f27aac polyDistributionMap: renamed from polyMeshDistributionMap for consistency with polyTopoChangeMap 2022-03-31 23:44:47 +01:00
3ace8f434b polyTopoChangeMap: Renamed from mapPolyMesh to clarify purpose and scope
The polyTopoChangeMap is the map specifically relating to polyMesh topological
changes generated by polyTopoChange and used to update and map mesh related
types and fields following the topo-change.
2022-03-31 22:05:37 +01:00
ddbf2d7853 fvMesh: fvSchemes and fvSolution are now demand-driven
fvMesh is no longer derived from fvSchemes and fvSolution, these are now
demand-driven and accessed by the member functions schemes() and solution()
respectively.  This means that the system/fvSchemes and system/fvSolution files
are no longer required during fvMesh constructions simplifying the mesh
generation and manipulation phase; theses files are read on the first call of
their access functions.

The fvSchemes member function names have also been simplified taking advantage
of the context in which they are called, for example

    mesh.ddtScheme(fieldName) -> mesh.schemes().ddt(fieldName)
2022-03-23 16:23:55 +00:00
a578586c2c processorTopology: Un-templated
The template parameters were only ever polyBoundaryMesh and
processorPolyPatch. Un-templating makes mainteance and bug-fixing
quicker as it means minor modifications no longer cause a full rebuild
of OpenFOAM.
2022-03-17 11:58:06 +00:00
ec3187fa52 splitBaffles: Added support for hexRef8
so that the pointLevel file is updated for use by hexRef8 in subsequent mesh
manipulations, refinement/unrefinement etc.
2022-03-16 12:17:25 +00:00
3995456979 parallelProcessing: Various improvements
boundaryProcAddressing has been removed. This has not been needed for a
long time. decomposePar has been optimised for mininum IO, rather than
minimum memory usage. decomposePar has also been corrected so that it
can decompose sequences of time-varying meshes.
2022-03-10 20:31:30 +00:00
989cf27554 snappyHexMesh, createPatch: Keep all constraint patches even if zero size
This change ensures that special constraint type patches, like internal used for
load-balancing, are not deleted by snappyHexMesh or createPatch.
2022-02-10 14:47:07 +00:00
526b3840c7 renumberMethods::zoltanRenumber: set default ORDER_METHOD to LOCAL_HSFC
also adding optional "libs" entry to renumberMeshDict so that the
libzoltanRenumber.so can be loaded at run-time rather than having to recompile
and relink the renumberMesh utility to support it.
2021-12-20 22:48:37 +00:00
f97f6326f0 Decomposition/redistribution: Separated choice of mesh decomposition and redistribution methods
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch.  decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch.  In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:

numberOfSubdomains  6;

decomposer      hierarchical;
distributor     ptscotch;

hierarchicalCoeffs
{
    n               (3 2 1);
    order           xyz;
}

The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:

distributor
{
    type            distributor;

    libs            ("libfvMeshDistributors.so");

    redistributionInterval  10;
}

which uses the distributor specified in system/decomposeParDict:

distributor     hierarchical;

This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
2021-12-15 22:12:00 +00:00
d90f421841 zoltanRenumber: Updated, corrected and tested 2021-12-15 11:45:11 +00:00
25a6d068f0 sampledSets, streamlines: Various improvements
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.

"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.

Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.

Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.

The raw set writer now aligns columns correctly.

The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.

Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:

    setWriter::New("gnuplot")->write
    (
        directoryName,
        graphName,
        coordSet(true, "X", X), // <-- "true" indicates a contiguous
        "A",                    //     line, "false" would mean
        A,                      //     disconnected points
        "B",
        B
    );

This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.

Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.

The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
2021-12-07 11:18:27 +00:00
261ce05fac sampledSurfaces: Write multiple fields to the same file
This prevents excessive duplication of surface geometry and makes
post-processing tasks in paraview more convenient.

The Nastran and Star-CD surface formats were found not to work, so
support for these output types has been removed. Raw, VTK, Foam and
Ensight formats are all still available.
2021-11-23 14:44:34 +00:00
251c628c77 moveEngineMesh: Removed as no longer required
moveDynamicMesh can be used to move engine meshes which use fvMeshMovers
2021-11-06 00:51:28 +00:00
e10830632e engineTime: Completely replaced engineTime derived from Time
with the run-time selectable engine userTime embedded in Time.

All parts of the original engineTime relating to the engine geometry have been
moved to engineMesh.  This is part of the process of integrating engine
simulations within the standard moving-mesh solvers.
2021-11-03 19:33:41 +00:00
3ef3e96c3f Time: Added run-time selectable userTime option
replacing the virtual functions overridden in engineTime.

Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.

For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:

userTime
{
    type     engine;
    rpm      1500;
}

The default specification is real-time:

userTime
{
    type     real;
}

but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
2021-10-19 09:09:01 +01:00
cf3d6cd1e9 fvMeshMovers, fvMeshTopoChangers: General mesh motion and topology change replacement for dynamicFvMesh
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.

All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger.  These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.

When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh.  The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport.  If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.

The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:

/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  dev
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    format      ascii;
    class       dictionary;
    location    "constant";
    object      dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

mover
{
    type    motionSolver;

    libs    ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    solidBody;

    solidBodyMotionFunction SDA;

    CofG            (0 0 0);
    lamda           50;
    rollAmax        0.2;
    rollAmin        0.1;
    heaveA          4;
    swayA           2.4;
    Q               2;
    Tp              14;
    Tpn             12;
    dTi             0.06;
    dTp             -0.001;
}

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (meshPhi_0 none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

// ************************************************************************* //

Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.

All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
2021-10-01 15:50:06 +01:00
57a4460d08 surfaceTransformPoints, transformPoints: documented transformations in '-help' option 2021-08-14 17:42:51 +01:00
b9123328fb typeIOobject: Template typed form of IOobject for type-checked object file and header reading
used to check the existence of and open an object file, read and check the
header without constructing the object.

'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.

'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
2021-08-12 10:12:03 +01:00
cc92330253 IOobject, regIOobject: rationalised handling of paths for global and local objects
now all path functions in 'IOobject' are either templated on the type or require a
'globalFile' argument to specify if the type is case global e.g. 'IOdictionary' or
decomposed in parallel, e.g. almost everything else.

The 'global()' and 'globalFile()' virtual functions are now in 'regIOobject'
abstract base-class and overridden as required by derived classes.  The path
functions using 'global()' and 'globalFile()' to differentiate between global
and processor local objects are now also in 'regIOobject' rather than 'IOobject'
to ensure the path returned is absolutely consistent with the type.

Unfortunately there is still potential for unexpected IO behaviour inconsistent
with the global/local nature of the type due to the 'fileOperation' classes
searching the processor directory for case global objects before searching the
case directory.  This approach appears to be a work-around for incomplete
integration with and rationalisation of 'IOobject' but with the changes above it
is no longer necessary.  Unfortunately this "up" searching is baked-in at a low
level and mixed-up with various complex ways to pick the processor directory
name out of the object path and will take some unravelling but this work will
undertaken as time allows.
2021-08-09 21:23:12 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
8d887e0a86 Completed the replacement of setSet with topoSet
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet.  This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
2021-07-23 19:22:50 +01:00
8f76bfcb42 splitMeshRegions: Remove surfaceField zero hack
now that fvMeshSubset correctly maps surfaceField boundary patch values
2021-07-21 17:26:50 +01:00
25d274736f MeshZones: Renamed ZoneMesh to MeshZones 2021-07-14 14:10:28 +01:00
c63c1a90c2 systemDict: Consistent handling of the -dict option
The -dict option is now handled correctly and consistently across all
applications with -dict options. The logic associated with doing so has
been centralised.

If a relative path is given to the -dict option, then it is assumed to
be relative to the case directory. If an absolute path is given, then it
is used without reference to the case directory. In both cases, if the
path is found to be a directory, then the standard dictionary name is
appended to the path.

Resolves bug report http://bugs.openfoam.org/view.php?id=3692
2021-07-02 15:11:06 +01:00
45a0059026 splitBaffles, mergeBaffles: New utilities to replace mergeOrSplitBaffles
splitBaffles identifies baffle faces; i.e., faces on the mesh boundary
which share the exact same set of points as another boundary face. It
then splits the points to convert these faces into completely separate
boundary patches. This functionality was previously provided by calling
mergeOrSplitBaffles with the "-split" option.

mergeBaffles also identifes the duplicate baffle faces, but then merges
them, converting them into a single set of internal faces. This
functionality was previously provided by calling mergeOrSplitBaffles
without the "-split" option.
2021-06-25 10:30:39 +01:00
dae463dbd8 TimePaths: Rationalised path methods 2021-06-24 14:20:00 +01:00
3baba56734 dynamicMesh: Renamed boundaryMesh to repatchMesh and removed unused code 2021-06-22 09:48:36 +01:00
f4a65fbada sampling: Renamed and moved classes from fileFormats
The writer class has been renamed setWriter in order to clarify its
usage. The coordSet and setWriter classes have been moved into the
sampling library, as this fits their usage.
2021-06-18 13:57:11 +01:00
0ba5f5b8a9 fileFormats: Added generic write functions for VTK poly data
The new write functions are currently being utilised by setSet and the
vtkSurfaceWriter, but it should eventually be possible for more examples
of VTK poly data writing to be converted to use these functions.
2021-06-18 13:54:56 +01:00
926ba22b74 refineMesh: Rationalised and standardised the coordinate axes naming to e1, e2 and e3
the previous naming tan1, tan2, normal was non-intuitive and very confusing.

It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
2021-06-15 16:08:55 +01:00
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
845d5b16e3 transformPoints: Generalised to apply a sequence of transformations
This makes usage of transformPoints the same as for
surfaceTransformPoints. Transformations are supplied as a string and are
applied in sequence.

Usage
    transformPoints "\<transformations\>" [OPTION]

    Supported transformations:
      - "translate=<translation vector>"
        Translational transformation by given vector
      - "rotate=(<n1 vector> <n2 vector>)"
        Rotational transformation from unit vector n1 to n2
      - "Rx=<angle [deg] about x-axis>"
        Rotational transformation by given angle about x-axis
      - "Ry=<angle [deg] about y-axis>"
        Rotational transformation by given angle about y-axis
      - "Rz=<angle [deg] about z-axis>"
        Rotational transformation by given angle about z-axis
      - "Ra=<axis vector> <angle [deg] about axis>"
        Rotational transformation by given angle about given axis
      - "scale=<x-y-z scaling vector>"
        Anisotropic scaling by the given vector in the x, y, z
        coordinate directions

    Example usage:
        transformPoints \
            "translate=(-0.05 -0.05 0), \
            Rz=45, \
            translate=(0.05 0.05 0)"
2021-05-11 10:06:45 +01:00