Henry Weller 74b302d6f8 solvers::compressibleVoF: Implemented new energy conservative temperature correction equation
In order to ensure temperature consistency between the phases it is necessary to
solve for the mixture temperature rather than the mixture energy or phase
energies which makes it very difficult to conserve energy.  The new temperature
equation is a temperature correction on the combined phase energy equations
which will conserve the phase and mixture energies at convergence.  The
heat-flux (Laplacian) term is maintained in mixture temperature form so
heat-transfer boundary conditions, in particular for CHT, remain in terms of the
mixture kappaEff.  The fvModels are applied to the phase energy equations and
the implicit part converted into an implicit term in the temperature correction
part of the equation to improve convergence and stability.

This development has required some change to the alphaEqn.H and interFoam has
been updated for consistency in preparation for conversion into the
solvers::incompressibleVoF modular module.

All compressibleVoF fvModels and tutorial cases have been updated for the above
change.  Note that two entries are now required for the convection terms in the
temperature equation, one for explicit phase energy terms and another for the
implicit phase temperature correction terms, e.g.

tutorials/modules/compressibleVoF/ballValve

    div(alphaRhoPhi,e) Gauss limitedLinear 1;
    div(alphaRhoPhi,T) Gauss upwind;

In the above the upwind scheme is selected for the phase temperature correction
terms as they are corrections and will converge to a zero contribution.  However
there may be cases which converge better if the same scheme is used for both the
energy and temperature terms, more testing is required.
2022-12-18 17:28:11 +00:00
2018-04-14 23:13:00 +01:00
2021-07-15 15:35:22 +01:00

README for OpenFOAM-dev

#

About OpenFOAM

OpenFOAM is a free, open source computational fluid dynamics (CFD) software package released by the OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics.

Copyright

OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. See the file COPYING in this directory or http://www.gnu.org/licenses/, for a description of the GNU General Public License terms under which you can copy the files.

Description
Description: OpenFOAM Foundation repository for OpenFOAM version 12
Readme 304 MiB
Languages
C++ 97.4%
Shell 1.8%
Lex 0.4%
Liquid 0.2%
C 0.1%