Henry Weller 76e07b0da6 surfaceFilmModels: Replaced the simplistic constant heat capacity thermodynamics with rhoThermo
The constant heat capacity hacked thermo in surfaceFilmModels and the
corresponding transfer terms in Lagrangian have been replaced by the standard
OpenFOAM rhoThermo which provides a general handling of thermo-physical
properties, in particular non-constant heat capacity.  Further rationalisation
of liquid and solid properties has also been undertaken in support of this work
to provide a completely consistent interface to sensible and absolute enthalpy.

Now for surfaceFilmModels the thermo-physical model and properties are specified
in a constant/<region>/thermophysicalProperties dictionary consistent with all
other types of continuum simulation.

This significantly rationalises, simplifies and generalises the handling of
thermo-physical properties for film simulations and is a start at doing the same
for Lagrangian.
2021-03-21 23:04:40 +00:00
2018-04-14 23:13:00 +01:00
2018-01-03 17:18:12 +00:00

README for OpenFOAM-dev

#

About OpenFOAM

OpenFOAM is a free, open source computational fluid dynamics (CFD) software package released by the OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics.

Copyright

OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. See the file COPYING in this directory or http://www.gnu.org/licenses/, for a description of the GNU General Public License terms under which you can copy the files.

Description
Description: OpenFOAM Foundation repository for OpenFOAM version 12
Readme 304 MiB
Languages
C++ 97.4%
Shell 1.8%
Lex 0.4%
Liquid 0.2%
C 0.1%