Files
OpenFOAM-12/src/OpenFOAM/primitives/Tensor/tensor/tensor.C
Henry Weller 81fca4c43a Corrected typos in comments
found using cspell.

Patch contributed by Timo Niemi, VTT.
2019-10-18 11:46:20 +01:00

293 lines
7.5 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "tensor.H"
#include "cubicEqn.H"
#include "mathematicalConstants.H"
using namespace Foam::constant::mathematical;
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
template<>
const char* const Foam::tensor::vsType::typeName = "tensor";
template<>
const char* const Foam::tensor::vsType::componentNames[] =
{
"xx", "xy", "xz",
"yx", "yy", "yz",
"zx", "zy", "zz"
};
template<>
const Foam::tensor Foam::tensor::vsType::zero(tensor::uniform(0));
template<>
const Foam::tensor Foam::tensor::vsType::one(tensor::uniform(1));
template<>
const Foam::tensor Foam::tensor::vsType::max(tensor::uniform(vGreat));
template<>
const Foam::tensor Foam::tensor::vsType::min(tensor::uniform(-vGreat));
template<>
const Foam::tensor Foam::tensor::vsType::rootMax(tensor::uniform(rootVGreat));
template<>
const Foam::tensor Foam::tensor::vsType::rootMin(tensor::uniform(-rootVGreat));
template<>
const Foam::tensor Foam::tensor::I
(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Foam::vector Foam::eigenValues(const tensor& t)
{
// Coefficients of the characteristic cubic polynomial (a = 1)
const scalar b =
- t.xx() - t.yy() - t.zz();
const scalar c =
t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
- t.xy()*t.yx() - t.yz()*t.zy() - t.zx()*t.xz();
const scalar d =
- t.xx()*t.yy()*t.zz()
- t.xy()*t.yz()*t.zx() - t.xz()*t.zy()*t.yx()
+ t.xx()*t.yz()*t.zy() + t.yy()*t.zx()*t.xz() + t.zz()*t.xy()*t.yx();
// Solve
Roots<3> roots = cubicEqn(1, b, c, d).roots();
// Check the root types
vector lambda = vector::zero;
forAll(roots, i)
{
switch (roots.type(i))
{
case rootType::real:
lambda[i] = roots[i];
break;
case rootType::complex:
WarningInFunction
<< "Complex eigenvalues detected for tensor: " << t
<< endl;
lambda[i] = 0;
break;
case rootType::posInf:
lambda[i] = vGreat;
break;
case rootType::negInf:
lambda[i] = - vGreat;
break;
case rootType::nan:
FatalErrorInFunction
<< "Eigenvalue calculation failed for tensor: " << t
<< exit(FatalError);
}
}
// Sort the eigenvalues into ascending order
if (lambda.x() > lambda.y())
{
Swap(lambda.x(), lambda.y());
}
if (lambda.y() > lambda.z())
{
Swap(lambda.y(), lambda.z());
}
if (lambda.x() > lambda.y())
{
Swap(lambda.x(), lambda.y());
}
return lambda;
}
Foam::vector Foam::eigenVector
(
const tensor& T,
const scalar lambda,
const vector& direction1,
const vector& direction2
)
{
// Construct the linear system for this eigenvalue
tensor A(T - lambda*I);
// Determinants of the 2x2 sub-matrices used to find the eigenvectors
scalar sd0, sd1, sd2;
scalar magSd0, magSd1, magSd2;
// Sub-determinants for a unique eigenvalue
sd0 = A.yy()*A.zz() - A.yz()*A.zy();
sd1 = A.zz()*A.xx() - A.zx()*A.xz();
sd2 = A.xx()*A.yy() - A.xy()*A.yx();
magSd0 = mag(sd0);
magSd1 = mag(sd1);
magSd2 = mag(sd2);
// Evaluate the eigenvector using the largest sub-determinant
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > small)
{
vector ev
(
1,
(A.yz()*A.zx() - A.zz()*A.yx())/sd0,
(A.zy()*A.yx() - A.yy()*A.zx())/sd0
);
return ev/mag(ev);
}
else if (magSd1 >= magSd2 && magSd1 > small)
{
vector ev
(
(A.xz()*A.zy() - A.zz()*A.xy())/sd1,
1,
(A.zx()*A.xy() - A.xx()*A.zy())/sd1
);
return ev/mag(ev);
}
else if (magSd2 > small)
{
vector ev
(
(A.xy()*A.yz() - A.yy()*A.xz())/sd2,
(A.yx()*A.xz() - A.xx()*A.yz())/sd2,
1
);
return ev/mag(ev);
}
// Sub-determinants for a repeated eigenvalue
sd0 = A.yy()*direction1.z() - A.yz()*direction1.y();
sd1 = A.zz()*direction1.x() - A.zx()*direction1.z();
sd2 = A.xx()*direction1.y() - A.xy()*direction1.x();
magSd0 = mag(sd0);
magSd1 = mag(sd1);
magSd2 = mag(sd2);
// Evaluate the eigenvector using the largest sub-determinant
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > small)
{
vector ev
(
1,
(A.yz()*direction1.x() - direction1.z()*A.yx())/sd0,
(direction1.y()*A.yx() - A.yy()*direction1.x())/sd0
);
return ev/mag(ev);
}
else if (magSd1 >= magSd2 && magSd1 > small)
{
vector ev
(
(direction1.z()*A.zy() - A.zz()*direction1.y())/sd1,
1,
(A.zx()*direction1.y() - direction1.x()*A.zy())/sd1
);
return ev/mag(ev);
}
else if (magSd2 > small)
{
vector ev
(
(A.xy()*direction1.z() - direction1.y()*A.xz())/sd2,
(direction1.x()*A.xz() - A.xx()*direction1.z())/sd2,
1
);
return ev/mag(ev);
}
// Triple eigenvalue
return direction1^direction2;
}
Foam::tensor Foam::eigenVectors(const tensor& T, const vector& lambdas)
{
vector Ux(1, 0, 0), Uy(0, 1, 0), Uz(0, 0, 1);
Ux = eigenVector(T, lambdas.x(), Uy, Uz);
Uy = eigenVector(T, lambdas.y(), Uz, Ux);
Uz = eigenVector(T, lambdas.z(), Ux, Uy);
return tensor(Ux, Uy, Uz);
}
Foam::tensor Foam::eigenVectors(const tensor& T)
{
const vector lambdas(eigenValues(T));
return eigenVectors(T, lambdas);
}
Foam::vector Foam::eigenValues(const symmTensor& T)
{
return eigenValues(tensor(T));
}
Foam::vector Foam::eigenVector
(
const symmTensor& T,
const scalar lambda,
const vector& direction1,
const vector& direction2
)
{
return eigenVector(tensor(T), lambda, direction1, direction2);
}
Foam::tensor Foam::eigenVectors(const symmTensor& T, const vector& lambdas)
{
return eigenVectors(tensor(T), lambdas);
}
Foam::tensor Foam::eigenVectors(const symmTensor& T)
{
return eigenVectors(tensor(T));
}
// ************************************************************************* //