Description
Phase turbulence stabilisation
In the limit of a phase-fraction->0 the turbulence properties cannot be
obtained from the phase turbulence model, coupling to the other phase/phases
is required. The phaseTurbulenceStabilisation fvModel stabilises the phase
turbulence properties by adding transfer terms from the corresponding
properties of the other phases when the phase-fraction is less than the
specified \c alphaInversion. This implementation is a generalisation of
the approach used in the Foam::RASModels::LaheyKEpsilon and
Foam::RASModels::continuousGasKEpsilon models to handle phase-inversion and
free-surface flow and can be used with any combination of RAS turbulence
models.
To stabilise the solution of the phase turbulence equations \c
alphaInversion can be set to a small value e.g. 1e-2, but unless the phase
turbulence model is specifically designed to handle phase-inversion and both
continuous and dispersed regimes it may be useful to set \c alphaInversion
to a higher value, corresponding to the phase-fraction at which transision
from continuous to dispersed happens and effectively use the turbulence
properties of the other phase when the phase is dispersed. This is of
course an approximation to the real system and if accurate handling of both
the continuous and dispersed phase regimes is required specially developed
models should be used.
Usage
Example usage:
\verbatim
phaseTurbulenceStabilisation
{
type phaseTurbulenceStabilisation;
libs ("libmultiphaseEulerFoamFvModels.so");
phase air;
alphaInversion 0.1;
}
\endverbatim
README for OpenFOAM-dev
- About OpenFOAM
- Copyright
- Download and installation instructions
- Documentation
- Source code documentation
- OpenFOAM C++ Style Guide
- Reporting bugs in OpenFOAM
- Contacting the OpenFOAM Foundation
#
About OpenFOAM
OpenFOAM is a free, open source computational fluid dynamics (CFD) software package released by the OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics.
Copyright
OpenFOAM is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version. See the file COPYING in this directory or
http://www.gnu.org/licenses/, for a description of the GNU General Public
License terms under which you can copy the files.