Given that the type of the dimensioned internal field is encapsulated in the GeometricField class the name need not include "Field"; the type name is "Internal" so volScalarField::DimensionedInternalField -> volScalarField::Internal In addition to the ".dimensionedInternalField()" access function the simpler "()" de-reference operator is also provided to greatly simplify FV equation source term expressions which need not evaluate boundary conditions. To demonstrate this kEpsilon.C has been updated to use dimensioned internal field expressions in the k and epsilon equation source terms.
README for OpenFOAM-dev
- About OpenFOAM
- Copyright
- Download and installation instructions
- Documentation
- Source code documentation
- OpenFOAM C++ Style Guide
- Reporting bugs in OpenFOAM
- Contacting the OpenFOAM Foundation
#
About OpenFOAM
OpenFOAM is a free, open source computational fluid dynamics (CFD) software package released by the OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics.
Copyright
OpenFOAM is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version. See the file COPYING in this directory or
http://www.gnu.org/licenses/, for a description of the GNU General Public
License terms under which you can copy the files.