Files
OpenFOAM-12/applications/solvers/multiphase/twoPhaseEulerFoam/twoPhaseSystem/twoPhaseSystem.C
Henry Weller a25a449c9e GeometricField: Rationalized and simplified access to the dimensioned internal field
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so

volScalarField::DimensionedInternalField -> volScalarField::Internal

In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions.  To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
2016-04-27 21:32:45 +01:00

608 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "PhaseCompressibleTurbulenceModel.H"
#include "BlendedInterfacialModel.H"
#include "virtualMassModel.H"
#include "heatTransferModel.H"
#include "liftModel.H"
#include "wallLubricationModel.H"
#include "turbulentDispersionModel.H"
#include "fvMatrix.H"
#include "surfaceInterpolate.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcCurl.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fixedValueFvsPatchFields.H"
#include "blendingMethod.H"
#include "HashPtrTable.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::twoPhaseSystem
(
const fvMesh& mesh,
const dimensionedVector& g
)
:
IOdictionary
(
IOobject
(
"phaseProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
mesh_(mesh),
phase1_
(
*this,
*this,
wordList(lookup("phases"))[0]
),
phase2_
(
*this,
*this,
wordList(lookup("phases"))[1]
),
phi_
(
IOobject
(
"phi",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->calcPhi()
),
dgdt_
(
IOobject
(
"dgdt",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("dgdt", dimless/dimTime, 0)
)
{
phase2_.volScalarField::operator=(scalar(1) - phase1_);
// Blending
forAllConstIter(dictionary, subDict("blending"), iter)
{
blendingMethods_.insert
(
iter().dict().dictName(),
blendingMethod::New
(
iter().dict(),
wordList(lookup("phases"))
)
);
}
// Pairs
phasePair::scalarTable sigmaTable(lookup("sigma"));
phasePair::dictTable aspectRatioTable(lookup("aspectRatio"));
pair_.set
(
new phasePair
(
phase1_,
phase2_,
g,
sigmaTable
)
);
pair1In2_.set
(
new orderedPhasePair
(
phase1_,
phase2_,
g,
sigmaTable,
aspectRatioTable
)
);
pair2In1_.set
(
new orderedPhasePair
(
phase2_,
phase1_,
g,
sigmaTable,
aspectRatioTable
)
);
// Models
drag_.set
(
new BlendedInterfacialModel<dragModel>
(
lookup("drag"),
(
blendingMethods_.found("drag")
? blendingMethods_["drag"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_,
false // Do not zero drag coefficent at fixed-flux BCs
)
);
virtualMass_.set
(
new BlendedInterfacialModel<virtualMassModel>
(
lookup("virtualMass"),
(
blendingMethods_.found("virtualMass")
? blendingMethods_["virtualMass"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
heatTransfer_.set
(
new BlendedInterfacialModel<heatTransferModel>
(
lookup("heatTransfer"),
(
blendingMethods_.found("heatTransfer")
? blendingMethods_["heatTransfer"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
lift_.set
(
new BlendedInterfacialModel<liftModel>
(
lookup("lift"),
(
blendingMethods_.found("lift")
? blendingMethods_["lift"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
wallLubrication_.set
(
new BlendedInterfacialModel<wallLubricationModel>
(
lookup("wallLubrication"),
(
blendingMethods_.found("wallLubrication")
? blendingMethods_["wallLubrication"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
turbulentDispersion_.set
(
new BlendedInterfacialModel<turbulentDispersionModel>
(
lookup("turbulentDispersion"),
(
blendingMethods_.found("turbulentDispersion")
? blendingMethods_["turbulentDispersion"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::~twoPhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::rho() const
{
return phase1_*phase1_.thermo().rho() + phase2_*phase2_.thermo().rho();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
{
return phase1_*phase1_.U() + phase2_*phase2_.U();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::calcPhi() const
{
return
fvc::interpolate(phase1_)*phase1_.phi()
+ fvc::interpolate(phase2_)*phase2_.phi();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kd() const
{
return drag_->K();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Kdf() const
{
return drag_->Kf();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Vm() const
{
return virtualMass_->K();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Vmf() const
{
return virtualMass_->Kf();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kh() const
{
return heatTransfer_->K();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::F() const
{
return lift_->F<vector>() + wallLubrication_->F<vector>();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Ff() const
{
return lift_->Ff() + wallLubrication_->Ff();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::D() const
{
return turbulentDispersion_->D();
}
void Foam::twoPhaseSystem::solve()
{
const Time& runTime = mesh_.time();
volScalarField& alpha1 = phase1_;
volScalarField& alpha2 = phase2_;
const surfaceScalarField& phi1 = phase1_.phi();
const surfaceScalarField& phi2 = phase2_.phi();
const dictionary& alphaControls = mesh_.solverDict
(
alpha1.name()
);
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
word alphaScheme("div(phi," + alpha1.name() + ')');
word alpharScheme("div(phir," + alpha1.name() + ')');
alpha1.correctBoundaryConditions();
surfaceScalarField phic("phic", phi_);
surfaceScalarField phir("phir", phi1 - phi2);
tmp<surfaceScalarField> alpha1alpha2f;
if (pPrimeByA_.valid())
{
alpha1alpha2f =
fvc::interpolate(max(alpha1, scalar(0)))
*fvc::interpolate(max(alpha2, scalar(0)));
surfaceScalarField phiP
(
pPrimeByA_()*fvc::snGrad(alpha1, "bounded")*mesh_.magSf()
);
phir += phiP;
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("Sp", dgdt_.dimensions(), 0.0)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh_
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
fvc::div(phi_)*min(alpha1, scalar(1))
);
forAll(dgdt_, celli)
{
if (dgdt_[celli] > 0.0)
{
Sp[celli] -= dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt_[celli] < 0.0)
{
Sp[celli] += dgdt_[celli]/max(alpha1[celli], 1e-4);
}
}
surfaceScalarField alphaPhic1
(
fvc::flux
(
phic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme
)
);
surfaceScalarField::GeometricBoundaryField& alphaPhic1Bf =
alphaPhic1.boundaryFieldRef();
// Ensure that the flux at inflow BCs is preserved
forAll(alphaPhic1Bf, patchi)
{
fvsPatchScalarField& alphaPhic1p = alphaPhic1Bf[patchi];
if (!alphaPhic1p.coupled())
{
const scalarField& phi1p = phi1.boundaryField()[patchi];
const scalarField& alpha1p = alpha1.boundaryField()[patchi];
forAll(alphaPhic1p, facei)
{
if (phi1p[facei] < 0)
{
alphaPhic1p[facei] = alpha1p[facei]*phi1p[facei];
}
}
}
}
if (nAlphaSubCycles > 1)
{
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
surfaceScalarField alphaPhic10(alphaPhic1);
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic10,
(alphaSubCycle.index()*Sp)(),
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
phase1_.alphaMax(),
0
);
if (alphaSubCycle.index() == 1)
{
phase1_.alphaPhi() = alphaPhic10;
}
else
{
phase1_.alphaPhi() += alphaPhic10;
}
}
phase1_.alphaPhi() /= nAlphaSubCycles;
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic1,
Sp,
Su,
phase1_.alphaMax(),
0
);
phase1_.alphaPhi() = alphaPhic1;
}
if (pPrimeByA_.valid())
{
fvScalarMatrix alpha1Eqn
(
fvm::ddt(alpha1) - fvc::ddt(alpha1)
- fvm::laplacian(alpha1alpha2f*pPrimeByA_(), alpha1, "bounded")
);
alpha1Eqn.relax();
alpha1Eqn.solve();
phase1_.alphaPhi() += alpha1Eqn.flux();
}
phase1_.alphaRhoPhi() =
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
phase2_.alphaPhi() = phi_ - phase1_.alphaPhi();
alpha2 = scalar(1) - alpha1;
phase2_.alphaRhoPhi() =
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
Info<< alpha1.name() << " volume fraction = "
<< alpha1.weightedAverage(mesh_.V()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}
}
void Foam::twoPhaseSystem::correct()
{
phase1_.correct();
phase2_.correct();
}
void Foam::twoPhaseSystem::correctTurbulence()
{
phase1_.turbulence().correct();
phase2_.turbulence().correct();
}
bool Foam::twoPhaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
readOK &= phase1_.read(*this);
readOK &= phase2_.read(*this);
// models ...
return readOK;
}
else
{
return false;
}
}
const Foam::dragModel& Foam::twoPhaseSystem::drag(const phaseModel& phase) const
{
return drag_->phaseModel(phase);
}
const Foam::virtualMassModel&
Foam::twoPhaseSystem::virtualMass(const phaseModel& phase) const
{
return virtualMass_->phaseModel(phase);
}
const Foam::dimensionedScalar& Foam::twoPhaseSystem::sigma() const
{
return pair_->sigma();
}
// ************************************************************************* //