Given that the type of the dimensioned internal field is encapsulated in the GeometricField class the name need not include "Field"; the type name is "Internal" so volScalarField::DimensionedInternalField -> volScalarField::Internal In addition to the ".dimensionedInternalField()" access function the simpler "()" de-reference operator is also provided to greatly simplify FV equation source term expressions which need not evaluate boundary conditions. To demonstrate this kEpsilon.C has been updated to use dimensioned internal field expressions in the k and epsilon equation source terms.
608 lines
14 KiB
C
608 lines
14 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "twoPhaseSystem.H"
|
|
#include "PhaseCompressibleTurbulenceModel.H"
|
|
#include "BlendedInterfacialModel.H"
|
|
#include "virtualMassModel.H"
|
|
#include "heatTransferModel.H"
|
|
#include "liftModel.H"
|
|
#include "wallLubricationModel.H"
|
|
#include "turbulentDispersionModel.H"
|
|
#include "fvMatrix.H"
|
|
#include "surfaceInterpolate.H"
|
|
#include "MULES.H"
|
|
#include "subCycle.H"
|
|
#include "fvcDdt.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcFlux.H"
|
|
#include "fvcCurl.H"
|
|
#include "fvmDdt.H"
|
|
#include "fvmLaplacian.H"
|
|
#include "fixedValueFvsPatchFields.H"
|
|
|
|
#include "blendingMethod.H"
|
|
#include "HashPtrTable.H"
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::twoPhaseSystem::twoPhaseSystem
|
|
(
|
|
const fvMesh& mesh,
|
|
const dimensionedVector& g
|
|
)
|
|
:
|
|
IOdictionary
|
|
(
|
|
IOobject
|
|
(
|
|
"phaseProperties",
|
|
mesh.time().constant(),
|
|
mesh,
|
|
IOobject::MUST_READ_IF_MODIFIED,
|
|
IOobject::NO_WRITE
|
|
)
|
|
),
|
|
|
|
mesh_(mesh),
|
|
|
|
phase1_
|
|
(
|
|
*this,
|
|
*this,
|
|
wordList(lookup("phases"))[0]
|
|
),
|
|
|
|
phase2_
|
|
(
|
|
*this,
|
|
*this,
|
|
wordList(lookup("phases"))[1]
|
|
),
|
|
|
|
phi_
|
|
(
|
|
IOobject
|
|
(
|
|
"phi",
|
|
mesh.time().timeName(),
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
this->calcPhi()
|
|
),
|
|
|
|
dgdt_
|
|
(
|
|
IOobject
|
|
(
|
|
"dgdt",
|
|
mesh.time().timeName(),
|
|
mesh,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh,
|
|
dimensionedScalar("dgdt", dimless/dimTime, 0)
|
|
)
|
|
{
|
|
phase2_.volScalarField::operator=(scalar(1) - phase1_);
|
|
|
|
|
|
// Blending
|
|
forAllConstIter(dictionary, subDict("blending"), iter)
|
|
{
|
|
blendingMethods_.insert
|
|
(
|
|
iter().dict().dictName(),
|
|
blendingMethod::New
|
|
(
|
|
iter().dict(),
|
|
wordList(lookup("phases"))
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
// Pairs
|
|
|
|
phasePair::scalarTable sigmaTable(lookup("sigma"));
|
|
phasePair::dictTable aspectRatioTable(lookup("aspectRatio"));
|
|
|
|
pair_.set
|
|
(
|
|
new phasePair
|
|
(
|
|
phase1_,
|
|
phase2_,
|
|
g,
|
|
sigmaTable
|
|
)
|
|
);
|
|
|
|
pair1In2_.set
|
|
(
|
|
new orderedPhasePair
|
|
(
|
|
phase1_,
|
|
phase2_,
|
|
g,
|
|
sigmaTable,
|
|
aspectRatioTable
|
|
)
|
|
);
|
|
|
|
pair2In1_.set
|
|
(
|
|
new orderedPhasePair
|
|
(
|
|
phase2_,
|
|
phase1_,
|
|
g,
|
|
sigmaTable,
|
|
aspectRatioTable
|
|
)
|
|
);
|
|
|
|
|
|
// Models
|
|
|
|
drag_.set
|
|
(
|
|
new BlendedInterfacialModel<dragModel>
|
|
(
|
|
lookup("drag"),
|
|
(
|
|
blendingMethods_.found("drag")
|
|
? blendingMethods_["drag"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_,
|
|
false // Do not zero drag coefficent at fixed-flux BCs
|
|
)
|
|
);
|
|
|
|
virtualMass_.set
|
|
(
|
|
new BlendedInterfacialModel<virtualMassModel>
|
|
(
|
|
lookup("virtualMass"),
|
|
(
|
|
blendingMethods_.found("virtualMass")
|
|
? blendingMethods_["virtualMass"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
heatTransfer_.set
|
|
(
|
|
new BlendedInterfacialModel<heatTransferModel>
|
|
(
|
|
lookup("heatTransfer"),
|
|
(
|
|
blendingMethods_.found("heatTransfer")
|
|
? blendingMethods_["heatTransfer"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
lift_.set
|
|
(
|
|
new BlendedInterfacialModel<liftModel>
|
|
(
|
|
lookup("lift"),
|
|
(
|
|
blendingMethods_.found("lift")
|
|
? blendingMethods_["lift"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
wallLubrication_.set
|
|
(
|
|
new BlendedInterfacialModel<wallLubricationModel>
|
|
(
|
|
lookup("wallLubrication"),
|
|
(
|
|
blendingMethods_.found("wallLubrication")
|
|
? blendingMethods_["wallLubrication"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
|
|
turbulentDispersion_.set
|
|
(
|
|
new BlendedInterfacialModel<turbulentDispersionModel>
|
|
(
|
|
lookup("turbulentDispersion"),
|
|
(
|
|
blendingMethods_.found("turbulentDispersion")
|
|
? blendingMethods_["turbulentDispersion"]
|
|
: blendingMethods_["default"]
|
|
),
|
|
pair_,
|
|
pair1In2_,
|
|
pair2In1_
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
|
|
|
|
Foam::twoPhaseSystem::~twoPhaseSystem()
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::rho() const
|
|
{
|
|
return phase1_*phase1_.thermo().rho() + phase2_*phase2_.thermo().rho();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
|
|
{
|
|
return phase1_*phase1_.U() + phase2_*phase2_.U();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::calcPhi() const
|
|
{
|
|
return
|
|
fvc::interpolate(phase1_)*phase1_.phi()
|
|
+ fvc::interpolate(phase2_)*phase2_.phi();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kd() const
|
|
{
|
|
return drag_->K();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Kdf() const
|
|
{
|
|
return drag_->Kf();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Vm() const
|
|
{
|
|
return virtualMass_->K();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Vmf() const
|
|
{
|
|
return virtualMass_->Kf();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kh() const
|
|
{
|
|
return heatTransfer_->K();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::F() const
|
|
{
|
|
return lift_->F<vector>() + wallLubrication_->F<vector>();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Ff() const
|
|
{
|
|
return lift_->Ff() + wallLubrication_->Ff();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::D() const
|
|
{
|
|
return turbulentDispersion_->D();
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::solve()
|
|
{
|
|
const Time& runTime = mesh_.time();
|
|
|
|
volScalarField& alpha1 = phase1_;
|
|
volScalarField& alpha2 = phase2_;
|
|
|
|
const surfaceScalarField& phi1 = phase1_.phi();
|
|
const surfaceScalarField& phi2 = phase2_.phi();
|
|
|
|
const dictionary& alphaControls = mesh_.solverDict
|
|
(
|
|
alpha1.name()
|
|
);
|
|
|
|
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
|
|
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
|
|
|
|
word alphaScheme("div(phi," + alpha1.name() + ')');
|
|
word alpharScheme("div(phir," + alpha1.name() + ')');
|
|
|
|
alpha1.correctBoundaryConditions();
|
|
|
|
|
|
surfaceScalarField phic("phic", phi_);
|
|
surfaceScalarField phir("phir", phi1 - phi2);
|
|
|
|
tmp<surfaceScalarField> alpha1alpha2f;
|
|
|
|
if (pPrimeByA_.valid())
|
|
{
|
|
alpha1alpha2f =
|
|
fvc::interpolate(max(alpha1, scalar(0)))
|
|
*fvc::interpolate(max(alpha2, scalar(0)));
|
|
|
|
surfaceScalarField phiP
|
|
(
|
|
pPrimeByA_()*fvc::snGrad(alpha1, "bounded")*mesh_.magSf()
|
|
);
|
|
|
|
phir += phiP;
|
|
}
|
|
|
|
for (int acorr=0; acorr<nAlphaCorr; acorr++)
|
|
{
|
|
volScalarField::Internal Sp
|
|
(
|
|
IOobject
|
|
(
|
|
"Sp",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar("Sp", dgdt_.dimensions(), 0.0)
|
|
);
|
|
|
|
volScalarField::Internal Su
|
|
(
|
|
IOobject
|
|
(
|
|
"Su",
|
|
runTime.timeName(),
|
|
mesh_
|
|
),
|
|
// Divergence term is handled explicitly to be
|
|
// consistent with the explicit transport solution
|
|
fvc::div(phi_)*min(alpha1, scalar(1))
|
|
);
|
|
|
|
forAll(dgdt_, celli)
|
|
{
|
|
if (dgdt_[celli] > 0.0)
|
|
{
|
|
Sp[celli] -= dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
|
|
Su[celli] += dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
|
|
}
|
|
else if (dgdt_[celli] < 0.0)
|
|
{
|
|
Sp[celli] += dgdt_[celli]/max(alpha1[celli], 1e-4);
|
|
}
|
|
}
|
|
|
|
surfaceScalarField alphaPhic1
|
|
(
|
|
fvc::flux
|
|
(
|
|
phic,
|
|
alpha1,
|
|
alphaScheme
|
|
)
|
|
+ fvc::flux
|
|
(
|
|
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
|
|
alpha1,
|
|
alpharScheme
|
|
)
|
|
);
|
|
|
|
surfaceScalarField::GeometricBoundaryField& alphaPhic1Bf =
|
|
alphaPhic1.boundaryFieldRef();
|
|
|
|
// Ensure that the flux at inflow BCs is preserved
|
|
forAll(alphaPhic1Bf, patchi)
|
|
{
|
|
fvsPatchScalarField& alphaPhic1p = alphaPhic1Bf[patchi];
|
|
|
|
if (!alphaPhic1p.coupled())
|
|
{
|
|
const scalarField& phi1p = phi1.boundaryField()[patchi];
|
|
const scalarField& alpha1p = alpha1.boundaryField()[patchi];
|
|
|
|
forAll(alphaPhic1p, facei)
|
|
{
|
|
if (phi1p[facei] < 0)
|
|
{
|
|
alphaPhic1p[facei] = alpha1p[facei]*phi1p[facei];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nAlphaSubCycles > 1)
|
|
{
|
|
for
|
|
(
|
|
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
|
|
!(++alphaSubCycle).end();
|
|
)
|
|
{
|
|
surfaceScalarField alphaPhic10(alphaPhic1);
|
|
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha1,
|
|
phi_,
|
|
alphaPhic10,
|
|
(alphaSubCycle.index()*Sp)(),
|
|
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
|
|
phase1_.alphaMax(),
|
|
0
|
|
);
|
|
|
|
if (alphaSubCycle.index() == 1)
|
|
{
|
|
phase1_.alphaPhi() = alphaPhic10;
|
|
}
|
|
else
|
|
{
|
|
phase1_.alphaPhi() += alphaPhic10;
|
|
}
|
|
}
|
|
|
|
phase1_.alphaPhi() /= nAlphaSubCycles;
|
|
}
|
|
else
|
|
{
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha1,
|
|
phi_,
|
|
alphaPhic1,
|
|
Sp,
|
|
Su,
|
|
phase1_.alphaMax(),
|
|
0
|
|
);
|
|
|
|
phase1_.alphaPhi() = alphaPhic1;
|
|
}
|
|
|
|
if (pPrimeByA_.valid())
|
|
{
|
|
fvScalarMatrix alpha1Eqn
|
|
(
|
|
fvm::ddt(alpha1) - fvc::ddt(alpha1)
|
|
- fvm::laplacian(alpha1alpha2f*pPrimeByA_(), alpha1, "bounded")
|
|
);
|
|
|
|
alpha1Eqn.relax();
|
|
alpha1Eqn.solve();
|
|
|
|
phase1_.alphaPhi() += alpha1Eqn.flux();
|
|
}
|
|
|
|
phase1_.alphaRhoPhi() =
|
|
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
|
|
|
|
phase2_.alphaPhi() = phi_ - phase1_.alphaPhi();
|
|
alpha2 = scalar(1) - alpha1;
|
|
phase2_.alphaRhoPhi() =
|
|
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
|
|
|
|
Info<< alpha1.name() << " volume fraction = "
|
|
<< alpha1.weightedAverage(mesh_.V()).value()
|
|
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
|
|
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
|
|
<< endl;
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::correct()
|
|
{
|
|
phase1_.correct();
|
|
phase2_.correct();
|
|
}
|
|
|
|
|
|
void Foam::twoPhaseSystem::correctTurbulence()
|
|
{
|
|
phase1_.turbulence().correct();
|
|
phase2_.turbulence().correct();
|
|
}
|
|
|
|
|
|
bool Foam::twoPhaseSystem::read()
|
|
{
|
|
if (regIOobject::read())
|
|
{
|
|
bool readOK = true;
|
|
|
|
readOK &= phase1_.read(*this);
|
|
readOK &= phase2_.read(*this);
|
|
|
|
// models ...
|
|
|
|
return readOK;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
const Foam::dragModel& Foam::twoPhaseSystem::drag(const phaseModel& phase) const
|
|
{
|
|
return drag_->phaseModel(phase);
|
|
}
|
|
|
|
|
|
const Foam::virtualMassModel&
|
|
Foam::twoPhaseSystem::virtualMass(const phaseModel& phase) const
|
|
{
|
|
return virtualMass_->phaseModel(phase);
|
|
}
|
|
|
|
|
|
const Foam::dimensionedScalar& Foam::twoPhaseSystem::sigma() const
|
|
{
|
|
return pair_->sigma();
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|