to handle isotropic and anisotropic is a consistent, general and extensible
manner, replacing the horrible hacks which were in solidThermo.
This is entirely consistent with thermophysicalTransportModel for fluids and
provides the q() and divq() for the solid energy conservation equations. The
transport model and properties are specified in the optional
thermophysicalTransport dictionary, the default model being isotropic if this
dictionary file is not present, thus providing complete backward-compatibility
for the common isotropic cases.
Anisotropic thermal conductivity is now handled in a much more general manner by
the anisotropic model:
Class
Foam::solidThermophysicalTransportModels::anisotropic
Description
Solid thermophysical transport model for anisotropic thermal conductivity
The anisotropic thermal conductivity field is evaluated from the solid
material anisotropic kappa specified in the physicalProperties dictionary
transformed into the global coordinate system using default
coordinate system and optionally additional coordinate systems specified
per-zone in the thermophysicalProperties dictionary.
Usage
Example of the anisotropic thermal conductivity specification in
thermophysicalProperties with two zone-based coordinate systems in
addition to the default:
\verbatim
model anisotropic;
// Default coordinate system
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type cylindrical;
e3 (1 0 0);
}
}
// Optional zone coordinate systems
zones
{
coil1
{
type cartesian;
origin (0.1 0.2 0.7);
coordinateRotation
{
type cylindrical;
e3 (0.5 0.866 0);
}
}
coil2
{
type cartesian;
origin (0.4 0.5 1);
coordinateRotation
{
type cylindrical;
e3 (0.866 0.5 0);
}
}
}
\endverbatim
This development required substantial rationalisation of solidThermo,
coordinateSystems and updates to the solid solver module, solidDisplacementFoam,
the wallHeatFlux functionObject, thermalBaffle and all coupled thermal boundary
conditions.
README for OpenFOAM-dev
- About OpenFOAM
- Copyright
- Download and installation instructions
- Documentation
- Source code documentation
- OpenFOAM C++ Style Guide
- Reporting bugs in OpenFOAM
- Contacting the OpenFOAM Foundation
#
About OpenFOAM
OpenFOAM is a free, open source computational fluid dynamics (CFD) software package released by the OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics.
Copyright
OpenFOAM is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version. See the file COPYING in this directory or
http://www.gnu.org/licenses/, for a description of the GNU General Public
License terms under which you can copy the files.