Files
OpenFOAM-12/applications/utilities/parallelProcessing/reconstructPar/reconstructPar.C
Will Bainbridge 71ccf51ba5 decomposePar, reconstructPar: Do all regions simultaneously
DecomposePar and reconstructPar now interleave the processing of
multiple regions. This means that with the -allRegions option, the
earlier times are completed in their entirety before later times are
considered. It also lets regions to access each other during
decomposition and reconstruction, which will be important for
non-conformal region interfaces.

To aid interpretation of the log, region prefixing is now used by both
utilities in the same way as is done by foamMultiRun.

DecomposePar has been overhauled so that it matches reconstructPar much
more closely, both in terms of output and of iteration sequence. All
meshes and addressing are loaded simultaneously and each field is
considered in turn. Previously, all the fields were loaded, and each
process and addressing set was considered in turn. This new strategy
optimises memory usage for cases with lots of fields.
2023-08-01 14:25:28 +01:00

609 lines
19 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
reconstructPar
Description
Reconstructs fields of a case that is decomposed for parallel
execution of OpenFOAM.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "timeSelector.H"
#include "IOobjectList.H"
#include "processorRunTimes.H"
#include "multiDomainDecomposition.H"
#include "fvFieldReconstructor.H"
#include "pointFieldReconstructor.H"
#include "lagrangianFieldReconstructor.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
bool haveUniform
(
const processorRunTimes& runTimes,
const word& regionDir = word::null
)
{
return
fileHandler().isDir
(
fileHandler().filePath
(
runTimes.procTimes()[0].timePath()/regionDir/"uniform"
)
);
}
void reconstructUniform
(
const processorRunTimes& runTimes,
const word& regionDir = word::null
)
{
fileHandler().cp
(
fileHandler().filePath
(
runTimes.procTimes()[0].timePath()/regionDir/"uniform"
),
runTimes.completeTime().timePath()/regionDir
);
}
void writeDecomposition(const domainDecomposition& meshes)
{
// Write as volScalarField::Internal for postprocessing.
volScalarField::Internal cellProc
(
IOobject
(
"cellProc",
meshes.completeMesh().time().name(),
meshes.completeMesh(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
meshes.completeMesh(),
dimless,
scalarField(scalarList(meshes.cellProc()))
);
cellProc.write();
Info<< "Wrote decomposition as volScalarField::Internal to "
<< cellProc.name() << " for use in postprocessing"
<< endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class delayedNewLine
{
mutable bool first_;
public:
delayedNewLine()
:
first_(true)
{}
friend Ostream& operator<<(Ostream& os, const delayedNewLine& dnl)
{
if (!dnl.first_) os << nl;
dnl.first_ = false;
return os;
}
};
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Reconstruct fields of a parallel case"
);
argList::noParallel();
#include "addRegionOption.H"
#include "addAllRegionsOption.H"
argList::addBoolOption
(
"cellProc",
"write cell processor indices as a volScalarField::Internal for "
"post-processing"
);
argList::addOption
(
"fields",
"list",
"specify a list of fields to be reconstructed. Eg, '(U T p)' - "
"regular expressions not currently supported"
);
argList::addBoolOption
(
"noFields",
"skip reconstructing fields"
);
argList::addOption
(
"lagrangianFields",
"list",
"specify a list of lagrangian fields to be reconstructed. Eg, '(U d)' -"
"regular expressions not currently supported, "
"positions always included"
);
argList::addBoolOption
(
"noLagrangian",
"skip reconstructing lagrangian positions and fields"
);
argList::addBoolOption
(
"noSets",
"skip reconstructing cellSets, faceSets, pointSets"
);
argList::addBoolOption
(
"newTimes",
"only reconstruct new times (i.e. that do not exist already)"
);
// Include explicit constant options, and explicit zero option (to prevent
// the user accidentally trashing the initial fields)
timeSelector::addOptions(true, true);
#include "setRootCase.H"
const bool writeCellProc = args.optionFound("cellProc");
HashSet<word> selectedFields;
if (args.optionFound("fields"))
{
args.optionLookup("fields")() >> selectedFields;
}
const bool noFields = args.optionFound("noFields");
if (noFields)
{
Info<< "Skipping reconstructing fields" << nl << endl;
}
const bool noLagrangian = args.optionFound("noLagrangian");
if (noLagrangian)
{
Info<< "Skipping reconstructing lagrangian positions and fields"
<< nl << endl;
}
const bool noReconstructSets = args.optionFound("noSets");
if (noReconstructSets)
{
Info<< "Skipping reconstructing cellSets, faceSets and pointSets"
<< nl << endl;
}
HashSet<word> selectedLagrangianFields;
if (args.optionFound("lagrangianFields"))
{
if (noLagrangian)
{
FatalErrorInFunction
<< "Cannot specify noLagrangian and lagrangianFields "
<< "options together"
<< exit(FatalError);
}
args.optionLookup("lagrangianFields")() >> selectedLagrangianFields;
}
// Set time from database
Info<< "Create time" << nl << endl;
processorRunTimes runTimes(Foam::Time::controlDictName, args);
// Get the times to reconstruct
instantList times = runTimes.selectProc(args);
const Time& runTime = runTimes.procTimes()[0];
#include "setRegionNames.H"
// Determine the processor count
const label nProcs = fileHandler().nProcs
(
args.path(),
regionNames[0] == polyMesh::defaultRegion
? word::null
: regionNames[0]
);
if (!nProcs)
{
FatalErrorInFunction
<< "No processor* directories found"
<< exit(FatalError);
}
// Warn fileHandler of number of processors
const_cast<fileOperation&>(fileHandler()).setNProcs(nProcs);
// Quit if no times
if (times.empty())
{
WarningInFunction << "No times selected" << nl << endl;
exit(1);
}
// If only reconstructing new times then filter out existing times
if (args.optionFound("newTimes"))
{
// Get all existing times
const instantList existingTimes = runTimes.completeTime().times();
// Put into a set
HashSet<word> existingTimesSet;
existingTimesSet.resize(2*existingTimes.size());
forAll(existingTimes, i)
{
existingTimesSet.insert(existingTimes[i].name());
}
// Remove times from the existing time set by shuffling up
label timei = 0;
forAll(times, timej)
{
if (!existingTimesSet.found(times[timej].name()))
{
times[timei ++] = times[timej];
}
}
times.resize(timei);
}
// Quit if no times
if (times.empty())
{
Info<< "All times already reconstructed" << nl << nl
<< "End" << nl << endl;
return 0;
}
// Create meshes
multiDomainDecomposition regionMeshes(runTimes, regionNames);
if (regionMeshes.readReconstruct(!noReconstructSets))
{
Info<< endl;
if (writeCellProc)
{
forAll(regionNames, regioni)
{
writeDecomposition(regionMeshes.meshes(regioni)());
Info<< endl;
fileHandler().flush();
}
}
}
// Loop over all times
forAll(times, timei)
{
// Set the time
runTimes.setTime(times[timei], timei);
Info<< "Time = " << runTimes.completeTime().userTimeName()
<< nl << endl;
// Update the meshes
const fvMesh::readUpdateState stat =
regionMeshes.readUpdateReconstruct();
if (stat >= fvMesh::TOPO_CHANGE) Info<< endl;
// Write the mesh out (if anything has changed)
regionMeshes.writeComplete(!noReconstructSets);
// Write the decomposition, if necessary
forAll(regionNames, regioni)
{
if (writeCellProc && stat >= fvMesh::TOPO_CHANGE)
{
writeDecomposition(regionMeshes.meshes(regioni)());
Info<< endl;
fileHandler().flush();
}
}
// Do a region-by-region reconstruction of all the available fields
forAll(regionNames, regioni)
{
const word& regionName = regionNames[regioni];
const word regionDir =
regionName == polyMesh::defaultRegion ? word::null : regionName;
const delayedNewLine dnl;
// Prefixed scope
{
const RegionConstRef<domainDecomposition> meshes =
regionMeshes.meshes(regioni);
// Search for objects at this time
IOobjectList objects
(
meshes().procMeshes()[0],
runTimes.procTimes()[0].name()
);
if (!noFields)
{
Info<< dnl << "Reconstructing FV fields" << endl;
if
(
fvFieldReconstructor::reconstructs
(
objects,
selectedFields
)
)
{
fvFieldReconstructor fvReconstructor
(
meshes().completeMesh(),
meshes().procMeshes(),
meshes().procFaceAddressing(),
meshes().procCellAddressing(),
meshes().procFaceAddressingBf()
);
#define DO_FV_VOL_INTERNAL_FIELDS_TYPE(Type, nullArg) \
fvReconstructor.reconstructVolInternalFields<Type> \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_FV_VOL_INTERNAL_FIELDS_TYPE)
#undef DO_FV_VOL_INTERNAL_FIELDS_TYPE
#define DO_FV_VOL_FIELDS_TYPE(Type, nullArg) \
fvReconstructor.reconstructVolFields<Type> \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_FV_VOL_FIELDS_TYPE)
#undef DO_FV_VOL_FIELDS_TYPE
#define DO_FV_SURFACE_FIELDS_TYPE(Type, nullArg) \
fvReconstructor.reconstructFvSurfaceFields<Type> \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_FV_SURFACE_FIELDS_TYPE)
#undef DO_FV_SURFACE_FIELDS_TYPE
}
else
{
Info<< dnl << " (no FV fields)" << endl;
}
}
if (!noFields)
{
Info<< dnl << "Reconstructing point fields" << endl;
if
(
pointFieldReconstructor::reconstructs
(
objects,
selectedFields
)
)
{
pointFieldReconstructor pointReconstructor
(
pointMesh::New(meshes().completeMesh()),
meshes().procMeshes(),
meshes().procPointAddressing()
);
#define DO_POINT_FIELDS_TYPE(Type, nullArg) \
pointReconstructor.reconstructFields<Type> \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_POINT_FIELDS_TYPE)
#undef DO_POINT_FIELDS_TYPE
}
else
{
Info<< dnl << " (no point fields)" << endl;
}
}
if (!noLagrangian)
{
// Search for clouds that exist on any processor and add
// them into this table of cloud objects
HashTable<IOobjectList> cloudsObjects;
forAll(runTimes.procTimes(), proci)
{
// Find cloud directories
fileNameList cloudDirs
(
fileHandler().readDir
(
fileHandler().filePath
(
runTimes.procTimes()[proci].timePath()
/regionDir
/cloud::prefix
),
fileType::directory
)
);
// Add objects in any found cloud directories
forAll(cloudDirs, i)
{
// Pass if we already have an objects for this name
HashTable<IOobjectList>::const_iterator iter =
cloudsObjects.find(cloudDirs[i]);
if (iter != cloudsObjects.end()) continue;
// Do local scan for valid cloud objects
IOobjectList cloudObjs
(
meshes().procMeshes()[proci],
runTimes.procTimes()[proci].name(),
cloud::prefix/cloudDirs[i],
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
// If "positions" is present, then add to the table
if (cloudObjs.lookup(word("positions")))
{
cloudsObjects.insert(cloudDirs[i], cloudObjs);
}
}
}
// Reconstruct the objects found above
if (cloudsObjects.size())
{
forAllConstIter
(
HashTable<IOobjectList>,
cloudsObjects,
iter
)
{
const word cloudName =
string::validate<word>(iter.key());
const IOobjectList& cloudObjects = iter();
Info<< dnl << "Reconstructing lagrangian fields "
<< "for cloud " << cloudName << endl;
if
(
lagrangianFieldReconstructor::reconstructs
(
cloudObjects,
selectedLagrangianFields
)
)
{
lagrangianFieldReconstructor
lagrangianReconstructor
(
meshes().completeMesh(),
meshes().procMeshes(),
meshes().procFaceAddressing(),
meshes().procCellAddressing(),
cloudName
);
#define DO_CLOUD_FIELDS_TYPE(Type, nullArg) \
lagrangianReconstructor \
.reconstructFields<Type> \
(cloudObjects, selectedLagrangianFields);
DO_CLOUD_FIELDS_TYPE(label, );
FOR_ALL_FIELD_TYPES(DO_CLOUD_FIELDS_TYPE)
#undef DO_CLOUD_FIELDS_TYPE
}
else
{
Info<< dnl << " (no lagrangian fields)"
<< endl;
}
}
}
}
}
Info<< dnl;
}
// Collect the uniform directory
if (haveUniform(runTimes))
{
Info<< "Collecting uniform files" << endl;
reconstructUniform(runTimes);
Info<< endl;
}
if (regionNames == wordList(1, polyMesh::defaultRegion)) continue;
// Collect the region uniform directories
forAll(regionNames, regioni)
{
const word& regionName = regionNames[regioni];
const word regionDir =
regionName == polyMesh::defaultRegion ? word::null : regionName;
if (haveUniform(runTimes, regionDir))
{
// Prefixed scope
{
const RegionConstRef<domainDecomposition> meshes =
regionMeshes.meshes(regioni);
Info<< "Collecting uniform files" << endl;
reconstructUniform(runTimes, regionDir);
}
Info<< endl;
}
}
}
Info<< "End" << nl << endl;
return 0;
}
// ************************************************************************* //