e.g.
postProcess -func sample -region bottomWater
will now search for the system/bottomWater/sample dictionary before searching
for system/sample so that the fields and type of sampling can optionally be
specified differently for the particular region.
Resolves feature request https://bugs.openfoam.org/view.php?id=2807
This function object will write a paraview-viewable field showing the
area-density of parcel collisions on every patch face. It also outputs
the rate of collisions hitting each patch face, calculated over an
interval equal to the time elapsed since the last output. It has an
optional entry to specify a minimum incident speed below which a
collision is not counted.
It can be enabled in the cloud properties file as follows:
cloudFunctions
{
patchCollisionDensity1
{
type patchCollisionDensity;
minSpeed 1e-3; // (optional)
}
}
This work was supported by Anton Kidess, at Hilti
The onset of vertical damping can now be graduated over a distance. The
user specifies an origin and a direction along which the graduation
occurs, and a ramping function to specify the form of the graduation. An
example specification for the fvOption is:
verticalDamping1
{
type verticalDamping;
selectionMode all;
origin (1200 0 0);
direction (1 0 0);
ramp
{
type halfCosineRamp;
start 0;
duration 600;
}
lambda [0 0 -1 0 0 0 0] 1; // Damping coefficient
timeStart 0;
duration 1e6;
}
If the origin, direction or ramp entries are omitted then the fvOption
functions as before; applying the damping to the entire volume or the
specified cell set.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
The outletPhaseMeanVelocity and waveVelocity boundary conditions now
support a "ramp" keyword, for which a function can be supplied to
gradually increase the input velocity. The following is an example
specification for an outlet patch:
outlet
{
type outletPhaseMeanVelocity;
Umean 2;
ramp
{
type quarterSineRamp;
start 0;
duration 5;
}
alpha alpha.water;
}
There is also a new velocityRamping function object, which provides a
matching force within the volume of the domain, so that the entire flow
is smoothly accelerated up to the operating condition. An example
specification is as follows:
velocityRamping
{
type velocityRamping;
active on;
selectionMode all;
U U;
velocity (-2 0 0);
ramp
{
type quarterSineRamp;
start 0;
duration 5;
}
}
These additions have been designed to facilitate a smoother startup of
ship simulations by avoiding the slamming transients associated with
initialising a uniform velocity field.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
chtMultiRegionSimpleFoam needs to check whether or not the simulation is
at the end. To facilitate this, a Time::running method has been added.
The Time::run method was being used for this purpose, but this lead to
function objects being executed multiple times.
This resolves bug report https://bugs.openfoam.org/view.php?id=2804
Using the noSlip boundary condition for rotating wall in an MRF region
interferes with post-processing by resetting the wall velocity to 0 rather than
preserving the value set by the MRF zone.
The number of characters needed to print a double in scientific format
is 8 plus the number of decimal places; e.g., -6.453452e-231 (6 decimal
places, 14 characters). This has been set in writeFile.C, replacing a
value of 7. Presumably, the case of three digits in the exponent was not
considered when this was first implemented. This change ensures at least
one character of whitespace between tabulated numbers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2801
- Thermal phase change and wall boiling functionality has been generalized to
support two- and multi- phase simulations.
- Thermal phase change now also allows purePhaseModel, which simplifies case setup.
- The phaseSystem templates have been restructured in preparation of multiple
simultaneous mass transfer mechanisms. For example, combination of thermal phase
and inhomogeneous population balance models.
Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
Thermo and reaction thermo macros have been renamed and refactored. If
the name is plural (make???Thermos) then it adds the model to all
selection tables. If not (make???Thermo) then it only adds to the
requested psi or rho table.
A pureMixture can now be specified in a reacting solver. This further
enhances compatibility between non-reacting and reacting solvers.
To achieve this, mixtures now have a typeName function of the same form
as the lower thermodyanmic models. In addition, to avoid name clashes,
the reacting thermo make macros have been split into those that create
entries on multiple selection tables, and those that just add to the
reaction thermo table.
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
This mixture allows a reacting solver to be used with a single component
fluid without the additional case files usually required for reacting
thermodynamics.
The absolute value of the the time has been added to the rigid body
model state. This value is not directly necessary for calculating the
evolution of the rigid body system, it just facilitates the
implementation of sub-models which are in some way time-dependent.
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
for incompressible flow simulated using simpleFoam, pimpleFoam or pisoFoam.
Description
Calculates and write the estimated incompressible flow heat transfer
coefficient at wall patches as the volScalarField field
'wallHeatTransferCoeff'.
All wall patches are included by default; to restrict the calculation to
certain patches, use the optional 'patches' entry.
Example of function object specification:
wallHeatTransferCoeff1
{
type wallHeatTransferCoeff;
libs ("libfieldFunctionObjects.so");
...
region fluid;
patches (".*Wall");
rho 1.225;
Cp 1005;
Prl 0.707;
Prt 0.9;
}
Usage
Property | Description | Required | Default value
type | Type name: wallHeatTransferCoeff | yes |
patches | List of patches to process | no | all wall patches
region | Region to be evaluated | no | default region
rho | Fluid density | yes |
Cp | Fluid heat capacity | yes |
Prl | Fluid laminar Prandtl number | yes |
Prt | Fluid turbulent Prandtl number| yes |
Note
Writing field 'wallHeatTransferCoeff' is done by default, but it can be
overridden by defining an empty \c objects list. For details see
writeLocalObjects.
This generalizes and replaces the previous "noBanner" option provided by argList
and is extended to include the messages printed by Time.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2782
Mixture molecular weight is now evaluated in heThermo like everything
else, relying on the low level specie mixing rules. Units have also been
corrected.
This is a quick fix. What actually needs doing is the Random and
cachedRandom classes need rewriting in terms of the random number
functionality in the C++11 STL. These can be initialised/seeded
per-object, which makes this sort of bug go away.
This resolves bug report https://bugs.openfoam.org/view.php?id=2772
The integration splitting implemented in commit a5806207 has been shown
to be incorrect in some cases. A new procedure has been implemented
which can correctly split the implicit-explicit integral into a number
of pieces, in order to calculate the contribution of each. This is
intended for integrating coupled and non-coupled particle momentum and
heat transfers.
However, currently there is only ever one implicit coefficient used in
these transfers (there is no implicit non-coupled contribution). The
evaluation has therefore been short-cutted to only do the integration
with respect to the coupled contributions. The splitting functionality
has been retained in case additional separate implicit coefficients are
required in the future.
This change was made with help from Timo Niemi, VTT
This resolves bug report https://bugs.openfoam.org/view.php?id=2666
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);