ENH: Updated film surface shear force to include near-wall turbulence effects

This commit is contained in:
andy
2011-09-01 12:10:17 +01:00
parent 53ff66996e
commit 2f55618ec7

View File

@ -27,6 +27,7 @@ License
#include "addToRunTimeSelectionTable.H"
#include "fvmSup.H"
#include "kinematicSingleLayer.H"
#include "turbulenceModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -65,27 +66,76 @@ surfaceShearForce::~surfaceShearForce()
tmp<fvVectorMatrix> surfaceShearForce::correct(volVectorField& U)
{
// local reference to film model
const kinematicSingleLayer& film =
static_cast<const kinematicSingleLayer&>(owner_);
const volScalarField& rho = film.rho();
// local references to film fields
const volScalarField& mu = film.mu();
const volVectorField& Us = film.Us();
const volVectorField& Uw = film.Uw();
const volScalarField& delta = film.delta();
const volVectorField& Up = film.UPrimary();
// Calculate shear stress
volScalarField Cs("Cs", rho*Cf_*mag(Us - U));
volScalarField Cw
(
"Cw",
mu/(0.3333*(delta + dimensionedScalar("SMALL", dimLength, SMALL)))
);
// film surface linear coeff to apply to velocity
tmp<volScalarField> tCs;
typedef compressible::turbulenceModel turbModel;
if (film.primaryMesh().foundObject<turbModel>("turbulenceProperties"))
{
// local reference to turbulence model
const turbModel& turb =
film.primaryMesh().lookupObject<turbModel>("turbulenceProperties");
// calculate and store the stress on the primary region
const volSymmTensorField primaryReff(turb.devRhoReff());
// create stress field on film
// - note boundary condition types (mapped)
// - to map, the field name must be the same as the field on the
// primary region
volSymmTensorField Reff
(
IOobject
(
primaryReff.name(),
film.regionMesh().time().timeName(),
film.regionMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
film.regionMesh(),
dimensionedSymmTensor
(
"zero",
primaryReff.dimensions(),
symmTensor::zero
),
film.mappedPushedFieldPatchTypes<symmTensor>()
);
// map stress from primary region to film region
Reff.correctBoundaryConditions();
dimensionedScalar U0("SMALL", U.dimensions(), SMALL);
tCs = Cf_*mag(-film.nHat() & Reff)/(mag(Up - U) + U0);
}
else
{
// laminar case - employ simple coeff-based model
const volScalarField& rho = film.rho();
tCs = Cf_*rho*mag(Up - U);
}
dimensionedScalar d0("SMALL", delta.dimensions(), SMALL);
// linear coeffs to apply to velocity
const volScalarField& Cs = tCs();
volScalarField Cw("Cw", mu/(0.3333*(delta + d0)));
Cw.min(1.0e+06);
return
(
- fvm::Sp(Cs, U) + Cs*Us // surface contribution
- fvm::Sp(Cs, U) + Cs*Up // surface contribution
- fvm::Sp(Cw, U) + Cw*Uw // wall contribution
);
}