DEFEATURE: remove further remnants of surfMesh samplers

- continuation of commit 57d2eabc6f (2019-02-22)
This commit is contained in:
Mark Olesen
2020-02-24 18:15:31 +01:00
parent 5ba2cbc54f
commit 3835734f6a
7 changed files with 0 additions and 2035 deletions

View File

@ -33,7 +33,6 @@ surface/isoSurface/isoSurfaceBase.C
surface/isoSurface/isoSurfaceCell.C
surface/isoSurface/isoSurfaceTopo.C
surface/thresholdCellFaces/thresholdCellFaces.C
surface/triSurfaceMesh/discreteSurface.C
sampledSurface/sampledNone/sampledNone.C
sampledSurface/sampledPatch/sampledPatch.C
@ -52,9 +51,6 @@ sampledSurface/sampledTriSurfaceMesh/sampledTriSurfaceMesh.C
sampledSurface/sampledTriSurfaceMesh/sampledTriSurfaceMeshNormal.C
sampledSurface/thresholdCellFaces/sampledThresholdCellFaces.C
/* Proof-of-concept: */
/* sampledSurface/triSurfaceMesh/sampledDiscreteSurface.C */
readers = sampledSurface/readers
$(readers)/surfaceReader.C

View File

@ -1,236 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2016-2018 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "sampledDiscreteSurface.H"
#include "meshSearch.H"
#include "Tuple2.H"
#include "globalIndex.H"
#include "treeDataCell.H"
#include "treeDataFace.H"
#include "meshTools.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(sampledDiscreteSurface, 0);
addToRunTimeSelectionTable
(
sampledSurface,
sampledDiscreteSurface,
word
);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::sampledDiscreteSurface::sampledDiscreteSurface
(
const word& name,
const polyMesh& mesh,
const word& surfaceName,
const discreteSurface::samplingSource sampleSource
)
:
sampledSurface(name, mesh),
SurfaceSource(mesh, surfaceName, sampleSource)
{}
Foam::sampledDiscreteSurface::sampledDiscreteSurface
(
const word& name,
const polyMesh& mesh,
const dictionary& dict
)
:
sampledSurface(name, mesh, dict),
SurfaceSource(mesh, dict)
{}
Foam::sampledDiscreteSurface::sampledDiscreteSurface
(
const word& name,
const polyMesh& mesh,
const triSurface& surface,
const word& sampleSourceName
)
:
sampledSurface(name, mesh),
SurfaceSource(name, mesh, surface, sampleSourceName)
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::sampledDiscreteSurface::~sampledDiscreteSurface()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::sampledDiscreteSurface::needsUpdate() const
{
return SurfaceSource::needsUpdate();
}
bool Foam::sampledDiscreteSurface::expire()
{
if (SurfaceSource::expire())
{
// merged information etc
sampledSurface::clearGeom();
return true;
}
return false;
}
bool Foam::sampledDiscreteSurface::update()
{
return SurfaceSource::update();
}
bool Foam::sampledDiscreteSurface::update(const treeBoundBox& bb)
{
return SurfaceSource::update(bb);
}
bool Foam::sampledDiscreteSurface::sampleAndStore
(
const objectRegistry& store,
const word& fieldName
) const
{
return SurfaceSource::sampleAndStore(store, fieldName);
}
Foam::tmp<Foam::scalarField> Foam::sampledDiscreteSurface::sample
(
const interpolation<scalar>& sampler
) const
{
return SurfaceSource::sampleOnFaces(sampler);
}
Foam::tmp<Foam::vectorField> Foam::sampledDiscreteSurface::sample
(
const interpolation<vector>& sampler
) const
{
return SurfaceSource::sampleOnFaces(sampler);
}
Foam::tmp<Foam::sphericalTensorField> Foam::sampledDiscreteSurface::sample
(
const interpolation<sphericalTensor>& sampler
) const
{
return SurfaceSource::sampleOnFaces(sampler);
}
Foam::tmp<Foam::symmTensorField> Foam::sampledDiscreteSurface::sample
(
const interpolation<symmTensor>& sampler
) const
{
return SurfaceSource::sampleOnFaces(sampler);
}
Foam::tmp<Foam::tensorField> Foam::sampledDiscreteSurface::sample
(
const interpolation<tensor>& sampler
) const
{
return SurfaceSource::sampleOnFaces(sampler);
}
Foam::tmp<Foam::scalarField> Foam::sampledDiscreteSurface::interpolate
(
const interpolation<scalar>& interpolator
) const
{
return SurfaceSource::sampleOnPoints(interpolator);
}
Foam::tmp<Foam::vectorField> Foam::sampledDiscreteSurface::interpolate
(
const interpolation<vector>& interpolator
) const
{
return SurfaceSource::sampleOnPoints(interpolator);
}
Foam::tmp<Foam::sphericalTensorField> Foam::sampledDiscreteSurface::interpolate
(
const interpolation<sphericalTensor>& interpolator
) const
{
return SurfaceSource::sampleOnPoints(interpolator);
}
Foam::tmp<Foam::symmTensorField> Foam::sampledDiscreteSurface::interpolate
(
const interpolation<symmTensor>& interpolator
) const
{
return SurfaceSource::sampleOnPoints(interpolator);
}
Foam::tmp<Foam::tensorField> Foam::sampledDiscreteSurface::interpolate
(
const interpolation<tensor>& interpolator
) const
{
return SurfaceSource::sampleOnPoints(interpolator);
}
void Foam::sampledDiscreteSurface::print(Ostream& os) const
{
os << "sampledDiscreteSurface: " << name() << " :";
SurfaceSource::print(os);
}
// ************************************************************************* //

View File

@ -1,294 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2016-2018 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::sampledDiscreteSurface
Description
A sampledSurface from a triSurfaceMesh.
It samples on the points/triangles of a triSurfaceMesh.
See Also
discreteSurface, sampledSurface
SourceFiles
sampledDiscreteSurface.C
sampledDiscreteSurfaceTemplates.C
\*---------------------------------------------------------------------------*/
#ifndef sampledDiscreteSurface_H
#define sampledDiscreteSurface_H
#include "sampledSurface.H"
#include "discreteSurface.H"
#include "triSurfaceMesh.H"
#include "MeshedSurface.H"
#include "MeshedSurfacesFwd.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class sampledDiscreteSurface;
/*---------------------------------------------------------------------------*\
Class sampledDiscreteSurface Declaration
\*---------------------------------------------------------------------------*/
class sampledDiscreteSurface
:
public sampledSurface,
public discreteSurface
{
//- Private typedefs for convenience
typedef discreteSurface MeshStorage;
typedef discreteSurface SurfaceSource;
// Private Member Functions
//- Sample volume field onto surface faces
template<class Type>
tmp<Field<Type>> sampleOnFaces
(
const interpolation<Type>& sampler
) const;
//- Interpolate volume field onto surface points
template<class Type>
tmp<Field<Type>> sampleOnPoints
(
const interpolation<Type>& interpolator
) const;
public:
//- Runtime type information
TypeName("sampledDiscreteSurface");
// Constructors
//- Construct from components
sampledDiscreteSurface
(
const word& name,
const polyMesh& mesh,
const word& surfaceName,
const discreteSurface::samplingSource sampleSource
);
//- Construct from dictionary
sampledDiscreteSurface
(
const word& name,
const polyMesh& mesh,
const dictionary& dict
);
//- Construct from triSurface
sampledDiscreteSurface
(
const word& name,
const polyMesh& mesh,
const triSurface& surface,
const word& sampleSourceName
);
//- Destructor
virtual ~sampledDiscreteSurface();
// Member Functions
//- Does the surface need an update?
virtual bool needsUpdate() const;
//- Mark the surface as needing an update.
// May also free up unneeded data.
// Return false if surface was already marked as expired.
virtual bool expire();
//- Update the surface as required.
// Do nothing (and return false) if no update was needed
virtual bool update();
//- Update the surface using a bound box to limit the searching.
// For direct use, i.e. not through sample.
// Do nothing (and return false) if no update was needed
bool update(const treeBoundBox&);
//- Points of surface
virtual const pointField& points() const
{
return MeshStorage::points();
}
//- Faces of surface
virtual const faceList& faces() const
{
return MeshStorage::surfFaces();
}
//- Per-face zone/region information
virtual const labelList& zoneIds() const
{
return MeshStorage::zoneIds();
}
//- Face area vectors
virtual const vectorField& Sf() const
{
return MeshStorage::Sf();
}
//- Face area magnitudes
virtual const scalarField& magSf() const
{
return MeshStorage::magSf();
}
//- Face centres
virtual const vectorField& Cf() const
{
return MeshStorage::Cf();
}
//- If element ids/order of the original surface are kept
virtual bool hasFaceIds() const
{
return MeshStorage::hasFaceIds();
}
//- List of element ids/order of the original surface,
// when keepIds is active.
virtual const labelList& originalIds() const
{
return MeshStorage::originalIds();
}
//- Sample the volume field onto surface,
// store it (temporarily) onto the given registry
virtual bool sampleAndStore
(
const objectRegistry& store,
const word& fieldName
) const;
// Sample
//- Sample volume field onto surface faces
virtual tmp<scalarField> sample
(
const interpolation<scalar>& sampler
) const;
//- Sample volume field onto surface faces
virtual tmp<vectorField> sample
(
const interpolation<vector>& sampler
) const;
//- Sample volume field onto surface faces
virtual tmp<sphericalTensorField> sample
(
const interpolation<sphericalTensor>& sampler
) const;
//- Sample volume field onto surface faces
virtual tmp<symmTensorField> sample
(
const interpolation<symmTensor>& sampler
) const;
//- Sample volume field onto surface faces
virtual tmp<tensorField> sample
(
const interpolation<tensor>& sampler
) const;
// Interpolate
//- Interpolate volume field onto surface points
virtual tmp<scalarField> interpolate
(
const interpolation<scalar>& interpolator
) const;
//- Interpolate volume field onto surface points
virtual tmp<vectorField> interpolate
(
const interpolation<vector>& interpolator
) const;
//- Interpolate volume field onto surface points
virtual tmp<sphericalTensorField> interpolate
(
const interpolation<sphericalTensor>& interpolator
) const;
//- Interpolate volume field onto surface points
virtual tmp<symmTensorField> interpolate
(
const interpolation<symmTensor>& interpolator
) const;
//- Interpolate volume field onto surface points
virtual tmp<tensorField> interpolate
(
const interpolation<tensor>& interpolator
) const;
// Output
//- Write
virtual void print(Ostream& os) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// #ifdef NoRepository
// #include "sampledDiscreteSurfaceTemplates.C"
// #endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -1,33 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "sampledDiscreteSurface.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// ************************************************************************* //

View File

@ -1,866 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2016-2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "discreteSurface.H"
#include "meshSearch.H"
#include "Tuple2.H"
#include "globalIndex.H"
#include "treeDataCell.H"
#include "treeDataFace.H"
#include "meshTools.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
const Foam::Enum
<
Foam::discreteSurface::samplingSource
>
Foam::discreteSurface::samplingSourceNames_
({
{ samplingSource::cells, "cells" },
{ samplingSource::insideCells, "insideCells" },
{ samplingSource::boundaryFaces, "boundaryFaces" },
});
namespace Foam
{
defineTypeNameAndDebug(discreteSurface, 0);
//- Private class for finding nearest
// Comprising:
// - global index
// - sqr(distance)
typedef Tuple2<scalar, label> nearInfo;
class nearestEqOp
{
public:
void operator()(nearInfo& x, const nearInfo& y) const
{
if (y.first() < x.first())
{
x = y;
}
}
};
}
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
void Foam::discreteSurface::setZoneMap
(
const surfZoneList& zoneLst,
labelList& zoneIds
)
{
label sz = 0;
for (const surfZone& zn : zoneLst)
{
sz += zn.size();
}
zoneIds.setSize(sz);
forAll(zoneLst, zonei)
{
const surfZone& zn = zoneLst[zonei];
// Assign sub-zone Ids
SubList<label>(zoneIds, zn.size(), zn.start()) = zonei;
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
const Foam::indexedOctree<Foam::treeDataFace>&
Foam::discreteSurface::nonCoupledboundaryTree() const
{
// Variant of meshSearch::boundaryTree() that only does non-coupled
// boundary faces.
if (!boundaryTreePtr_.valid())
{
// all non-coupled boundary faces (not just walls)
const polyBoundaryMesh& patches = mesh().boundaryMesh();
labelList bndFaces(patches.nFaces());
label bndI = 0;
for (const polyPatch& pp : patches)
{
if (!pp.coupled())
{
forAll(pp, i)
{
bndFaces[bndI++] = pp.start()+i;
}
}
}
bndFaces.setSize(bndI);
treeBoundBox overallBb(mesh().points());
Random rndGen(123456);
// Extend slightly and make 3D
overallBb = overallBb.extend(rndGen, 1e-4);
overallBb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
overallBb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
boundaryTreePtr_.reset
(
new indexedOctree<treeDataFace>
(
treeDataFace // all information needed to search faces
(
false, // do not cache bb
mesh(),
bndFaces // boundary faces only
),
overallBb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
return *boundaryTreePtr_;
}
bool Foam::discreteSurface::update(const meshSearch& meshSearcher)
{
// Find the cells the triangles of the surface are in.
// Does approximation by looking at the face centres only
const pointField& fc = surface_.faceCentres();
List<nearInfo> nearest(fc.size());
// Global numbering for cells/faces - only used to uniquely identify local
// elements
globalIndex globalCells(onBoundary() ? mesh().nFaces() : mesh().nCells());
forAll(nearest, i)
{
nearest[i].first() = GREAT;
nearest[i].second() = labelMax;
}
if (sampleSource_ == cells)
{
// Search for nearest cell
const indexedOctree<treeDataCell>& cellTree = meshSearcher.cellTree();
forAll(fc, triI)
{
pointIndexHit nearInfo = cellTree.findNearest
(
fc[triI],
sqr(GREAT)
);
if (nearInfo.hit())
{
nearest[triI].first() = magSqr(nearInfo.hitPoint()-fc[triI]);
nearest[triI].second() = globalCells.toGlobal(nearInfo.index());
}
}
}
else if (sampleSource_ == insideCells)
{
// Search for cell containing point
const indexedOctree<treeDataCell>& cellTree = meshSearcher.cellTree();
forAll(fc, triI)
{
if (cellTree.bb().contains(fc[triI]))
{
const label index = cellTree.findInside(fc[triI]);
if (index != -1)
{
nearest[triI].first() = 0.0;
nearest[triI].second() = globalCells.toGlobal(index);
}
}
}
}
else
{
// Search for nearest boundaryFace
////- Search on all (including coupled) boundary faces
//const indexedOctree<treeDataFace>& bTree = meshSearcher.boundaryTree()
//- Search on all non-coupled boundary faces
const indexedOctree<treeDataFace>& bTree = nonCoupledboundaryTree();
forAll(fc, triI)
{
pointIndexHit nearInfo = bTree.findNearest
(
fc[triI],
sqr(GREAT)
);
if (nearInfo.hit())
{
nearest[triI].first() = magSqr(nearInfo.hitPoint()-fc[triI]);
nearest[triI].second() = globalCells.toGlobal
(
bTree.shapes().faceLabels()[nearInfo.index()]
);
}
}
}
// See which processor has the nearest. Mark and subset
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pstream::listCombineGather(nearest, nearestEqOp());
Pstream::listCombineScatter(nearest);
labelList cellOrFaceLabels(fc.size(), -1);
label nFound = 0;
forAll(nearest, triI)
{
if (nearest[triI].second() == labelMax)
{
// Not found on any processor. How to map?
}
else if (globalCells.isLocal(nearest[triI].second()))
{
cellOrFaceLabels[triI] = globalCells.toLocal
(
nearest[triI].second()
);
nFound++;
}
}
if (debug)
{
Pout<< "Local out of faces:" << cellOrFaceLabels.size()
<< " keeping:" << nFound << endl;
}
// Now subset the surface. Do not use triSurface::subsetMesh since requires
// original surface to be in compact numbering.
const triSurface& s = surface_;
// Compact to original triangle
labelList faceMap(s.size());
// Compact to original points
labelList pointMap(s.points().size());
// From original point to compact points
labelList reversePointMap(s.points().size(), -1);
// Handle region-wise sorting (makes things slightly more complicated)
zoneIds_.setSize(s.size(), -1);
// Better not to use triSurface::sortedZones here,
// since we'll sort ourselves
// Get zone/region sizes used, store under the original region Id
Map<label> zoneSizes;
// Recover region names from the input surface
Map<word> zoneNames;
{
const geometricSurfacePatchList& patches = s.patches();
forAll(patches, patchi)
{
zoneNames.set
(
patchi,
(
patches[patchi].name().empty()
? geometricSurfacePatch::defaultName(patchi)
: patches[patchi].name()
)
);
zoneSizes.set(patchi, 0);
}
}
{
label newPointi = 0;
label newFacei = 0;
forAll(s, facei)
{
if (cellOrFaceLabels[facei] != -1)
{
const triSurface::FaceType& f = s[facei];
const label regionid = f.region();
auto fnd = zoneSizes.find(regionid);
if (fnd.found())
{
++(*fnd);
}
else
{
// This shouldn't happen
zoneSizes.insert(regionid, 1);
zoneNames.set
(
regionid,
geometricSurfacePatch::defaultName(regionid)
);
}
// Store new faces compact
faceMap[newFacei] = facei;
zoneIds_[newFacei] = regionid;
++newFacei;
// Renumber face points
forAll(f, fp)
{
const label labI = f[fp];
if (reversePointMap[labI] == -1)
{
pointMap[newPointi] = labI;
reversePointMap[labI] = newPointi++;
}
}
}
}
// Trim
faceMap.setSize(newFacei);
zoneIds_.setSize(newFacei);
pointMap.setSize(newPointi);
}
// Assign start/size (and name) to the newZones
// re-use the lookup to map (zoneId => zoneI)
surfZoneList zoneLst(zoneSizes.size());
label start = 0;
label zoneI = 0;
forAllIters(zoneSizes, iter)
{
// No negative regionids, so Map<label> sorts properly
const label regionid = iter.key();
word name(zoneNames.lookup(regionid, word::null));
if (name.empty())
{
name = geometricSurfacePatch::defaultName(regionid);
}
zoneLst[zoneI] = surfZone
(
name,
0, // initialize with zero size
start,
zoneI
);
// Adjust start for the next zone and save (zoneId => zoneI) mapping
start += iter.val();
iter() = zoneI++;
}
// At this stage:
// - faceMap to map the (unsorted) compact to original triangle
// - zoneIds for the next sorting
// - zoneSizes contains region -> count information
// Rebuild the faceMap for the sorted order
labelList sortedFaceMap(faceMap.size());
forAll(zoneIds_, facei)
{
label zonei = zoneIds_[facei];
label sortedFacei = zoneLst[zonei].start() + zoneLst[zonei].size()++;
sortedFaceMap[sortedFacei] = faceMap[facei];
}
// zoneIds are now simply flat values
setZoneMap(zoneLst, zoneIds_);
// Replace the faceMap with the properly sorted face map
faceMap.transfer(sortedFaceMap);
if (keepIds_)
{
originalIds_ = faceMap;
}
// Subset cellOrFaceLabels (for compact faces)
cellOrFaceLabels = labelUIndList(cellOrFaceLabels, faceMap)();
// Store any face per point (without using pointFaces())
labelList pointToFace(pointMap.size());
// Create faces and points for subsetted surface
faceList& surfFaces = this->storedFaces();
surfFaces.setSize(faceMap.size());
this->storedZones().transfer(zoneLst);
forAll(faceMap, facei)
{
const labelledTri& origF = s[faceMap[facei]];
face& f = surfFaces[facei];
f = triFace
(
reversePointMap[origF[0]],
reversePointMap[origF[1]],
reversePointMap[origF[2]]
);
forAll(f, fp)
{
pointToFace[f[fp]] = facei;
}
}
this->storedPoints() = pointField(s.points(), pointMap);
if (debug)
{
print(Pout);
Pout<< endl;
}
// Collect the samplePoints and sampleElements
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (interpolate())
{
samplePoints_.setSize(pointMap.size());
sampleElements_.setSize(pointMap.size(), -1);
if (sampleSource_ == cells)
{
// samplePoints_ : per surface point a location inside the cell
// sampleElements_ : per surface point the cell
forAll(points(), pointi)
{
const point& pt = points()[pointi];
label celli = cellOrFaceLabels[pointToFace[pointi]];
sampleElements_[pointi] = celli;
// Check if point inside cell
if
(
mesh().pointInCell
(
pt,
sampleElements_[pointi],
meshSearcher.decompMode()
)
)
{
samplePoints_[pointi] = pt;
}
else
{
// Find nearest point on faces of cell
const cell& cFaces = mesh().cells()[celli];
scalar minDistSqr = VGREAT;
forAll(cFaces, i)
{
const face& f = mesh().faces()[cFaces[i]];
pointHit info = f.nearestPoint(pt, mesh().points());
if (info.distance() < minDistSqr)
{
minDistSqr = info.distance();
samplePoints_[pointi] = info.rawPoint();
}
}
}
}
}
else if (sampleSource_ == insideCells)
{
// samplePoints_ : per surface point a location inside the cell
// sampleElements_ : per surface point the cell
forAll(points(), pointi)
{
const point& pt = points()[pointi];
label celli = cellOrFaceLabels[pointToFace[pointi]];
sampleElements_[pointi] = celli;
samplePoints_[pointi] = pt;
}
}
else
{
// samplePoints_ : per surface point a location on the boundary
// sampleElements_ : per surface point the boundary face containing
// the location
forAll(points(), pointi)
{
const point& pt = points()[pointi];
label facei = cellOrFaceLabels[pointToFace[pointi]];
sampleElements_[pointi] = facei;
samplePoints_[pointi] = mesh().faces()[facei].nearestPoint
(
pt,
mesh().points()
).rawPoint();
}
}
}
else
{
// if sampleSource_ == cells:
// sampleElements_ : per surface triangle the cell
// samplePoints_ : n/a
// if sampleSource_ == insideCells:
// sampleElements_ : -1 or per surface triangle the cell
// samplePoints_ : n/a
// else:
// sampleElements_ : per surface triangle the boundary face
// samplePoints_ : n/a
sampleElements_.transfer(cellOrFaceLabels);
samplePoints_.clear();
}
if (debug)
{
this->clearOut();
OFstream str(mesh().time().path()/"surfaceToMesh.obj");
Info<< "Dumping correspondence from local surface (points or faces)"
<< " to mesh (cells or faces) to " << str.name() << endl;
const vectorField& centres =
(
onBoundary()
? mesh().faceCentres()
: mesh().cellCentres()
);
if (interpolate())
{
label vertI = 0;
forAll(samplePoints_, pointi)
{
meshTools::writeOBJ(str, points()[pointi]);
vertI++;
meshTools::writeOBJ(str, samplePoints_[pointi]);
vertI++;
label elemi = sampleElements_[pointi];
meshTools::writeOBJ(str, centres[elemi]);
vertI++;
str << "l " << vertI-2 << ' ' << vertI-1 << ' ' << vertI << nl;
}
}
else
{
label vertI = 0;
forAll(sampleElements_, triI)
{
meshTools::writeOBJ(str, faceCentres()[triI]);
vertI++;
label elemi = sampleElements_[triI];
meshTools::writeOBJ(str, centres[elemi]);
vertI++;
str << "l " << vertI-1 << ' ' << vertI << nl;
}
}
}
needsUpdate_ = false;
return true;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::discreteSurface::discreteSurface
(
const polyMesh& mesh,
const word& surfaceName,
const samplingSource sampleSource,
const bool allowInterpolate
)
:
MeshStorage(),
mesh_(mesh),
allowInterpolate_(allowInterpolate),
interpolate_(false),
surface_
(
IOobject
(
surfaceName,
mesh.time().constant(), // instance
"triSurface", // local
mesh.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
),
sampleSource_(sampleSource),
needsUpdate_(true),
keepIds_(false),
originalIds_(),
zoneIds_(),
sampleElements_(),
samplePoints_()
{}
Foam::discreteSurface::discreteSurface
(
const polyMesh& mesh,
const dictionary& dict,
const bool allowInterpolate
)
:
MeshStorage(),
mesh_(mesh),
allowInterpolate_(allowInterpolate),
interpolate_
(
allowInterpolate
&& dict.lookupOrDefault("interpolate", false)
),
surface_
(
IOobject
(
dict.get<word>("surface"),
mesh.time().constant(), // instance
"triSurface", // local
mesh.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
),
sampleSource_(samplingSourceNames_.get("source", dict)),
needsUpdate_(true),
keepIds_(dict.lookupOrDefault("keepIds", false)),
originalIds_(),
zoneIds_(),
sampleElements_(),
samplePoints_()
{}
Foam::discreteSurface::discreteSurface
(
const word& name,
const polyMesh& mesh,
const triSurface& surface,
const word& sampleSourceName,
const bool allowInterpolate
)
:
MeshStorage(),
mesh_(mesh),
allowInterpolate_(allowInterpolate),
interpolate_(false),
surface_
(
IOobject
(
name,
mesh.time().constant(), // instance
"triSurface", // local
mesh.time(), // registry
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
surface
),
sampleSource_(samplingSourceNames_[sampleSourceName]),
needsUpdate_(true),
keepIds_(false),
originalIds_(),
zoneIds_(),
sampleElements_(),
samplePoints_()
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::discreteSurface::~discreteSurface()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::discreteSurface::interpolate() const
{
return interpolate_;
}
bool Foam::discreteSurface::interpolate(bool b)
{
if (interpolate_ == b)
{
return false;
}
if (b && !allowInterpolate_)
{
return false;
}
// Value changed, old sampling information is invalid
interpolate_ = b;
expire();
return true;
}
bool Foam::discreteSurface::needsUpdate() const
{
return needsUpdate_;
}
bool Foam::discreteSurface::expire()
{
// already marked as expired
if (needsUpdate_)
{
return false;
}
MeshStorage::clear();
zoneIds_.clear();
originalIds_.clear();
boundaryTreePtr_.clear();
sampleElements_.clear();
samplePoints_.clear();
needsUpdate_ = true;
return true;
}
bool Foam::discreteSurface::update()
{
if (!needsUpdate_)
{
return false;
}
// Calculate surface and mesh overlap bounding box
treeBoundBox bb
(
surface_.triSurface::points(),
surface_.triSurface::meshPoints()
);
bb.min() = max(bb.min(), mesh().bounds().min());
bb.max() = min(bb.max(), mesh().bounds().max());
// Extend a bit
const vector span(bb.span());
bb.min() -= 0.5*span;
bb.max() += 0.5*span;
bb.inflate(1e-6);
// Mesh search engine, no triangulation of faces.
meshSearch meshSearcher(mesh(), bb, polyMesh::FACE_PLANES);
return update(meshSearcher);
}
bool Foam::discreteSurface::update(const treeBoundBox& bb)
{
if (!needsUpdate_)
{
return false;
}
// Mesh search engine on subset, no triangulation of faces.
meshSearch meshSearcher(mesh(), bb, polyMesh::FACE_PLANES);
return update(meshSearcher);
}
bool Foam::discreteSurface::sampleAndStore
(
const objectRegistry& store,
const word& fieldName,
const word& sampleScheme
) const
{
return
(
sampleType<scalar>(store, fieldName, sampleScheme)
|| sampleType<vector>(store, fieldName, sampleScheme)
|| sampleType<sphericalTensor>(store, fieldName, sampleScheme)
|| sampleType<symmTensor>(store, fieldName, sampleScheme)
|| sampleType<tensor>(store, fieldName, sampleScheme)
);
}
void Foam::discreteSurface::print(Ostream& os) const
{
os << "discreteSurface:"
<< " surface:" << surface_.objectRegistry::name()
<< " faces:" << this->surfFaces().size()
<< " points:" << this->points().size()
<< " zoneids:" << this->zoneIds().size();
}
// ************************************************************************* //

View File

@ -1,350 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2016-2018 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::discreteSurface
Description
The basis for sampling from triSurfaceMesh.
It samples on the points/triangles of the triSurface.
- it either samples cells or (non-coupled) boundary faces
- 6 different modes:
- source=cells, interpolate=false:
finds per triangle centre the nearest cell centre and uses its value
- source=cells, interpolate=true
finds per triangle centre the nearest cell centre.
Per surface point checks if this nearest cell is the one containing
point; otherwise projects the point onto the nearest point on
the boundary of the cell (to make sure interpolateCellPoint
gets a valid location)
- source=insideCells, interpolate=false:
finds per triangle centre the cell containing it and uses its value.
Trims triangles outside mesh.
- source=insideCells, interpolate=true
Per surface point interpolate cell containing it.
- source=boundaryFaces, interpolate=false:
finds per triangle centre the nearest point on the boundary
(uncoupled faces only) and uses the value (or 0 if the nearest
is on an empty boundary)
- source=boundaryFaces, interpolate=true:
finds per triangle centre the nearest point on the boundary
(uncoupled faces only).
Per surface point projects the point onto this boundary face
(to make sure interpolateCellPoint gets a valid location)
- since it finds a nearest per triangle each triangle is guaranteed
to be on one processor only. So after stitching (by sampledSurfaces)
the original surface should be complete.
SourceFiles
discreteSurface.C
discreteSurfaceTemplates.C
\*---------------------------------------------------------------------------*/
#ifndef discreteSurface_H
#define discreteSurface_H
#include "sampledSurface.H"
#include "triSurfaceMesh.H"
#include "MeshedSurface.H"
#include "MeshedSurfacesFwd.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class treeDataFace;
class meshSearch;
/*---------------------------------------------------------------------------*\
Class discreteSurface Declaration
\*---------------------------------------------------------------------------*/
class discreteSurface
:
public meshedSurface
{
public:
//- Types of communications
enum samplingSource
{
cells,
insideCells,
boundaryFaces
};
private:
//- Private typedefs for convenience
typedef meshedSurface MeshStorage;
// Private data
static const Enum<samplingSource> samplingSourceNames_;
//- Reference to mesh
const polyMesh& mesh_;
//- Do we allow interpolation?
const bool allowInterpolate_;
//- Do we intend to interpolate the information?
bool interpolate_;
//- Surface to sample on
const triSurfaceMesh surface_;
//- Whether to sample internal cell values or boundary values
const samplingSource sampleSource_;
//- Track if the surface needs an update
mutable bool needsUpdate_;
//- Retain element ids/order of original surface
bool keepIds_;
//- List of element ids/order of the original surface,
// when keepIds is active.
labelList originalIds_;
//- Search tree for all non-coupled boundary faces
mutable autoPtr<indexedOctree<treeDataFace>> boundaryTreePtr_;
//- For compatibility with the meshSurf interface
labelList zoneIds_;
//- From local surface triangle to mesh cell/face.
labelList sampleElements_;
//- Local points to sample per point
pointField samplePoints_;
// Private Member Functions
//- Get tree of all non-coupled boundary faces
const indexedOctree<treeDataFace>& nonCoupledboundaryTree() const;
bool update(const meshSearch& meshSearcher);
protected:
// Protected Member Functions
//- Sample the volume field onto surface,
// store it (temporarily) onto the given registry
template<class Type>
bool sampleType
(
const objectRegistry& store,
const word& fieldName,
const word& sampleScheme
) const;
//- Sample field on surface faces
template<class Type>
tmp<Field<Type>> sampleOnFaces
(
const interpolation<Type>& sampler
) const;
//- Sample field on surface points
template<class Type>
tmp<Field<Type>> sampleOnPoints
(
const interpolation<Type>& interpolator
) const;
public:
//- Runtime type information
TypeName("discreteSurface");
// Constructors
//- Construct from components
discreteSurface
(
const polyMesh& mesh,
const word& surfaceName,
const samplingSource sampleSource,
const bool allowInterpolate = true
);
//- Construct from dictionary
discreteSurface
(
const polyMesh& mesh,
const dictionary& dict,
const bool allowInterpolate = true
);
//- Construct from triSurface
discreteSurface
(
const word& name,
const polyMesh& mesh,
const triSurface& surface,
const word& sampleSourceName,
const bool allowInterpolate = true
);
//- Destructor
virtual ~discreteSurface();
// Member Functions
//- Set new zoneIds list based on the surfZoneList information
static void setZoneMap(const surfZoneList&, labelList& zoneIds);
// Access
//- Access to the underlying mesh
const polyMesh& mesh() const
{
return mesh_;
}
//- Interpolation requested for surface
bool interpolate() const;
//- Change interpolation request for surface.
// Return false if the value did not change.
// Use with caution.
bool interpolate(bool b);
//- Does the surface need an update?
virtual bool needsUpdate() const;
//- Mark the surface as needing an update.
// May also free up unneeded data.
// Return false if surface was already marked as expired.
virtual bool expire();
//- Update the surface as required.
// Do nothing (and return false) if no update was needed
virtual bool update();
//- Update the surface using a bound box to limit the searching.
// For direct use, i.e. not through sample.
// Do nothing (and return false) if no update was needed
bool update(const treeBoundBox&);
//- Per-face zone/region information
virtual const labelList& zoneIds() const
{
return zoneIds_;
}
//- If element ids/order of the original surface are kept
virtual bool hasFaceIds() const
{
return keepIds_;
}
//- List of element ids/order of the original surface,
// when keepIds is active.
virtual const labelList& originalIds() const
{
return originalIds_;
}
//- Sampling boundary values instead of cell values
bool onBoundary() const
{
return sampleSource_ == boundaryFaces;
}
//- From local surface face to mesh cell/face.
const labelList& sampleElements() const
{
return sampleElements_;
}
//- Local points to sample per point
const pointField& samplePoints() const
{
return samplePoints_;
}
//- Sample the volume field onto surface,
// store it (temporarily) onto the given registry
virtual bool sampleAndStore
(
const objectRegistry& store,
const word& fieldName,
const word& sampleScheme
) const;
//- Sample field on surface. The tmp field is 'valid' on success.
template<class Type>
tmp<Field<Type>> sampleType
(
const word& fieldName,
const word& sampleScheme
) const;
//- Write information
virtual void print(Ostream& os) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
#include "discreteSurfaceTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -1,252 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016-2018 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "discreteSurface.H"
#include "surfFields.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class Type>
bool Foam::discreteSurface::sampleType
(
const objectRegistry& obr,
const word& fieldName,
const word& sampleScheme
) const
{
typedef GeometricField<Type, fvPatchField, volMesh> VolFieldType;
typedef DimensionedField<Type, surfGeoMesh> SurfFieldType;
typedef IOField<Type> TmpFieldType;
const auto* volFldPtr = mesh().findObject<VolFieldType>(fieldName);
if (!volFldPtr)
{
return false;
}
const auto& volFld = *volFldPtr;
auto samplerPtr = interpolation<Type>::New(sampleScheme, *volFldPtr);
tmp<Field<Type>> tfield = sampleOnFaces(*samplerPtr);
// The rest could be moved into a separate helper
if (isA<surfMesh>(obr))
{
const surfMesh& surf = dynamicCast<const surfMesh>(obr);
SurfFieldType* ptr = surf.getObjectPtr<SurfFieldType>(fieldName);
if (!ptr)
{
// Doesn't exist or the wrong type
ptr = new SurfFieldType
(
IOobject
(
fieldName,
surf.time().timeName(),
surf,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimensioned<Type>(volFld.dimensions(), Zero)
);
ptr->writeOpt() = IOobject::NO_WRITE;
surf.store(ptr);
}
ptr->field() = tfield;
}
else
{
TmpFieldType* ptr = obr.getObjectPtr<TmpFieldType>(fieldName);
if (!ptr)
{
// Doesn't exist or the wrong type
ptr = new TmpFieldType
(
IOobject
(
fieldName,
obr.time().timeName(),
obr,
IOobject::NO_READ,
IOobject::NO_WRITE
),
tfield().size()
);
ptr->writeOpt() = IOobject::NO_WRITE;
obr.store(ptr);
}
*ptr = tfield;
}
return true;
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::discreteSurface::sampleType
(
const word& fieldName,
const word& sampleScheme
) const
{
typedef GeometricField<Type, fvPatchField, volMesh> VolFieldType;
const auto* volFldPtr = mesh().findObject<VolFieldType>(fieldName);
if (volFldPtr)
{
auto samplerPtr = interpolation<Type>::New(sampleScheme, *volFldPtr);
return sampleOnFaces(*samplerPtr);
}
return nullptr;
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::discreteSurface::sampleOnFaces
(
const interpolation<Type>& sampler
) const
{
const labelList& elements = sampleElements_;
const auto& vField = sampler.psi();
const label len = elements.size();
// One value per face
auto tvalues = tmp<Field<Type>>::New(len);
auto& values = tvalues.ref();
if (!onBoundary())
{
// Sample cells
const faceList& fcs = this->surfFaces();
const pointField& pts = points();
for (label i=0; i < len; ++i)
{
const label celli = elements[i];
const point pt = fcs[i].centre(pts);
values[i] = sampler.interpolate(pt, celli);
}
}
else
{
// Sample boundary faces
const polyBoundaryMesh& pbm = mesh().boundaryMesh();
const label nBnd = mesh().nBoundaryFaces();
// Create flat boundary field
Field<Type> bVals(nBnd, Zero);
const auto& bField = vField.boundaryField();
forAll(bField, patchi)
{
const label bFacei = pbm[patchi].start() - mesh().nInternalFaces();
SubList<Type>
(
bVals,
bField[patchi].size(),
bFacei
) = bField[patchi];
}
// Sample in flat boundary field
for (label i=0; i < len; ++i)
{
const label bFacei = (elements[i] - mesh().nInternalFaces());
values[i] = bVals[bFacei];
}
}
return tvalues;
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::discreteSurface::sampleOnPoints
(
const interpolation<Type>& interpolator
) const
{
// One value per vertex
auto tvalues = tmp<Field<Type>>::New(sampleElements_.size());
auto& values = tvalues.ref();
if (!onBoundary())
{
// Sample cells.
forAll(sampleElements_, pointi)
{
values[pointi] = interpolator.interpolate
(
samplePoints_[pointi],
sampleElements_[pointi]
);
}
}
else
{
// Sample boundary faces.
forAll(samplePoints_, pointi)
{
const label facei = sampleElements_[pointi];
values[pointi] = interpolator.interpolate
(
samplePoints_[pointi],
mesh().faceOwner()[facei],
facei
);
}
}
return tvalues;
}
// ************************************************************************* //