Added new renumbering method based on Hamiltonian path
This commit is contained in:
@ -5,5 +5,6 @@ randomRenumber/randomRenumber.C
|
||||
springRenumber/springRenumber.C
|
||||
structuredRenumber/structuredRenumber.C
|
||||
structuredRenumber/OppositeFaceCellWaveBase.C
|
||||
hpathRenumber/hpathRenumber.C
|
||||
|
||||
LIB = $(FOAM_LIBBIN)/librenumberMethods
|
||||
|
||||
792
src/renumber/renumberMethods/hpathRenumber/hpathRenumber.C
Normal file
792
src/renumber/renumberMethods/hpathRenumber/hpathRenumber.C
Normal file
@ -0,0 +1,792 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | www.openfoam.com
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2011-2012 OpenFOAM Foundation
|
||||
Copyright (C) 2021 OpenCFD Ltd.
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include <queue>
|
||||
#include <stack>
|
||||
#include <iomanip>
|
||||
#include <numeric>
|
||||
|
||||
#include "hpathRenumber.H"
|
||||
#include "addToRunTimeSelectionTable.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
namespace Foam
|
||||
{
|
||||
defineTypeNameAndDebug(hpathRenumber, 0);
|
||||
|
||||
addToRunTimeSelectionTable
|
||||
(
|
||||
renumberMethod,
|
||||
hpathRenumber,
|
||||
dictionary
|
||||
);
|
||||
}
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
|
||||
Foam::hpathRenumber::hpathRenumber(const dictionary& renumberDict) :
|
||||
renumberMethod(renumberDict),
|
||||
m_bApplyLayerSeparation(renumberDict.optionalSubDict(typeName + "Coeffs").getOrDefault("layered", true))
|
||||
{}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
||||
|
||||
|
||||
Foam::labelList Foam::hpathRenumber::renumber
|
||||
(
|
||||
const polyMesh& mesh,
|
||||
const pointField& points
|
||||
) const
|
||||
{
|
||||
fprintf(stdout,"\n\n\n******************************************************\n\n");
|
||||
fprintf(stdout, "Starting Cell Renumbering: %d Cells, %d Faces, %d Points\n\n", mesh.nCells(), mesh.nFaces(), mesh.nPoints());
|
||||
|
||||
hpathFinder s(mesh);
|
||||
Foam::labelList cellOrder;
|
||||
s.getRenumbering(cellOrder, m_bApplyLayerSeparation);
|
||||
|
||||
std::cout << std::endl << "Found path with accuracy of " << std::fixed << std::setprecision(3) << s.getAccuracy(cellOrder) << "%" << std::endl;
|
||||
|
||||
fprintf(stdout,"\n******************************************************\n\n\n");
|
||||
return cellOrder;
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * hpathRenumber::dynamicMarker * * * * * * * * * * * * * * * //
|
||||
|
||||
// This class supports marking and unmarking small sets of indices quickly
|
||||
// Used for efficient construction of Mesh Graph in getMeshGraph()
|
||||
|
||||
// At initialization all items begin unmarked (false)
|
||||
Foam::hpathRenumber::dynamicMarker::dynamicMarker(int n) {
|
||||
bMarker.assign(n, false);
|
||||
}
|
||||
|
||||
|
||||
// When we mark an index, we also push it to the stack
|
||||
bool Foam::hpathRenumber::dynamicMarker::mark(int i) {
|
||||
if (bMarker[i]) return false;
|
||||
bMarker[i] = true;
|
||||
nMarkedStack.push(i);
|
||||
return true;
|
||||
}
|
||||
|
||||
// When we want to clear all marks, we unmark every item in the stack
|
||||
// This takes amortized-time O(1), because we can only pop as many items as we have pushed
|
||||
void Foam::hpathRenumber::dynamicMarker::clear() {
|
||||
while(!nMarkedStack.empty()) {
|
||||
bMarker[nMarkedStack.top()] = false;
|
||||
nMarkedStack.pop();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * hpathRenumber::hpathFinder * * * * * * * * * * * * * * * //
|
||||
|
||||
// Public methods
|
||||
|
||||
Foam::hpathRenumber::hpathFinder::hpathFinder(const polyMesh& mesh) : mesh(mesh), nCellCount(mesh.nCells()) {}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getRenumbering(Foam::labelList& cellOrder, bool bApplyLayerSeparation) {
|
||||
|
||||
// Find a renumbering for the entire mesh
|
||||
|
||||
cellOrder.resize(nCellCount);
|
||||
// Counter for how many cells we have added to the renumbering so far
|
||||
nFoundCellCount = 0;
|
||||
|
||||
// Initialize the data structures:
|
||||
std::cout << "Initializing Data Structures" << std::endl;
|
||||
initialize();
|
||||
|
||||
// Compute a graph to represent the mesh:
|
||||
// - Cells in the mesh will be connected in the graph if they have a *common point*
|
||||
getMeshGraph();
|
||||
|
||||
std::vector<std::vector<int>> nCellsByLayer;
|
||||
if (bApplyLayerSeparation) {
|
||||
getLayerSeparation(nCellsByLayer);
|
||||
}
|
||||
else {
|
||||
// If there is no layer separation, set the entire mesh as one 'layer'
|
||||
nCellsByLayer.emplace_back(nCellCount,-1);
|
||||
std::iota(nCellsByLayer[0].begin(), nCellsByLayer[0].end(), 0);
|
||||
}
|
||||
|
||||
std::cout << "Beginning Hpath Computation" << std::endl;
|
||||
// Find H-path for each layer separately
|
||||
for (const std::vector<int>& nCellsInLayer : nCellsByLayer)
|
||||
{
|
||||
// solveLayer() will find a renumbering for all the cells in the layer
|
||||
// Path will be appended into cellOrder
|
||||
solveLayer(nCellsInLayer, cellOrder);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float Foam::hpathRenumber::hpathFinder::getAccuracy(const Foam::labelList& cellOrder) const {
|
||||
// Finding the number of "hits"
|
||||
// - A hit is a pair of consecutive cells in the renumbering that are also face-neighbours in the mesh
|
||||
// - Cells are face-neighbours if they have a common face
|
||||
int nHitCnt = 0;
|
||||
for (int nPathIdx = 0; nPathIdx < int(cellOrder.size()) - 1; nPathIdx++)
|
||||
{
|
||||
int nCurrCellIdx = cellOrder[nPathIdx];
|
||||
int nNextCellIdx = cellOrder[nPathIdx+1];
|
||||
|
||||
// For every pair of consecutive cells, we search for a common face between them
|
||||
for (int nFaceIdx : mesh.cells()[nCurrCellIdx])
|
||||
{
|
||||
int nNeiIdx = getNei(nCurrCellIdx, nFaceIdx);
|
||||
// If there is a common face between them, we add a hit!
|
||||
if (nNeiIdx == nNextCellIdx) {
|
||||
nHitCnt++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// The accuracy is the percentage of consecutive cells that were hits
|
||||
return 100.0f * float(nHitCnt) / float(int(cellOrder.size()) - 1);
|
||||
}
|
||||
|
||||
// Private methods
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::initialize() {
|
||||
|
||||
// Data structure to keep track of cells already in the renumbering
|
||||
bIsRenumbered.assign(nCellCount, false);
|
||||
|
||||
// List used to seperate cells int layers
|
||||
// Saves for every cell its layer index
|
||||
nCellLayerIndex.assign(nCellCount, -1);
|
||||
|
||||
// List used to seperate cells within the same layer into seperate connected components
|
||||
// Saves for every cell its connected component index
|
||||
nCellConnnectedComponentIndex.assign(nCellCount, -1);
|
||||
|
||||
// Marks cells that have already been by BFS
|
||||
bBFSFoundCell.assign(nCellCount, false);
|
||||
// Saves for every cell its face-neighbours within the same connected component
|
||||
nConnnectedComponentGraph.assign(nCellCount, std::vector<int>());
|
||||
|
||||
// Saves for every cell within a layer its point-distance from the starting cell of that layer
|
||||
nCellPointDistFromStart.assign(nCellCount, -1);
|
||||
// Saves for every cell within a layer its face-distance from the starting cell of that layer
|
||||
nCellFaceDistFromStart.assign(nCellCount, -1);
|
||||
|
||||
// For each cell its DFS depth within the connected component
|
||||
nDFSCellDepth.assign(nCellCount, -1);
|
||||
// For each cell its DFS parent within the connected component
|
||||
nDFSParentCell.assign(nCellCount, -1);
|
||||
|
||||
// Now we can find the Mesh-Graph
|
||||
nMeshGraph.assign(nCellCount, std::vector<int>());
|
||||
}
|
||||
|
||||
|
||||
int Foam::hpathRenumber::hpathFinder::getNei(int nCell, int nFaceIdx) const {
|
||||
// If the face has no neighbor, return -1
|
||||
if(nFaceIdx >= mesh.faceNeighbour().size())
|
||||
return -1;
|
||||
|
||||
// Otherwise, the face connects 2 cells: the owner and the neighbor. One of these should be nCell
|
||||
int nOwner = mesh.faceOwner()[nFaceIdx];
|
||||
int nNei = mesh.faceNeighbour()[nFaceIdx];
|
||||
|
||||
// Find which of these two cells is the input cell, return the other one
|
||||
return (nOwner == nCell) ? nNei : nOwner;
|
||||
}
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getMeshGraph() {
|
||||
|
||||
// First, we need to compute:
|
||||
// 1) For every point a list of cells it is part of - nPntCellList
|
||||
// 2) For every cell a list of points on it - nCellPntList
|
||||
getPointCellLists();
|
||||
|
||||
// The purpose of the dynamic marker is to avoid checking the same cell many times in one iteration
|
||||
dynamicMarker bCellMarker(nCellCount);
|
||||
for (int nCellIdx = 0; nCellIdx < nCellCount; nCellIdx++) {
|
||||
for (int nPntIdx : nCellPntList[nCellIdx]) {
|
||||
for (int nNeiCell : nPntCellList[nPntIdx]) {
|
||||
if (nNeiCell == nCellIdx) continue;
|
||||
if (!bCellMarker.mark(nNeiCell)) continue;
|
||||
|
||||
// We have found a cell with a common point to the current cell
|
||||
// Therefore, we can now add it as a neighbour in the Mesh-Graph
|
||||
nMeshGraph[nCellIdx].push_back(nNeiCell);
|
||||
}
|
||||
}
|
||||
bCellMarker.clear();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getPointCellLists() {
|
||||
|
||||
// Find:
|
||||
// - For each cell in the mesh a list of all points on it
|
||||
nCellPntList.assign(mesh.nCells(), std::vector<int>());
|
||||
// - For every point in the mesh a list of all cells it is part of
|
||||
nPntCellList.assign(mesh.nPoints(), std::vector<int>());
|
||||
|
||||
// The purpose of the dynamic marker is to avoid pushing the same point many times in one iteration
|
||||
dynamicMarker bPointMarker(mesh.nPoints());
|
||||
for (int nCellIdx = 0; nCellIdx < mesh.nCells(); nCellIdx++)
|
||||
{
|
||||
for(int nFaceIdx : mesh.cells()[nCellIdx]) {
|
||||
for(int nPntIdx : mesh.faces()[nFaceIdx]) {
|
||||
// If we already found nPntIdx for this cell, continue
|
||||
if (!bPointMarker.mark(nPntIdx)) continue;
|
||||
|
||||
// nPntIdx is on nCellIdx, so we push them to each-others lists
|
||||
nCellPntList[nCellIdx].push_back(nPntIdx);
|
||||
nPntCellList[nPntIdx].push_back(nCellIdx);
|
||||
}
|
||||
}
|
||||
// Clear the marked points for the next cell
|
||||
bPointMarker.clear();
|
||||
}
|
||||
}
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getLayerSeparation(std::vector<std::vector<int>>& nCellsByLayer)
|
||||
{
|
||||
// We want to separate the mesh into layers:
|
||||
// 1) The mesh is separated into connected components - getConnectedComponents()
|
||||
// 2) For each connected component we find the deepest cell and set it to be a starting cell - getStartingCells()
|
||||
// 3) Each connected component is separated into layers using a BFS from the starting - getLayers()
|
||||
|
||||
std::cout << "Finding Layer Separation" << std::endl;
|
||||
|
||||
// Step 1: Finding connected components
|
||||
std::vector<int> nAllCells(nCellCount);
|
||||
std::iota(nAllCells.begin(), nAllCells.end(), 0);
|
||||
|
||||
std::vector<std::vector<int>> nCellsByConnnectedComponent;
|
||||
getConnectedComponents(nAllCells, nCellsByConnnectedComponent);
|
||||
|
||||
// Step 2: Finding starting cells
|
||||
// Finds for each connected component its deepest cell and returns them
|
||||
// The starting cells are returned through nStartingCellList
|
||||
// There will be exactly one starting cell per connected component
|
||||
std::vector<int> nStartingCellList;
|
||||
getStartingCells(nStartingCellList);
|
||||
|
||||
// Step 3: Layer separation
|
||||
// Layer separation is done in each connected component from the starting cell outwards
|
||||
getLayers(nStartingCellList, nCellsByLayer);
|
||||
|
||||
int nLayerCnt = nCellsByLayer.size();
|
||||
std::cout << "Mesh Separated into " << nLayerCnt << " layers" << std::endl;
|
||||
|
||||
// Reset connected component index list for solveLayer() to use
|
||||
nCellConnnectedComponentIndex.assign(nCellCount, -1);
|
||||
}
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getStartingCells(std::vector<int>& nStartingCells) const {
|
||||
|
||||
// The starting cell in each connected component should be the 'deepest' cell in that connected component
|
||||
// A cells 'depth' is its point-distance from any boundary cell
|
||||
|
||||
// The Algorithm:
|
||||
// 1) Find all boundary points
|
||||
// 2) Find all boundary cells
|
||||
// 3) Separate the boundary cells by connected component
|
||||
// 4) Find for each cell in the mesh its point-distance from the boundary
|
||||
// 5) Return through nStartingCells a list containing the deepest cell from each connected component
|
||||
|
||||
// nCellDepthList will contain for each cell its depth within its ConnectedComponent
|
||||
std::vector<int> nCellDepthList(nCellCount, -1);
|
||||
|
||||
// Step 1: Finding all boundary points
|
||||
// - A boundary point is a point on a boundary face
|
||||
std::vector<int> bIsBoundaryPts(mesh.nPoints(), false);
|
||||
|
||||
// Iterate over boundary faces and mark their points as boundary
|
||||
// - Ignore boundary faces of type "empty"
|
||||
const polyBoundaryMesh& bndMesh = mesh.boundaryMesh();
|
||||
for (int nBndType = 0; nBndType < bndMesh.size(); ++nBndType)
|
||||
{
|
||||
// If boundary is of type "empty" - skip it
|
||||
if (bndMesh[nBndType].type().compare("empty") == 0) continue;
|
||||
|
||||
labelRange range = bndMesh.patchRanges()[nBndType];
|
||||
// For every face in range set all of its points as boundary
|
||||
for (int nFaceIdx = range.min(); nFaceIdx <= range.max(); ++nFaceIdx) {
|
||||
for(int nPointIdx : mesh.faces()[nFaceIdx]) {
|
||||
bIsBoundaryPts[nPointIdx] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Step 2: Finding all boundary cells
|
||||
// - A boundary cell is a cell containing at least one boundary point
|
||||
std::vector<bool> bIsBoundaryCells(nCellCount, false);
|
||||
|
||||
// For every boundary point: mark all cells that have it as boundary cells
|
||||
for (int nPntIdx = 0; nPntIdx < mesh.nPoints(); nPntIdx++)
|
||||
{
|
||||
if (!bIsBoundaryPts[nPntIdx]) continue;
|
||||
// Here we make use of the nPntCellList we found when computing the Mesh-Graph
|
||||
for (int nCellIdx : nPntCellList[nPntIdx])
|
||||
bIsBoundaryCells[nCellIdx] = true;
|
||||
}
|
||||
|
||||
// Step 3: Separate the boundary cells based on which connected component they are a part of
|
||||
// - Find for each connected component a list of all its boundary cells
|
||||
int nConnnectedComponentCnt = *std::max_element(nCellConnnectedComponentIndex.begin(), nCellConnnectedComponentIndex.end()) + 1;
|
||||
std::vector<std::vector<int>> nBoundaryCellsByConnnectedComponent(nConnnectedComponentCnt, std::vector<int>());
|
||||
for (int nCellIdx = 0; nCellIdx < nCellCount; nCellIdx++)
|
||||
{
|
||||
if (bIsBoundaryCells[nCellIdx]) {
|
||||
nBoundaryCellsByConnnectedComponent[nCellConnnectedComponentIndex[nCellIdx]].push_back(nCellIdx);
|
||||
}
|
||||
}
|
||||
|
||||
// Steps 4+5:
|
||||
// - Find each cells distance from the boundary by running a BFS algorithm from the boundary in each connected component
|
||||
// - Along the way, find the deepest cell in each connected component and push them to the list
|
||||
|
||||
for (std::vector<int>& nBndCells : nBoundaryCellsByConnnectedComponent) {
|
||||
|
||||
// We want to find the maximum depth cell within the connected component
|
||||
int nMaxDepthCell = nBndCells[0];
|
||||
|
||||
// Run a BFS algorithm from the boundary:
|
||||
// - All boundary cells are pushed to the queue with depth 0
|
||||
std::queue<int> nBfsQueue;
|
||||
for (int nCellIdx : nBndCells) {
|
||||
nCellDepthList[nCellIdx] = 0;
|
||||
nBfsQueue.push(nCellIdx);
|
||||
}
|
||||
|
||||
while (!nBfsQueue.empty()) {
|
||||
int nCurrCell = nBfsQueue.front();
|
||||
nBfsQueue.pop();
|
||||
|
||||
// Check if current cell is the deeper than the maximum depth cell found so far. If it is, we update nMaxDepthCell
|
||||
if (nCellDepthList[nCurrCell] > nCellDepthList[nMaxDepthCell])
|
||||
nMaxDepthCell = nCurrCell;
|
||||
|
||||
// The BFS algorithm needs to be based on point-neghbours, meaning by using the Mesh-Graph
|
||||
// Note that while cells in different connected components are never face-neighbours, but they may be point-neighbours (neighbours in the Mesh-Graph)
|
||||
// Therefore, when pushing all point-neighbouring cells we need to check that they are in the same connected component
|
||||
for (int nNeiCell : nMeshGraph[nCurrCell]) {
|
||||
if (nCellDepthList[nNeiCell] != -1) continue;
|
||||
if (nCellConnnectedComponentIndex[nNeiCell] != nCellConnnectedComponentIndex[nCurrCell]) continue;
|
||||
|
||||
nCellDepthList[nNeiCell] = nCellDepthList[nCurrCell] + 1;
|
||||
nBfsQueue.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
|
||||
// Finally, we can push the maximum depth cell we found
|
||||
nStartingCells.push_back(nMaxDepthCell);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getLayers(const std::vector<int>& nStartingCells, std::vector<std::vector<int>>& nCellsByLayer) {
|
||||
|
||||
// Separates all cells in the mesh to layers
|
||||
// In each connected component:
|
||||
// 1) The starting cell is set as 'Layer 0'
|
||||
// 2) All cells that are point-neighbours of the starting cell are set as layer 1
|
||||
// 3) All cells that are point-neighbours of a cell in layer 1 are set as layer 2
|
||||
// 4) Repeat step (3) with increasing layer indices until all cells have been found
|
||||
// In this way, cells in each component are grouped in layers by their MINIMUM point-distance to their starting cell
|
||||
|
||||
// Note: In reality, the same BFS is run for all components at once. Because components are connected, this is equivalent
|
||||
|
||||
// Now we run BFS from starting cells
|
||||
std::queue<int> nBfsQueue;
|
||||
|
||||
// Push all starting cells to queue
|
||||
for (int nCellIdx : nStartingCells) {
|
||||
nCellLayerIndex[nCellIdx] = 0;
|
||||
nBfsQueue.push(nCellIdx);
|
||||
}
|
||||
|
||||
// BFS algorithm will find for each cell its minimum distance in the Mesh-Graph from the corresponding starting cell
|
||||
while(!nBfsQueue.empty())
|
||||
{
|
||||
int nCurrCell = nBfsQueue.front();
|
||||
nBfsQueue.pop();
|
||||
|
||||
int nLayer = nCellLayerIndex[nCurrCell];
|
||||
if (int(nCellsByLayer.size()) <= nCellLayerIndex[nCurrCell])
|
||||
nCellsByLayer.emplace_back();
|
||||
nCellsByLayer[nLayer].push_back(nCurrCell);
|
||||
|
||||
for(int nNeiCell : nMeshGraph[nCurrCell]) {
|
||||
// If neighbour is in a different connected component, ignore it
|
||||
if (nCellConnnectedComponentIndex[nNeiCell] != nCellConnnectedComponentIndex[nCurrCell]) continue;
|
||||
// If neighbour hasn't been visited yet, set it's layer and push it:
|
||||
if (nCellLayerIndex[nNeiCell] != -1) continue;
|
||||
|
||||
nCellLayerIndex[nNeiCell] = nCellLayerIndex[nCurrCell] + 1;
|
||||
nBfsQueue.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::solveLayer(std::vector<int> nCellsInLayer, Foam::labelList& cellOrder) {
|
||||
|
||||
// Note: this method assumes all cells in the nCellsInLayer have the same 'layer index' in nCellLayerIndex
|
||||
|
||||
// General rundown of the algorithm:
|
||||
// 1) Cells are separated into connected components
|
||||
// 2) Each connected component is solved separately and its path is added to the renumbering
|
||||
// 3) If there are still cells that have not been found, return to step (1)
|
||||
|
||||
while (!nCellsInLayer.empty())
|
||||
{
|
||||
// Step 1: separate the cells into connected components
|
||||
// - Connected components need to be connected by FACES (not points)
|
||||
std::vector<std::vector<int>> nCellsByConnnectedComponent;
|
||||
getConnectedComponents(nCellsInLayer, nCellsByConnnectedComponent);
|
||||
|
||||
int nOrigFoundCellCount = nFoundCellCount;
|
||||
|
||||
// Step 2: For each connected component we call getHpathinConnnectedComponent()
|
||||
for (std::vector<int>& nCellsInConnectedComponent : nCellsByConnnectedComponent)
|
||||
{
|
||||
solveConnectedComponent(nCellsInConnectedComponent, cellOrder);
|
||||
}
|
||||
|
||||
// Find how many cells were still not found
|
||||
int nRemainingCellCount = nCellsInLayer.size() - (nFoundCellCount - nOrigFoundCellCount);
|
||||
if (nRemainingCellCount == 0) break;
|
||||
|
||||
// Step 3: Find all the cells in the layer that were not found yet
|
||||
std::vector<int> nRemainingCells(nRemainingCellCount);
|
||||
int nIndex = 0;
|
||||
for (int nCellIdx : nCellsInLayer) {
|
||||
if (!bIsRenumbered[nCellIdx]) {
|
||||
nRemainingCells[nIndex++] = nCellIdx;
|
||||
}
|
||||
}
|
||||
|
||||
resetCells(nRemainingCells);
|
||||
nCellsInLayer = nRemainingCells;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getConnectedComponents(const std::vector<int>& nCellList, std::vector<std::vector<int>>& nCellsByConnnectedComponent) {
|
||||
|
||||
// This function separates cells in a certain layer into connected components
|
||||
// Each connected component will get a unique index
|
||||
// - nCellsByConnnectedComponent[i] will contain a list of all cells with connected component index 'i'
|
||||
|
||||
// We accomplish this using a generalized DFS algorithm:
|
||||
// While there are still cells that haven't been found:
|
||||
// 1) Choose some cell in the layer that hasn't been found yet
|
||||
// 2) Find all cells connected to that cell (using a dfs stack)
|
||||
// 3) Set all of these cells as a new connected component
|
||||
|
||||
// Notice: This method does not use the Mesh-Graph!
|
||||
// - This is because the Mesh-Graph is POINT-connected, but we are searching for FACE-connected components
|
||||
|
||||
// The index of the current connected component
|
||||
int nConnnectedComponentIndex = -1;
|
||||
|
||||
for (int nCellIdx : nCellList) {
|
||||
if (nCellConnnectedComponentIndex[nCellIdx] != -1) continue;
|
||||
|
||||
// This cell hasn't been found yet
|
||||
// So we set it to be the beginning of a new connected component
|
||||
// We increment nConnnectedComponentIndex, it is now the index of this new connected component
|
||||
nConnnectedComponentIndex++;
|
||||
nCellConnnectedComponentIndex[nCellIdx] = nConnnectedComponentIndex;
|
||||
nCellsByConnnectedComponent.emplace_back();
|
||||
|
||||
std::stack<int> nDfsStack;
|
||||
nDfsStack.push(nCellIdx);
|
||||
|
||||
while(!nDfsStack.empty()) {
|
||||
int nCurrCell = nDfsStack.top();
|
||||
nDfsStack.pop();
|
||||
|
||||
nCellsByConnnectedComponent[nConnnectedComponentIndex].push_back(nCurrCell);
|
||||
|
||||
// We push all face-neighbouring cells that:
|
||||
// 1) Are in the same layer
|
||||
// 2) Haven't been found yet
|
||||
for (int nFaceIdx : mesh.cells()[nCurrCell]) {
|
||||
int nNeiCell = getNei(nCurrCell, nFaceIdx);
|
||||
if (nNeiCell < 0) continue;
|
||||
if (nCellLayerIndex[nNeiCell] != nCellLayerIndex[nCurrCell]) continue;
|
||||
if (nCellConnnectedComponentIndex[nNeiCell] != -1) continue;
|
||||
|
||||
nCellConnnectedComponentIndex[nNeiCell] = nConnnectedComponentIndex;
|
||||
nDfsStack.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::solveConnectedComponent(const std::vector<int>& nCellsInConnectedComponent, Foam::labelList& cellOrder) {
|
||||
|
||||
// For small cases, find path manually (1-2 cells)
|
||||
if (nCellsInConnectedComponent.size() <= 2) {
|
||||
for (int nCellIdx : nCellsInConnectedComponent) {
|
||||
cellOrder[nFoundCellCount++] = nCellIdx;
|
||||
bIsRenumbered[nCellIdx] = true;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Get a graph representing the connected component
|
||||
getConnnectedComponentGraph(nCellsInConnectedComponent);
|
||||
|
||||
// Get the starting cell
|
||||
int nStartCell = getStartingCellInConnnectedComponent(nCellsInConnectedComponent);
|
||||
|
||||
// Reorder each cells neighbours in the ConnnectedComponent-Graph in descending order by distance from start cell
|
||||
reorderDistFromStart(nStartCell, nCellsInConnectedComponent);
|
||||
|
||||
// Get a path through the connected component, using the ConnnectedComponent-Graph
|
||||
findPath(nStartCell, cellOrder);
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::getConnnectedComponentGraph(const std::vector<int>& nCellsInConnectedComponent) {
|
||||
|
||||
// This method computes the ConnnectedComponent-Graph
|
||||
// Cells are connected in the ConnnectedComponent-Graph if:
|
||||
// a) They are in the same layer
|
||||
// b) They are face-connected in the mesh (different from Mesh-Graph - there it was point-connected)
|
||||
// - note that this implies that they are also in the same connected component (hence the name)
|
||||
|
||||
for (int nCellIdx : nCellsInConnectedComponent)
|
||||
{
|
||||
// Necessary if this being called recursively
|
||||
nConnnectedComponentGraph[nCellIdx].clear();
|
||||
|
||||
// For every face on the cell, find its neighbour through that face (if there is one)
|
||||
// If that neighbour:
|
||||
// 1) Hasn't been added to the reordering yet
|
||||
// 2) Is in the same layer
|
||||
// 3) Is in the same connected component
|
||||
// Then we add it as a neighbour in the ConnectedComponent-Graph
|
||||
for (int nFaceIdx : mesh.cells()[nCellIdx])
|
||||
{
|
||||
int nNeiCell = getNei(nCellIdx, nFaceIdx);
|
||||
if (nNeiCell < 0) continue;
|
||||
if (bIsRenumbered[nNeiCell]) continue;
|
||||
if (nCellLayerIndex[nNeiCell] != nCellLayerIndex[nCellIdx]) continue;
|
||||
|
||||
nConnnectedComponentGraph[nCellIdx].push_back(nNeiCell);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int Foam::hpathRenumber::hpathFinder::getStartingCellInConnnectedComponent(const std::vector<int>& nCellsInConnectedComponent) {
|
||||
|
||||
// Strategy for choosing a starting cell in the connected component:
|
||||
// 1) Start from an arbitrary cell within the connected component
|
||||
// 2) Find the furthest cell from it: choose it as the starting cell
|
||||
|
||||
// The reasoning behind this strategy is as follows:
|
||||
// - In many cases the cells given may be of the general shape of a long straight path
|
||||
// - In these cases, by starting from the farthest cell we guarantee it will be at one of the edges of the path
|
||||
|
||||
// It does not matter which cell we start from, so arbitrarly start from first cell in the connected component
|
||||
int nCellIdx = nCellsInConnectedComponent[0];
|
||||
|
||||
// Find farthest cell from nCellIdx
|
||||
// This is done using a standard BFS algorithm
|
||||
std::queue<int> nBfsQueue;
|
||||
|
||||
bBFSFoundCell[nCellIdx] = true;
|
||||
nBfsQueue.push(nCellIdx);
|
||||
|
||||
int nCurrCell = -1;
|
||||
|
||||
while(!nBfsQueue.empty()) {
|
||||
nCurrCell = nBfsQueue.front();
|
||||
nBfsQueue.pop();
|
||||
|
||||
// Push all cells that have not yet been found by the BFS
|
||||
for (int nNeiCell : nConnnectedComponentGraph[nCurrCell]) {
|
||||
if (bBFSFoundCell[nNeiCell]) continue;
|
||||
bBFSFoundCell[nNeiCell] = true;
|
||||
nBfsQueue.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
|
||||
// nCurrCell should now be the farthest cell from the starting cell in the connected component
|
||||
return nCurrCell;
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::reorderDistFromStart(int nStartCell, const std::vector<int>& nCellsInConnectedComponent) {
|
||||
|
||||
// findPath() tends to find much better results when each cell's neighbours are ordered in a specific way based on their face/point-distance to the starting cell
|
||||
|
||||
// First, this method finds for each cell in the connected component its face-distance from the start cell
|
||||
// Secondly, this method finds for each cell in the connected component its point-distance from the start cell
|
||||
// Finally, this method reorders each cells neighbours in the ConnnectedComponent-Graph accordingly
|
||||
|
||||
// - Both of these are done using a BFS algorithm: the first using face-neigbours and the second using point-neighbours
|
||||
|
||||
std::queue<int> nBfsQueue;
|
||||
|
||||
// Find the face-distance of all cells in the connected component from the starting cell
|
||||
nCellFaceDistFromStart[nStartCell] = 0;
|
||||
// Push starting cell to queue
|
||||
nBfsQueue.push(nStartCell);
|
||||
|
||||
while (!nBfsQueue.empty()) {
|
||||
int nCurrCell = nBfsQueue.front();
|
||||
nBfsQueue.pop();
|
||||
|
||||
// Push all face-neighbours that haven't already had their face distance found
|
||||
// Face-neighbours are saved in the ConnnectedComponent-Graph
|
||||
for (int nNeiCell : nConnnectedComponentGraph[nCurrCell]) {
|
||||
if (nCellFaceDistFromStart[nNeiCell] != -1) continue;
|
||||
|
||||
nCellFaceDistFromStart[nNeiCell] = nCellFaceDistFromStart[nCurrCell] + 1;
|
||||
nBfsQueue.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
|
||||
// Find the *point*-distance of all cells in the connected component from the starting cell
|
||||
nCellPointDistFromStart[nStartCell] = 0;
|
||||
// Push starting cell to queue
|
||||
nBfsQueue.push(nStartCell);
|
||||
|
||||
while (!nBfsQueue.empty()) {
|
||||
int nCurrCell = nBfsQueue.front();
|
||||
nBfsQueue.pop();
|
||||
|
||||
// Push all the point-neighbour that:
|
||||
// 1) Haven't already been pushed by the BFS previously
|
||||
// 2) Are in the same layer as the Starting Cell
|
||||
// 3) Are in the same connected component as the Starting Cell
|
||||
// Point neighbours are saved in the Mesh-Graph
|
||||
for (int nNeiCell : nMeshGraph[nCurrCell]) {
|
||||
if (bIsRenumbered[nNeiCell]) continue;
|
||||
if (nCellPointDistFromStart[nNeiCell] != -1) continue;
|
||||
if (nCellLayerIndex[nNeiCell] != nCellLayerIndex[nStartCell]) continue;
|
||||
if (nCellConnnectedComponentIndex[nNeiCell] != nCellConnnectedComponentIndex[nStartCell]) continue;
|
||||
|
||||
nCellPointDistFromStart[nNeiCell] = nCellPointDistFromStart[nCurrCell] + 1;
|
||||
nBfsQueue.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
|
||||
for (int nCellIdx : nCellsInConnectedComponent) {
|
||||
// Sorting of neighbours is done in two levels:
|
||||
// 1) Neigbours are sorted *descending*-order based on their *point*-distance from the starting cell
|
||||
// 2) Neigbours with the same *point*-distance are sorted in *ascending*-order based on their *face*-distance from the starting cell
|
||||
std::sort(nConnnectedComponentGraph[nCellIdx].begin(), nConnnectedComponentGraph[nCellIdx].end(), [this](int i, int j) {
|
||||
if (nCellPointDistFromStart[i] != nCellPointDistFromStart[j])
|
||||
return nCellPointDistFromStart[i] > nCellPointDistFromStart[j];
|
||||
else
|
||||
return nCellFaceDistFromStart[i] < nCellFaceDistFromStart[j];
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::findPath(int nStartCell, Foam::labelList& cellOrder) {
|
||||
|
||||
// Tries to find the furthest cell from the starting cell within the ConnectedComponent-Graph
|
||||
// This is done using a DFS algorithm:
|
||||
// - Run DFS from starting cell
|
||||
// - Return path to deepest cell found by DFS
|
||||
|
||||
// Run a standard DFS algorithm from starting cell
|
||||
std::stack<int> nDfsStack;
|
||||
nDfsStack.push(nStartCell);
|
||||
nDFSParentCell[nStartCell] = nStartCell;
|
||||
|
||||
// Used for finding and returning the best path
|
||||
int nBestCell = nStartCell;
|
||||
|
||||
while(!nDfsStack.empty()) {
|
||||
int nCurrCell = nDfsStack.top();
|
||||
nDfsStack.pop();
|
||||
|
||||
// If the cell has already been popped previously, we can skip it
|
||||
if (nDFSCellDepth[nCurrCell] != -1) continue;
|
||||
|
||||
// Otherwise, we update its depth value. This means the cell will never be PUSHED again
|
||||
nDFSCellDepth[nCurrCell] = nDFSCellDepth[nDFSParentCell[nCurrCell]] + 1;
|
||||
|
||||
// If this is the new deepest cell, update best
|
||||
if (nDFSCellDepth[nCurrCell] > nDFSCellDepth[nBestCell]) {
|
||||
nBestCell = nCurrCell;
|
||||
}
|
||||
|
||||
// Cells will be popped from the stack in reverse order from how we pushed them
|
||||
// By iterating over the neighbors in reverse order, cells will be popped in the correct order
|
||||
for (int nNeiIdx = nConnnectedComponentGraph[nCurrCell].size() - 1; nNeiIdx >= 0; nNeiIdx--)
|
||||
{
|
||||
int nNeiCell = nConnnectedComponentGraph[nCurrCell][nNeiIdx];
|
||||
if (nDFSCellDepth[nNeiCell] == -1) {
|
||||
// Notice we only update the nCellDepth value of a cell when we POP it from the stack
|
||||
// This means some cells may be pushed many times, but they will only be popped once
|
||||
nDFSParentCell[nNeiCell] = nCurrCell;
|
||||
nDfsStack.push(nNeiCell);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int nCellIdx = nBestCell;
|
||||
int nPrevCell = -1;
|
||||
while(nCellIdx != nPrevCell) {
|
||||
cellOrder[nFoundCellCount++] = nCellIdx;
|
||||
bIsRenumbered[nCellIdx] = true;
|
||||
|
||||
// The first cell in the path is always its own parent
|
||||
nPrevCell = nCellIdx;
|
||||
nCellIdx = nDFSParentCell[nCellIdx];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::hpathRenumber::hpathFinder::resetCells(std::vector<int>& nCellList) {
|
||||
// Reset the data structures for the cells that were not found in the renumbering
|
||||
for (int nCellIdx : nCellList) {
|
||||
nCellConnnectedComponentIndex[nCellIdx] = -1;
|
||||
nCellPointDistFromStart[nCellIdx] = -1;
|
||||
nCellFaceDistFromStart[nCellIdx] = -1;
|
||||
bBFSFoundCell[nCellIdx] = false;
|
||||
nDFSCellDepth[nCellIdx] = -1;
|
||||
nDFSParentCell[nCellIdx] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
252
src/renumber/renumberMethods/hpathRenumber/hpathRenumber.H
Normal file
252
src/renumber/renumberMethods/hpathRenumber/hpathRenumber.H
Normal file
@ -0,0 +1,252 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | www.openfoam.com
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2011-2012 OpenFOAM Foundation
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Class
|
||||
Foam::hpathRenumber
|
||||
|
||||
Description
|
||||
Hpath renumber.
|
||||
|
||||
SourceFiles
|
||||
hpathRenumber.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#ifndef hpathRenumber_H
|
||||
#define hpathRenumber_H
|
||||
|
||||
#include "renumberMethod.H"
|
||||
|
||||
|
||||
namespace Foam
|
||||
{
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
Class hpathRenumber Declaration
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
class hpathRenumber
|
||||
:
|
||||
public renumberMethod
|
||||
{
|
||||
// Flag indicating if layer separation is applied (default: true)
|
||||
bool m_bApplyLayerSeparation;
|
||||
|
||||
//- No copy construct
|
||||
hpathRenumber(const hpathRenumber&) = delete;
|
||||
|
||||
//- No copy assignment
|
||||
void operator=(const hpathRenumber&) = delete;
|
||||
|
||||
public:
|
||||
//- Runtime type information
|
||||
TypeName("hpath");
|
||||
|
||||
// Constructors
|
||||
|
||||
//- Construct given the renumber dictionary
|
||||
hpathRenumber(const dictionary& renumberDict);
|
||||
|
||||
//- Destructor
|
||||
virtual ~hpathRenumber() = default;
|
||||
|
||||
|
||||
// Member Functions
|
||||
|
||||
// Unimplemented renumber method - needs to be included for class to compile
|
||||
virtual labelList renumber(const labelListList& cellCells, const pointField& cc) const {
|
||||
NotImplemented;
|
||||
return labelList();
|
||||
};
|
||||
|
||||
// Implemented renumber method
|
||||
// Returns the order in which cells need to be visited,
|
||||
// from ordered back to original cell label.
|
||||
// Uses the mesh connectivity
|
||||
virtual labelList renumber
|
||||
(
|
||||
const polyMesh& mesh,
|
||||
const pointField& cc
|
||||
) const;
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
Struct dynamicMarker Declaration
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
// This class supports marking and unmarking small sets of indices quickly
|
||||
// Used for efficient construction of Mesh Graph in getMeshGraph()
|
||||
|
||||
class dynamicMarker {
|
||||
private:
|
||||
std::vector<bool> bMarker;
|
||||
std::stack<int> nMarkedStack;
|
||||
|
||||
public:
|
||||
// Create a new dynamicMarker of size n
|
||||
// All items will begin unmarked
|
||||
dynamicMarker(int n);
|
||||
|
||||
// Mark the i'th element (0 <= i < n), return false if it was already marked.
|
||||
bool mark(int i);
|
||||
|
||||
// Clear ALL marked elements
|
||||
void clear();
|
||||
};
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
Class hpathFinder Declaration
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
class hpathFinder {
|
||||
private: // Private member variables
|
||||
|
||||
// The input mesh
|
||||
const Foam::polyMesh& mesh;
|
||||
const int nCellCount;
|
||||
|
||||
// Counter for the number of renumbered cells
|
||||
int nFoundCellCount;
|
||||
|
||||
// Marks cells that have been added to the renumbering as 'true'
|
||||
std::vector<bool> bIsRenumbered;
|
||||
|
||||
// For every data structure, I explain what it is used for and which method is used to compute it
|
||||
|
||||
// For every point a list of cells it is part of - getPointCellLists()
|
||||
std::vector<std::vector<int>> nPntCellList;
|
||||
// For every cell a list of points on it - getPointCellLists()
|
||||
std::vector<std::vector<int>> nCellPntList;
|
||||
|
||||
// For every cell, a list of all its point-neighbouring cells - getMeshGraph()
|
||||
std::vector<std::vector<int>> nMeshGraph;
|
||||
|
||||
// For each cell its 'layer index': - getLayers()
|
||||
// - cells in the same layer will have the same layer index
|
||||
std::vector<int> nCellLayerIndex;
|
||||
|
||||
// For each cell its 'connected component index': - getConnectedComponents()
|
||||
// - cells in the same connected component will have the same connected component index
|
||||
std::vector<int> nCellConnnectedComponentIndex;
|
||||
|
||||
// For each cell its face-neighbours in the connected component - getConnnectedComponentGraph()
|
||||
std::vector<std::vector<int>> nConnnectedComponentGraph;
|
||||
|
||||
// Marks cells that have already been by BFS - getStartingCellInConnnectedComponent()
|
||||
std::vector<bool> bBFSFoundCell;
|
||||
|
||||
// For each cell its point distance from the connected components start cell - reorderDistFromStart()
|
||||
std::vector<int> nCellPointDistFromStart;
|
||||
std::vector<int> nCellFaceDistFromStart;
|
||||
|
||||
// For each cell its DFS depth within the connected component - findPath()
|
||||
std::vector<int> nDFSCellDepth;
|
||||
// For each cell its DFS parent within the connected component - findPath()
|
||||
std::vector<int> nDFSParentCell;
|
||||
|
||||
public: // Public methods
|
||||
|
||||
// Constructor
|
||||
hpathFinder(const Foam::polyMesh& mesh);
|
||||
|
||||
// Get Renumbering for the mesh
|
||||
void getRenumbering(Foam::labelList& cellOrder, bool bApplyLayerSeparation);
|
||||
|
||||
// Returns the accuracy of the renumbering:
|
||||
// Accuracy is defined as the percentage of consecutive cells that are also face-neighbours in the mesh
|
||||
// - Cells are face-neighbours if they have a common face
|
||||
float getAccuracy(const Foam::labelList& cellOrder) const;
|
||||
|
||||
private: // Private methods
|
||||
|
||||
// Initialize data structures for later use
|
||||
void initialize();
|
||||
|
||||
// Given a cell and a face index, find its neighbour through the face
|
||||
// - If facing the boundary, returns -1
|
||||
// - Otherwise, returns FaceOwner/FaceNeighbour[nFaceIdx], the one that's different from nCellIdx
|
||||
int getNei(int nCellIdx, int nFaceIdx) const;
|
||||
|
||||
// Creates the 'Mesh-Graph': for every cell, a list of cells that are point-neighbours with it in the mesh
|
||||
// - Cells are point-neighbours if they have a common point
|
||||
void getMeshGraph();
|
||||
|
||||
// Finds:
|
||||
// - for each cell in the mesh a list of all points on it
|
||||
// - for every point in the mesh a list of all cells it is part of
|
||||
void getPointCellLists();
|
||||
|
||||
// Separates the mesh into layers: each cell has its layer saved in nCellLayerIndex
|
||||
// Also returns for every layer a list of all cells in it
|
||||
void getLayerSeparation(std::vector<std::vector<int>>& nCellsByLayer);
|
||||
|
||||
// For every connected component, find the deepest cell and choose it as a starting cell
|
||||
// Returns a list with one starting cell per connected component
|
||||
void getStartingCells(std::vector<int>& nStartingCells) const;
|
||||
|
||||
// Once the starting cells have been found, this method does the actual layer separation
|
||||
void getLayers(const std::vector<int>& nStartingCellList, std::vector<std::vector<int>>& nCellsByLayer);
|
||||
|
||||
// Renumber all cells in a layer
|
||||
void solveLayer(std::vector<int> nCellsInLayer, Foam::labelList& cellOrder);
|
||||
|
||||
// Seperates cells into face-connected components
|
||||
// This is done using a general DFS algorithm
|
||||
void getConnectedComponents(const std::vector<int>& nCellList, std::vector<std::vector<int>>& nCellsByConnnectedComponent);
|
||||
|
||||
// Find an approximate H-path through a connected component
|
||||
void solveConnectedComponent(const std::vector<int>& nCellsInConnectedComponent, Foam::labelList& cellOrder);
|
||||
|
||||
// Finds for each cell in the connected component a list of its face-neighbours within the component
|
||||
void getConnnectedComponentGraph(const std::vector<int>& nCellsInConnectedComponent);
|
||||
|
||||
// Finds a starting cell within the connected component
|
||||
int getStartingCellInConnnectedComponent(const std::vector<int>& nCellsInConnectedComponent);
|
||||
|
||||
// This method reorders the cells in the given connected component based on their distance from nStartCell
|
||||
void reorderDistFromStart(int nStartCell, const std::vector<int>& nCellsInConnectedComponent);
|
||||
|
||||
// Finds an H-path within the connected component and returns it in nResultHpath
|
||||
// H-path is guaranteed to start at nStartCell
|
||||
void findPath(int nStartCell, Foam::labelList& cellOrder);
|
||||
|
||||
// Resets data structures for the cells that weren't found
|
||||
void resetCells(std::vector<int>& nCellList);
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
} // End namespace Foam
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
#endif
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user