Commit Graph

107 Commits

Author SHA1 Message Date
db5348880e MRG: resolved merge conflicts from merge from develop branch 2017-05-19 16:29:54 +01:00
bb67ccd37d ENH: Cleaned up hash table item found checks 2017-05-19 11:15:35 +01:00
91b90da4f3 Integrated Foundation code to commit 104aac5 2017-05-17 16:35:18 +01:00
5c51836501 The "<type>Coeffs" sub-dictionary is now optional for most model parameters
except turbulence and lagrangian which will also be updated shortly.

For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:

transportModel  CrossPowerLaw;

CrossPowerLawCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  0.01;
    nuInf       [0 2 -1 0 0 0 0]  10;
    m           [0 0 1 0 0 0 0]   0.4;
    n           [0 0 0 0 0 0 0]   3;
}

BirdCarreauCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  1e-06;
    nuInf       [0 2 -1 0 0 0 0]  1e-06;
    k           [0 0 1 0 0 0 0]   0;
    n           [0 0 0 0 0 0 0]   1;
}

which allows a quick change between models, or using the simpler

transportModel  CrossPowerLaw;

nu0         [0 2 -1 0 0 0 0]  0.01;
nuInf       [0 2 -1 0 0 0 0]  10;
m           [0 0 1 0 0 0 0]   0.4;
n           [0 0 0 0 0 0 0]   3;

if quick switching between models is not required.

To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from

    // Seeding method.
    seedSampleSet   uniform;  //cloud; //triSurfaceMeshPointSet;

    uniformCoeffs
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

to the simpler

    // Seeding method.
    seedSampleSet
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

which also support the "<type>Coeffs" form

    // Seeding method.
    seedSampleSet
    {
        type        uniform;

        uniformCoeffs
        {
            axis        x;  //distance;

            // Note: tracks slightly offset so as not to be on a face
            start       (-1.001 -0.05 0.0011);
            end         (-1.001 -0.05 1.0011);
            nPoints     20;
        }
    }
2017-04-20 09:14:48 +01:00
fb724ce113 MRG: Integrated Foundation code to commit 9f37c3c 2017-03-31 15:34:28 +01:00
b708c23cfc ENH: Clean-up after latest Foundation integrations 2017-03-27 14:34:01 +01:00
436ec1cf1f MRG: Integrated Foundation code to commit ba4dbed 2017-03-23 12:11:49 +00:00
04c3d535b0 MRG: Integrated Foundation code to commit 47bd8e1 2017-03-23 10:12:38 +00:00
dd15478158 combustionModels::EDC: New Eddy Dissipation Concept (EDC) turbulent combustion model
including support for TDAC and ISAT for efficient chemistry calculation.

Description
    Eddy Dissipation Concept (EDC) turbulent combustion model.

    This model considers that the reaction occurs in the regions of the flow
    where the dissipation of turbulence kinetic energy takes place (fine
    structures). The mass fraction of the fine structures and the mean residence
    time are provided by an energy cascade model.

    There are many versions and developments of the EDC model, 4 of which are
    currently supported in this implementation: v1981, v1996, v2005 and
    v2016.  The model variant is selected using the optional \c version entry in
    the \c EDCCoeffs dictionary, \eg

    \verbatim
        EDCCoeffs
        {
            version v2016;
        }
    \endverbatim

    The default version is \c v2015 if the \c version entry is not specified.

    Model versions and references:
    \verbatim
        Version v2005:

            Cgamma = 2.1377
            Ctau = 0.4083
            kappa = gammaL^exp1 / (1 - gammaL^exp2),

            where exp1 = 2, and exp2 = 2.

            Magnussen, B. F. (2005, June).
            The Eddy Dissipation Concept -
            A Bridge Between Science and Technology.
            In ECCOMAS thematic conference on computational combustion
            (pp. 21-24).

        Version v1981:

            Changes coefficients exp1 = 3 and exp2 = 3

            Magnussen, B. (1981, January).
            On the structure of turbulence and a generalized
            eddy dissipation concept for chemical reaction in turbulent flow.
            In 19th Aerospace Sciences Meeting (p. 42).

        Version v1996:

            Changes coefficients exp1 = 2 and exp2 = 3

            Gran, I. R., & Magnussen, B. F. (1996).
            A numerical study of a bluff-body stabilized diffusion flame.
            Part 2. Influence of combustion modeling and finite-rate chemistry.
            Combustion Science and Technology, 119(1-6), 191-217.

        Version v2016:

            Use local constants computed from the turbulent Da and Re numbers.

            Parente, A., Malik, M. R., Contino, F., Cuoci, A., & Dally, B. B.
            (2016).
            Extension of the Eddy Dissipation Concept for
            turbulence/chemistry interactions to MILD combustion.
            Fuel, 163, 98-111.
    \endverbatim

Tutorials cases provided: reactingFoam/RAS/DLR_A_LTS, reactingFoam/RAS/SandiaD_LTS.

This codes was developed and contributed by

    Zhiyi Li
    Alessandro Parente
    Francesco Contino
    from BURN Research Group

and updated and tested for release by

    Henry G. Weller
    CFD Direct Ltd.
2017-03-17 09:44:15 +00:00
d4aba02652 combustionModels: Minor cleanup 2017-01-26 17:48:31 +00:00
1e36c99588 PaSR: Removed deprecated "turbulentReaction" switch
To run with laminar reaction rates choose the "laminar" combustion model rather
than setting "turbulentReaction no;" in the "PaSR" model.
2017-01-20 17:17:14 +00:00
ebb2ec504c STYLE: Updated header documentation 2016-12-19 14:16:13 +00:00
e50108e428 ENH: adding header description for eddyDissipationModel 2016-12-16 09:56:06 -08:00
b99817d924 Rationalized heat release rate functions
Combined 'dQ()' and 'Sh()' into 'Qdot()' which returns the heat-release rate in
the normal units [kg/m/s3] and used as the heat release rate source term in
the energy equations, to set the field 'Qdot' in several combustion solvers
and for the evaluation of the local time-step when running LTS.
2016-12-15 17:10:21 +00:00
4c79a85baa ENH: combustion models - updated for current API 2016-12-12 12:14:26 +00:00
c0f44ac4f3 MRG: Integrated foundation code 2016-12-12 12:10:29 +00:00
414b128f7f combustionModels::zoneCombustion: Corrected base-class
to avoid duplicate instantiation of the thermodynamics package.

The 'zoneCombustion' model is now selected in constant/combustionProperties by
either

combustionModel zoneCombustion<psiCombustionModel>;

or

combustionModel zoneCombustion<rhoCombustionModel>;

as appropriate.

Resolves bug-report http://bugs.openfoam.org/view.php?id=2354
2016-11-28 11:59:17 +00:00
8462be6a46 zoneCombustion: New cellZone based combustion model
in which the reactions are enabled only in the specified list of
cellZones.  e.g. in constant/combustionProperties

combustionModel zoneCombustion<psiChemistryCombustion>;

active  true;

zoneCombustionCoeffs
{
    zones (catalyst);
}

and in constant/zoneCombustionProperties

combustionModel laminar<psiChemistryCombustion>;

active  true;

laminarCoeffs
{}
2016-11-25 11:20:07 +00:00
53faca832d Merge branch 'merge-foundation' of develop.openfoam.com:Development/OpenFOAM-plus into merge-foundation 2016-10-07 10:20:45 -07:00
b9b2ac694a ENH: Adding eddyDissipationDiffusionModel, thermocouple probe and thermocoupleTestCase 2016-10-07 10:17:43 -07:00
839f14afcd ENH: Code clean-up 2016-09-30 12:30:02 +01:00
bd0e982d99 MRG: Initial commit after latest Foundation merge 2016-09-30 11:16:28 +01:00
b9940cbbb1 COMP: Multiple changes - first clean build after latest merge - UNTESTED 2016-09-23 15:36:53 +01:00
9fbd612672 GIT: Initial state after latest Foundation merge 2016-09-20 14:49:08 +01:00
86ccbca390 combustionModels/FSD: Corrected
Renamed 'omega' to 'FSDomega' to avoid a clash with the k-omega
turbulence models.

Resolves bug-report http://bugs.openfoam.org/view.php?id=2237
2016-09-09 16:23:28 +01:00
58f905ff70 C++11: Replaced the C NULL with the safer C++11 nullptr
Requires gcc version 4.7 or higher
2016-08-05 17:19:38 +01:00
ccd958a8f1 GeometricField::dimensionedInteralFieldRef() -> GeometricField::ref()
In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention.  Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information.  For consistency with the new convention in
"tmp"  "dimensionedInteralFieldRef()" has been renamed "ref()".
2016-04-30 18:43:51 +01:00
ea5401c770 GeometricField::GeometricBoundaryField -> GeometricField::Boundary
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now.  Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e

This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
2016-04-28 07:22:02 +01:00
4a57b9be2e GeometricField: Rationalized and simplified access to the dimensioned internal field
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so

volScalarField::DimensionedInternalField -> volScalarField::Internal

In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions.  To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
2016-04-27 21:32:45 +01:00
dc2951ca2f GeometricField::dimensionedInternalField() -> GeometricField::dimensionedInternalFieldRef()
See also commit 22f4ad32b1
2016-04-26 16:29:43 +01:00
43beb06018 Standardized cell, patch and face loop index names 2016-04-25 10:28:32 +01:00
7c12f7743b boundaryField() -> boundaryFieldRef() 2016-04-23 23:16:30 +01:00
95d146ecdf Rationalized the indentation of C-preprocessor directives 2016-02-29 15:42:03 +00:00
cd852be3da OpenFOAM: Updated all libraries, solvers and utilities to use the new const-safe tmp
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file.  However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.

Please report any problems on Mantis.

Henry G. Weller
CFD Direct.
2016-02-26 17:31:28 +00:00
f4ba71ddd0 OpenFOAM libraries: Updated to use the new const-safe tmp 2016-02-26 08:13:59 +00:00
7d389bcead STYLE: Consistency in Copyright statement 2016-06-27 22:38:50 +01:00
efb39a8790 ENH: (further) Doxygen documentation updates for module support 2016-06-27 20:34:19 +01:00
b9313ef2fe ENH: Consistency updates after Foundation merge and code tidying 2016-04-25 16:46:56 +01:00
fd9d801e2d GIT: Initial commit after latest foundation merge 2016-04-25 11:40:48 +01:00
99a10ecea6 Boundary conditions: Added extrapolatedCalculatedFvPatchField
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.

zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.

The entire OpenFOAM-dev code-base has been updated following the above
recommendations.

Henry G. Weller
CFD Direct
2016-02-20 22:44:37 +00:00
56fa7c0906 Update code to use the simpler C++11 template syntax removing spaces between closing ">"s 2016-01-10 22:41:16 +00:00
16e3f5c1e4 STY: Expanding header for model description 2016-01-05 15:12:02 -08:00
9dd487a359 STY: Correcting spelling mistake in diffusionMulticomponent 2016-01-05 09:55:16 -08:00
8f1d043364 GIT: Resolved conflict 2015-12-09 09:32:38 +00:00
4ba032b2be ENH: Adding diffusionMulticomponent combustion model.
Adding optional files to smallPoolFire2D to run using this model.
Taking out of the compilation of FSD combustion. It needs futher work to run using the new turbulent framework
2015-12-07 17:02:18 -08:00
269483f0bf src/combustionModels: Updated LES model lookup 2015-11-16 10:25:42 +00:00
c4d5f65a10 Completed update ...ErrorIn -> ...ErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-11 09:03:39 +00:00
fd9d07413a LTS: Simplify the selection of LTS operation 2015-06-29 11:53:20 +01:00
f92d657ab7 LTS: Formalize the naming of the rDeltaT and rSubDeltaT fields
Now the specification of the LTS time scheme is simply:

ddtSchemes
{
    default         localEuler;
}
2015-06-28 21:41:40 +01:00
57d75a691f combustionModel: Change the base turbulenceModel to compressibleTurbulenceModel
to allow combustionModel to be used with more general forms of multi-phase
2015-06-07 18:51:36 +01:00