except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
including support for TDAC and ISAT for efficient chemistry calculation.
Description
Eddy Dissipation Concept (EDC) turbulent combustion model.
This model considers that the reaction occurs in the regions of the flow
where the dissipation of turbulence kinetic energy takes place (fine
structures). The mass fraction of the fine structures and the mean residence
time are provided by an energy cascade model.
There are many versions and developments of the EDC model, 4 of which are
currently supported in this implementation: v1981, v1996, v2005 and
v2016. The model variant is selected using the optional \c version entry in
the \c EDCCoeffs dictionary, \eg
\verbatim
EDCCoeffs
{
version v2016;
}
\endverbatim
The default version is \c v2015 if the \c version entry is not specified.
Model versions and references:
\verbatim
Version v2005:
Cgamma = 2.1377
Ctau = 0.4083
kappa = gammaL^exp1 / (1 - gammaL^exp2),
where exp1 = 2, and exp2 = 2.
Magnussen, B. F. (2005, June).
The Eddy Dissipation Concept -
A Bridge Between Science and Technology.
In ECCOMAS thematic conference on computational combustion
(pp. 21-24).
Version v1981:
Changes coefficients exp1 = 3 and exp2 = 3
Magnussen, B. (1981, January).
On the structure of turbulence and a generalized
eddy dissipation concept for chemical reaction in turbulent flow.
In 19th Aerospace Sciences Meeting (p. 42).
Version v1996:
Changes coefficients exp1 = 2 and exp2 = 3
Gran, I. R., & Magnussen, B. F. (1996).
A numerical study of a bluff-body stabilized diffusion flame.
Part 2. Influence of combustion modeling and finite-rate chemistry.
Combustion Science and Technology, 119(1-6), 191-217.
Version v2016:
Use local constants computed from the turbulent Da and Re numbers.
Parente, A., Malik, M. R., Contino, F., Cuoci, A., & Dally, B. B.
(2016).
Extension of the Eddy Dissipation Concept for
turbulence/chemistry interactions to MILD combustion.
Fuel, 163, 98-111.
\endverbatim
Tutorials cases provided: reactingFoam/RAS/DLR_A_LTS, reactingFoam/RAS/SandiaD_LTS.
This codes was developed and contributed by
Zhiyi Li
Alessandro Parente
Francesco Contino
from BURN Research Group
and updated and tested for release by
Henry G. Weller
CFD Direct Ltd.
Combined 'dQ()' and 'Sh()' into 'Qdot()' which returns the heat-release rate in
the normal units [kg/m/s3] and used as the heat release rate source term in
the energy equations, to set the field 'Qdot' in several combustion solvers
and for the evaluation of the local time-step when running LTS.
to avoid duplicate instantiation of the thermodynamics package.
The 'zoneCombustion' model is now selected in constant/combustionProperties by
either
combustionModel zoneCombustion<psiCombustionModel>;
or
combustionModel zoneCombustion<rhoCombustionModel>;
as appropriate.
Resolves bug-report http://bugs.openfoam.org/view.php?id=2354
in which the reactions are enabled only in the specified list of
cellZones. e.g. in constant/combustionProperties
combustionModel zoneCombustion<psiChemistryCombustion>;
active true;
zoneCombustionCoeffs
{
zones (catalyst);
}
and in constant/zoneCombustionProperties
combustionModel laminar<psiChemistryCombustion>;
active true;
laminarCoeffs
{}
In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention. Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information. For consistency with the new convention in
"tmp" "dimensionedInteralFieldRef()" has been renamed "ref()".
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now. Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e
This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so
volScalarField::DimensionedInternalField -> volScalarField::Internal
In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions. To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file. However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.
Please report any problems on Mantis.
Henry G. Weller
CFD Direct.
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.
zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.
The entire OpenFOAM-dev code-base has been updated following the above
recommendations.
Henry G. Weller
CFD Direct
Adding optional files to smallPoolFire2D to run using this model.
Taking out of the compilation of FSD combustion. It needs futher work to run using the new turbulent framework