- add iterators, begin/end, empty() methods for STL behaviour.
Use standard algorithms where possible
* std::fill, std::copy
* std::min_element, std::max_element
- access methods consistent with other OpenFOAM containers:
* data(), cdata(), uniform()
- Use ListPolicy to impose output line breaks
- Can recover matrix storage for re-use elsewhere.
For example, to populate values with 2D i-j addressing and later
release it as flat linear storage.
- construct/assign moveable
- added minMax() function for Matrix
- additional inplace +=, -=, *=, /= operations
- add named methods at() and rowData() to Matrix.
Allows a better distinction between linear and row-based addressing
- low-level matrix solve on List/UList instead of Field
- can be used to check the validity of input values.
Example:
dict.getCheck<label>("nIters", greaterOp1<label>(0));
dict.getCheck<scalar>("relax", scalarMinMax::zero_one());
- use 'get' prefix for more regular dictionary methods.
Eg, getOrDefault() as alternative to lookupOrDefault()
- additional ops for convenient construction of predicates
ENH: make dictionary writeOptionalEntries integer
- allow triggering of Fatal if default values are used
ENH: additional scalarRange static methods: ge0, gt0, zero_one
- use GREAT instead of VGREAT for internal placeholders
- additional MinMax static methods: gt, le
- adjust naming of quaternion 'rotationSequence' to be 'eulerOrder'
to reflect its purpose.
- provide rotation matrices directly for these rotation orders in
coordinateRotations::euler for case in which the rotation tensor
is required but not a quaternion.
Modified revert of commit 6c6f777bd5.
- The "alphaContactAngleFvPatchScalarField" occurs in several
places in the code base:
- as abstract class for two-phase properties
- in various multiphase solvers
To resolve potential linking conflicts, renamed the abstract class
as "alphaContactAngleTwoPhaseFvPatchScalarField" instead.
This permits potential linking of two-phase and multi-phase
libraries without symbol conflicts and has no effect on concrete
uses of two-phase alphaContactAngle boudary conditions.
- support move insert/set and emplace insertion.
These adjustments can be used for improved memory efficiency, and
allow hash tables of non-copyable objects (eg, std::unique_ptr).
- extend special HashTable output treatment to include pointer-like
objects such as autoPtr and unique_ptr.
ENH: HashTable::at() method with checking. Fatal if entry does not exist.
- number of particles per parcel info to kinematic cloud
- added turbulent dispersion to basicHeterogeneousReactingParcel
- corrected dhsTrans in MUCSheterogeneousRate::calculate
- added cloud macro system to reactingParcelFoam and fixed calculation
of average particles per parcel
- added progress variable dimension to reacting model (nF)
- added ReactingHeterogeneous tutorial
All remote contributions to interpolation stencils now
get added as 'processor' type lduInterfaces. This guarantees
a consistent matrix, e.g. initial residual is normalised to 1.
Second change is the normalisation of the interpolation discretisation
which uses the diagonal from the unmodified equation. This helps
GAMG.
ENH: Several modifycations to avoid erroneuos rays to be shot
from wrong faces.
ENH: Updating tutorials and avoiding registration of the
coarse singleCellFvMesh
Adding solarLoad tutorial case simpleCarSolarPanel
ENH: Changes needed for the merge
- previously would have different SHA1 depending on whether the
string was a C-string, a C++-string or if the SHA1 was calculated
directly or via the OSHA1stream.
- SHA1("string")
- OSHA1stream << "string";
- OSHA1stream << string("string");
By avoiding string quoting on output, they now all deliver the same
result. This also means that the following will no longer change the SHA1
content, since it does not add anything:
osha<< string() << string() << string() << string();
This would have previously add a pair of double quotes each time!
- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- extracts values from the arch "LSB;label=32;scalar=64" header entry
to provision for managing dissimilar primitive sizes.
Compensate for the additional IOobject members by narrowing the types
for the (objectState, readOption, writeOption) enumerations
- use an IndirectListBase class for various indirect list types.
- new SortList type
In some places the SortList can be used as a lightweight alternative
to SortableList to have the convenience of bundling data and sort
indices together, but while operating on existing data lists.
In other situations, it can be useful as an alternative to
sortedOrder. For example,
pointField points = ...;
labelList order;
sortedOrder(points, order);
forAll(order, i)
{
points[order[i]] = ...;
}
Can be replaced with the following (with the same memory overhead)
pointField points = ...;
SortList<point> sortedPoints(points);
for (point& pt : sortedPoints)
{
pt = ...;
}
- new SliceList type (#1220), which can be used for stride-based
addressing into existing lists
- when running in serial but within a processor directory,
argList::globalPath() is to be used instead of Time.globalPath()
For other cases there is no difference.
- this is somewhat like labelRange, but with a stride.
Can be used to define slices (of lists, fields, ..) or as a range specifier
for a for-loop. For example,
for (label i : sliceRange(0, 10, 3))
{
...
}