- Since 'bool' and 'Switch' use the _identical_ input mechanism
(ie, both accept true/false, on/off, yes/no, none, 1/0), the main
reason to prefer one or the other is the output.
The output for Switch is as text (eg, "true"), whereas for bool
it is label (0 or 1). If the output is required for a dictionary,
Switch may be appropriate. If the output is not required, or is only
used for Pstream exchange, bool can be more appropriate.
- controlled by the the 'printExecutionFormat' InfoSwitch in
etc/controlDict
// Style for "ExecutionTime = " output
// - 0 = seconds (with trailing 's')
// - 1 = day-hh:mm:ss
ExecutionTime = 112135.2 s ClockTime = 113017 s
ExecutionTime = 1-07:08:55.20 ClockTime = 1-07:23:37
- Callable via the new Time::printExecutionTime() method,
which also helps to reduce clutter in the applications.
Eg,
runTime.printExecutionTime(Info);
vs
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
--
ENH: return elapsedClockTime() and clockTimeIncrement as double
- previously returned as time_t, which is less portable.
- parsing error state only arises from a missing final newline
in the file (which the dnl macro does not capture).
Report with a warning instead of modifying the dnl macro since
we generally wish to know about this anyhow.
- add missing newline to YEqn.H file.
- The bitSet class replaces the old PackedBoolList class.
The redesign provides better block-wise access and reduced method
calls. This helps both in cases where the bitSet may be relatively
sparse, and in cases where advantage of contiguous operations can be
made. This makes it easier to work with a bitSet as top-level object.
In addition to the previously available count() method to determine
if a bitSet is being used, now have simpler queries:
- all() - true if all bits in the addressable range are empty
- any() - true if any bits are set at all.
- none() - true if no bits are set.
These are faster than count() and allow early termination.
The new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
The new find_first(), find_last(), find_next() methods provide a faster
means of searching for bits that are set.
This can be especially useful when using a bitSet to control an
conditional:
OLD (with macro):
forAll(selected, celli)
{
if (selected[celli])
{
sumVol += mesh_.cellVolumes()[celli];
}
}
NEW (with const_iterator):
for (const label celli : selected)
{
sumVol += mesh_.cellVolumes()[celli];
}
or manually
for
(
label celli = selected.find_first();
celli != -1;
celli = selected.find_next()
)
{
sumVol += mesh_.cellVolumes()[celli];
}
- When marking up contiguous parts of a bitset, an interval can be
represented more efficiently as a labelRange of start/size.
For example,
OLD:
if (isA<processorPolyPatch>(pp))
{
forAll(pp, i)
{
ignoreFaces.set(i);
}
}
NEW:
if (isA<processorPolyPatch>(pp))
{
ignoreFaces.set(pp.range());
}
- when constructing dimensioned fields that are to be zero-initialized,
it is preferrable to use a form such as
dimensionedScalar(dims, Zero)
dimensionedVector(dims, Zero)
rather than
dimensionedScalar("0", dims, 0)
dimensionedVector("zero", dims, vector::zero)
This reduces clutter and also avoids any suggestion that the name of
the dimensioned quantity has any influence on the field's name.
An even shorter version is possible. Eg,
dimensionedScalar(dims)
but reduces the clarity of meaning.
- NB: UniformDimensionedField is an exception to these style changes
since it does use the name of the dimensioned type (instead of the
regIOobject).
- in many cases can just use lookupOrDefault("key", bool) instead of
lookupOrDefault<bool> or lookupOrDefault<Switch> since reading a
bool from an Istream uses the Switch(Istream&) anyhow
STYLE: relocated Switch string names into file-local scope
- eliminate iterators from PackedList since they were unused, had
lower performance than direct access and added unneeded complexity.
- eliminate auto-vivify for the PackedList '[] operator.
The set() method provides any required auto-vivification and
removing this ability from the '[]' operator allows for a lower
when accessing the values. Replaced the previous cascade of iterators
with simpler reference class.
PackedBoolList:
- (temporarily) eliminate logic and addition operators since
these contained partially unclear semantics.
- the new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
- more consistent use of PackedBoolList test(), set(), unset() methods
for fewer operation and clearer code. Eg,
if (list.test(index)) ... | if (list[index]) ...
if (!list.test(index)) ... | if (list[index] == 0u) ...
list.set(index); | list[index] = 1u;
list.unset(index); | list[index] = 0u;
- deleted the operator=(const labelUList&) and replaced with a setMany()
method for more clarity about the intended operation and to avoid any
potential inadvertent behaviour.
This class is largely a pre-C++11 holdover. It is now possible to
simply use move construct/assignment directly.
In a few rare cases (eg, polyMesh::resetPrimitives) it has been
replaced by an autoPtr.
Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);
ENH: combustionModel, chemistryModel: Simplified model selection
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
ENH: combustionModel, chemistryModel: Simplified model selection
Updated all tutorials to the new format
STYLE: combustionModel: Namespace changes
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
ENH: combustionModels: Default to the "none" model
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
and replaced rhoPimpleDyMFoam with a script which reports this change.
The rhoPimpleDyMFoam tutorials have been moved into the rhoPimpleFoam directory.
This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
rhoReactingFoam: Updated for changes to rhoPimpleFoam files
- this provides a better typesafe means of locating predefined cell
models than relying on strings. The lookup is now ptr() or ref()
directly. The lookup functions behave like on-demand singletons when
loading "etc/cellModels".
Functionality is now located entirely in cellModel but a forwarding
version of cellModeller is provided for API (but not ABI) compatibility
with older existing user code.
STYLE: use constexpr for cellMatcher constants
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
To unsure fvOptions are instantiated for post-processing createFvOptions.H must
be included in createFields.H rather than in the solver directly.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
BUG: porousSimpleFoam: moved createFvOptions.H into createFields.H for -postProcess option
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
BUG: solvers: Moved fvOption construction into createFields.H for post-processing
This ensures that the fvOptions are constructed for the -postProcessing option
so that functionObjects which process fvOption data operate correctly in this
mode.
The combined solver includes the most advanced and general functionality from
each solver including:
Continuous phase
Lagrangian multiphase parcels
Optional film
Continuous and Lagrangian phase reactions
Radiation
Strong buoyancy force support by solving for p_rgh
The reactingParcelFoam and reactingParcelFilmFoam tutorials have been combined
and updated.
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
Description
Base-class for thermophysical properties of solids, liquids and gases
providing an interface compatible with the templated thermodynamics
packages.
liquidProperties, solidProperties and thermophysicalFunction libraries have been
combined with the new thermophysicalProperties class into a single
thermophysicalProperties library to simplify compilation and linkage of models,
libraries and applications dependent on these classes.
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass. This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties. In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties. This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based. Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.
This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.
Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing
nMoles 1;
entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet. The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions. This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO
// Reactants (mole-based)
thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();
// Oxidant (mole-based)
thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
thermo N2(thermoData.subDict("N2")); N2 *= N2.W();
// Intermediates (mole-based)
thermo H2(thermoData.subDict("H2")); H2 *= H2.W();
// Products (mole-based)
thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
thermo CO(thermoData.subDict("CO")); CO *= CO.W();
// Product dissociation reactions
thermo CO2BreakUp
(
CO2 == CO + 0.5*O2
);
thermo H2OBreakUp
(
H2O == H2 + 0.5*O2
);
Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org
Henry G. Weller
CFD Direct Ltd.
e.g. in the reactingFoam/laminar/counterFlowFlame2DLTS tutorial:
PIMPLE
{
momentumPredictor no;
nOuterCorrectors 1;
nCorrectors 1;
nNonOrthogonalCorrectors 0;
maxDeltaT 1e-2;
maxCo 1;
alphaTemp 0.05;
alphaY 0.05;
Yref
{
O2 0.1;
".*" 1;
}
rDeltaTSmoothingCoeff 1;
rDeltaTDampingCoeff 1;
}
will limit the LTS time-step according to the rate of consumption of 'O2'
normalized by the reference mass-fraction of 0.1 and all other species
normalized by the reference mass-fraction of 1. Additionally the time-step
factor of 'alphaY' is applied to all species. Only the species specified in the
'Yref' sub-dictionary are included in the LTS limiter and if 'alphaY' is omitted
or set to 1 the reaction rates are not included in the LTS limiter.