- partial revert for 13740de427 (#2158)
MS-MPI does not currently have a MPI_Comm_create_group(),
so keep using MPI_Comm_create() there.
Only affects multi-world simulations.
CONFIG: retain dummy version of libPstream.dll
- retain as libPstream.dll-dummy so that it is available for
manual replacement of the regular libPstream.dll (#2290)
Keep extra copy of libPstream.dll as libPstream.dll-msmpi
(for example) for manual replacement.
- this is now consistent with what the internal
"get(Vol|Surface|Point)Field" methods deliver
(ie, zero-gradient for volume, calculated otherwise).
Still some slight inconsistencies with what the internal
"new(Vol|Surface|Point)Field" methods deliver however.
There they are always "calculated"
Enables particles to interact with mesh faces (decsribed using faceZones).
faceInteraction1
{
type faceInteraction;
faceZones
(
(blockageFaces stick)
// (blockageFaces escape)
// (blockageFaces rebound) // not applicable for this test case (!)
);
dMin 0;
dMax 1;
}
The faceZones entry is a list of (faceZoneName interactionType), where
interaction type is either stick, escape or rebound.
The parcel initial velocity can now be set using the new `velocityType`
entry, taking one of the following options:
- fixedValue : (default) same as earlier versions, requires U0
- patchValue : velocity set to seed patch face value
- zeroGradient : velocity set to seed patch face adjacent cell value
Example usage:
model1
{
type patchInjection;
massTotal 1;
SOI 0;
parcelBasisType mass;
patch cylinder;
duration 10;
parcelsPerSecond 100;
velocityType patchValue;
//velocityType zeroGradient;
//U0 (-10 0 0);
flowRateProfile constant 1;
sizeDistribution
{
type normal;
normalDistribution
{
expectation 1e-3;
variance 1e-4;
minValue 1e-5;
maxValue 2e-3;
}
}
}
See the new $FOAM_TUTORIALS/lagrangian/kinematicParcelFoam/spinningDisk tutorial
The turbulentTemperatureCoupledBaffleMixed boundary condition
has been superseded by the turbulentTemperatureRadCoupledMixed condition
TUT: injectorPipe: remove an unused entry
TUT: waveMakerFlap: remove uncompressed entry
ENH: Copying alphatLiquid value to alphatVapour for boiling regimes.
When using correlations for boiling regimes the phases next to the
wall are not relevant to these. Therefore the alphat is copied
accordingly from the alphat for liquid.
Only in the sub-cooling RPI model the partition of heat flux
between vapour and liquid is considered.