- make construct from UList explicit and provide corresponding
assignment operator.
- add construct,insert,set,assignment from FixedList.
This is convenient when dealing with things like edges or triFaces.
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
The typical topology is the one where boundary faces share non-consecutive
points (checkMesh reports this as 'Number of faces with non-consecutive shared points')
This is handled by no-extruding any of the vertices of both faces. Fixes#391.
- Constructor for bounding box of a single point.
- add(boundBox), add(point) ...
-> Extend box to enclose the second box or point(s).
Eg,
bb.add(pt);
vs.
bb.min() = Foam::min(bb.min(), pt);
bb.max() = Foam::max(bb.max(), pt);
Also works with other bounding boxes.
Eg,
bb.add(bb2);
// OR
bb += bb2;
vs.
bb.min() = Foam::min(bb.min(), bb2.min());
bb.max() = Foam::max(bb.max(), bb2.max());
'+=' operator allows the reduction to be used in parallel
gather/scatter operations.
A global '+' operator is not currently needed.
Note: may be useful in the future to have a 'clear()' method
that resets to a zero-sized (inverted) box.
STYLE: make many bounding box constructors explicit
By default snappyHexMesh writes files relating to the hex-splitting process into
the polyMesh directory: cellLevel level0Edge pointLevel surfaceIndex
but by setting the noRefinement flag:
writeFlags
(
noRefinement
.
.
.
);
these optional files which are generally not needed are not written.
If you run the three stages of snappyHexMesh separately or run a dynamic mesh
solver supporting refinement and unrefinement these files are needed
and "noRefinement" should not be set.
The files relating to the hex refinement are written out explicitly both by
snappyHexMesh and dynamicRefineFvMesh and hence should be set "NO_WRITE" rather
than "AUTO_WRITE" to avoid writing them twice. This change corrects the
handling of the "refinementHistory" file which should not be written by
snappyHexMesh.
changed flag which caused infinite while loop. Background info:
- findCellZoneTopo tries to find for all named surface intersections
which side of the face is in the faceZone
- i.e. it tries to make the cellZone consistent with the faceZone
(to fix small problems)
- this had some logic to assign the neighbour cellZone to the owner cellZone
- which didn't check for the neighbour being the same value as the owner
- but still set a 'changed' flag which caused the loop to never end.
This was going wrong in a fair few cases where you would get regions which
were delimited by a combination of intersections with unnamed surfaces (wall)
and named surfaces (faceZone surface) but not with either of these sets
individually. This would cause there to be unvisited cells (zone = -2)
next to a visited cells but separated by a named surface only (and not an
unnamed surface). Fixed by using direct surface intersection in the removal
part. Related to #66.
- use surfFaces() to return the templated list of faces.
This frees up the method 'faces()' to be used as a virtual method,
which will be needed at a later stage.
If a side is not yet assigned to a cellZone (but the neighbour is)
and the surface is not related to a faceZone, assign the neighbour cellZone.
Fixes#156
- value corresponds to the max memory when the corresponding profiling
is started.
Only used when the top-level profiling has memInfo active.
- memInfo is disabled by default, since the new maxMem functionality
otherwise adds overhead with every call.
tutorial:
/lagrangian/reactingParcelFoam/verticalChannelLTS
since growing single cells just makes the zoneing inconsistent with the
surface intersections (so you don't have a patch when converting surface
intersections to baffles)