- in continuation of #2565 (rotationCentre for surface output formats)
it is helpful to also support READ_IF_PRESENT behaviour for the
'origin' keyword.
This can be safely used wherever the coordinate system definition
is embedded within a sub-dictionary scope.
Eg,
dict1
{
coordinateSystem
{
origin (0 0 0); // now optional here
rotation ...;
}
}
but remains mandatory if constructed without a sub-dict:
dict2
{
origin (0 0 0); // still mandatory
e1 (1 0 0);
e3 (0 0 1);
}
With this change, the "transform" sub-dictionary can written
more naturally:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
rotationCentre (1 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
ENH: simplify handling of "coordinateSystem" dictionary lookups
- coordinateSystems::NewIfPresent method for optional entries:
coordSysPtr_ = coordinateSystem::NewIfPresent(mesh, dict);
Instead of
if (dict.found(coordinateSystem::typeName, keyType::LITERAL))
{
coordSysPtr_ =
coordinateSystem::New
(
mesh_,
dict,
coordinateSystem::typeName
);
}
else
{
coordSysPtr_.reset();
}
ENH: more consistent handling of priorities for binModels, forces (#2598)
- if the dictionaries are overspecified, give a 'coordinateSystem'
entry a higher prioriy than the 'CofR' shortcuts.
Was previously slightly inconsistent between the different models.
- as an alternative output transform (supplementary to the regular
coordinate system specification - issue #2505) it is now possible to
specify the rotation centre directly.
Example:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
origin (0 0 0);
rotationCentre (1 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
This behaves like the transformPoints and surfaceTransformPoints
'-centre' option (formerly '-origin') in that it removes the
specified amount from the point locations, applies the rotation and
finally adds the specified amount back to the newly rotated point
locations.
The results of specifying a `rotationCentre` and a non-zero
coordinate system `origin` may not be intuitively evident.
- simpler to write for sampled cutting planes etc.
For example,
slice
{
type cuttingPlane;
point (0 0 0);
normal (0 0 1);
interpolate true;
}
instead of
slice
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0);
normal (0 0 1);
}
interpolate true;
}
STYLE: add noexcept to some plane methods
- this can be used to apply a uniform field level to remove from
a sampled field. For example,
fieldLevel
{
"p.*" 1e5; // Absolute -> gauge [Pa]
T 273.15; // [K] -> [C]
U #eval{ 10/sqrt(3) }; // Uniform mag(U)=10
}
After the fieldLevel has been removed, any fieldScale is applied.
For example
fieldScale
{
"p.*" 0.01; // [Pa] -> [mbar]
}
The fieldLevel for vector and tensor fields may still need some
further refinement.
- the raw surface writer simply outputs x/y/z and field values.
This additional flag allows recovery of some geometric information.
- optional user-specified output precision
Example,
```
formatOptions
{
raw
{
normal yes;
precision 10;
}
}
```
- use simpler decomposeParDict in tutorials, several had old
'boilerplate' decomposeParDict
- use simpler libs () format
- update surface sampling to use dictionary format
- 'signed' input parameter only mandatory for distance > 0.
A distance <= 0 is always signed and the input parameter is ignored.
- Use normal distance when distance == 0. This has no effect when
the surface has no open edges, but improves on rounding issues
around the zero crossing when the surface has open edges.
This may still need future revisiting.
- takes a direct approach of determining which cells are cut and walks
the cell faces directly to build the resulting surface.
- better handling of corner cases.
* Avoids redundant points when the cut passes exactly through a
mesh point.
* Supresses generation of duplicates faces when the plane cut
coincides exactly with a mesh face.
- for severely concave cells where the plane cuts a face multiple times
there is currently no remedial action taken, except to note the
failure and unwind the insertion of the corresponding points and
faces.
- some paraview versions (eg, on windows) don't support float, only double.
This mostly affected the vtkSurfaceWriter.
The foamToVTK is also affected, but since it also supports the XML
output formats (vtp, vtu) these can be used instead.
- the problem arises since the various surface writers are stateless.
The collated output format hacks around this limitation by adding in
its own fieldDict caching (to disk).
Now include an updateMesh() method to hook into geometry changes.
This is considered a stop-gap measure until the surface output
handling is improved.
- improvement documentation for surface sampling.
- can now specify alternative sampling scheme for obtaining the
face values instead of just using the "cell" value. For example,
sampleScheme cellPoint;
This can be useful for cases when the surface is close to a boundary
cell and there are large gradients in the sampled field.
- distanceSurface now handles non-closed surfaces more robustly.
Unknown regions (not inside or outside) are marked internally and
excluded from consideration. This allows use of 'signed' surfaces
where not previously possible.