- optimize erasure using different HashTable based on its size.
Eg, hashtable.erase(other);
If 'other' is smaller than the hashtable, it is more efficient to
use the keys from other to remove from the hashtable.
Otherwise simply iterate over the hashtable and remove it if
that key was found in other.
- some functionality similar to what the standary library <iterator>
provides.
* stdFoam::begin() and stdFoam::end() do type deduction,
which means that many cases it is possible to manage these types
of changes.
For example, when managing a number of indices:
Map<labelHashSet> lookup;
1) Longhand:
for
(
Map<labelHashSet>::const_iterator iter = lookup.begin();
iter != lookup.end();
++iter
)
{ .... }
1b) The same, but wrapped via a macro:
forAllConstIter(Map<labelHashSet>, lookup, iter)
{ .... }
2) Using stdFoam begin/end templates directly
for
(
auto iter = stdFoam::begin(lookup);
iter != stdFoam::end(lookup);
++iter
)
{ .... }
2b) The same, but wrapped via a macro:
forAllConstIters(lookup, iter)
{ .... }
Note that in many cases it is possible to simply use a range-based for.
Eg,
labelList myList;
for (auto val : myList)
{ ... }
for (const auto& val : myList)
{ ... }
These however will not work with any of the OpenFOAM hash-tables,
since the standard C++ concept of an iterator would return a key,value
pair when deferencing the *iter.
The deduction methods also exhibits some slightly odd behaviour with
some PtrLists (needs some more investigation).
- make construct from UList explicit and provide corresponding
assignment operator.
- add construct,insert,set,assignment from FixedList.
This is convenient when dealing with things like edges or triFaces.
- explicitly mention the value-initialized status for the operator().
This means that the following code will properly use an initialized
zero.
HashTable<label> regionCount;
if (...)
regionCount("region1")++;
... and also this;
if (regionCount("something") > 0)
{
...
}
Note that the OpenFOAM HashTable uses operator[] to provide read and
write access to *existing* entries and will provoke a FatalError if
the entry does not exist.
The operator() provides write access to *existing* entries or will
create the new entry as required.
The STL hashes use operator[] for this purpose.
- more hash-like methods.
Eg, insert/erase via lists, clear(), empty(),...
- minVertex(), maxVertex() to return the smallest/largest label used
- improved documentation, more clarification about where/how negative
point labels are treated.
- adjust for updates in 'develop'
- change surfaceIntersection constructor to take a dictionary of
options.
tolerance | Edge-length tolerance | scalar | 1e-3
allowEdgeHits | Edge-end cuts another edge | bool | true
avoidDuplicates | Reduce the number of duplicate points | bool | true
warnDegenerate | Number of warnings about degenerate edges | label | 0
- cannot use comparison of list sizes. Okay for UList, but not here.
STYLE:
- don't need two iterators for the '<' comparison, can just access
internal storage directly
By specifying the optional outside surface emissivity radiative heat transfer to
the ambient conditions is enabled. The far-field is assumed to have an
emissivity of 1 but this could be made an optional input in the future if
needed.
Relaxation of the surface temperature is now provided via the optional
"relaxation" which aids stability of steady-state runs with strong radiative
coupling to the boundary.
- The existing ':' anchor works for rvalue substitutions
(Eg, ${:subdict.name}), but fails for lvalues, since it is
a punctuation token and parse stops there.
- support edge-ordering on construction, and additional methods:
- sort(), sorted(), unitVec(), collapse()
- null constructor initializes with -1, for consistency with face,
triFace and since it is generally much more useful that way.
- add some methods that allow edges to used somewhat more like hashes.
- count(), found(), insert(), erase()
Here is possible way to use that:
edge someEdge; // initializes with '-1' for both entries
if (someEdge.insert(pt1))
{
// added a new point label
}
... later
// unmark point on edge
someEdge.erase(pt2);
--
STYLE:
- use UList<point> instead of pointField for edge methods for flexibility.
The pointField include is retained, however, since many other routines
may be relying on it being included via edge.H
- suppress error messages that appear with zsh.
According to unset(1p), 'unset -f' unsets a function.
If the function was not previously defined, this is a no-op.
This is similar for zsh, but there it emits a warning if the
function was not previously defined.
- avoid 'local' in functions sources from etc/bashrc.
ksh does not support this.
- use 'command' shell builtin instead of 'type'.
Seems to be more consistent between shell flavours.
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}