Commit Graph

57 Commits

Author SHA1 Message Date
32c174f349 TUT: Moved g files - see 9abe97bb7b 2018-11-27 11:46:49 +00:00
5f556ffb4a ENH: make sourceInfo sub-dictionary optional for topoSet (#1060)
- helps reduce clutter in the topoSetDict files.

  Caveats when using this.

  The older specification styles using "name" will conflict with the
  set name. Eg,

    {
        name    f0
        type    faceSet;
        action  add;
        source  patchToFace;
        sourceInfo
        {
            name   inlet;
        }
    }

    would flattened to the following
    {
        name    f0
        type    faceSet;
        action  add;
        source  patchToFace;
        name   inlet;
    }
    which overwrites the "name" used for the faceSet.

    The solution is to use the updated syntax:

    {
        name    f0
        type    faceSet;
        action  add;
        source  patchToFace;
        patch   inlet;
    }
2018-11-07 10:33:36 +01:00
c2e58dca64 ENH: support multiple zones for topo set sources (#1060)
- uses the keywords 'zones' and 'zone' to avoid potential conflicts
  with a named topoSet action, but accepts 'name' for compatibility.
2018-10-29 12:54:30 +00:00
6697bb4735 ENH: improve, simplify, rationalize coordinate system handling (issue #863)
Previously the coordinate system functionality was split between
coordinateSystem and coordinateRotation. The coordinateRotation stored
the rotation tensor and handled all tensor transformations.

The functionality has now been revised and consolidated into the
coordinateSystem classes. The sole purpose of coordinateRotation
is now just to provide a selectable mechanism of how to define the
rotation tensor (eg, axis-angle, euler angles, local axes) for user
input, but after providing the appropriate rotation tensor it has
no further influence on the transformations.

--

The coordinateSystem class now contains an origin and a base rotation
tensor directly and various transformation methods.

  - The origin represents the "shift" for a local coordinate system.

  - The base rotation tensor represents the "tilt" or orientation
    of the local coordinate system in general (eg, for mapping
    positions), but may require position-dependent tensors when
    transforming vectors and tensors.

For some coordinate systems (currently the cylindrical coordinate system),
the rotation tensor required for rotating a vector or tensor is
position-dependent.

The new coordinateSystem and its derivates (cartesian, cylindrical,
indirect) now provide a uniform() method to define if the rotation
tensor is position dependent/independent.

The coordinateSystem transform and invTransform methods are now
available in two-parameter forms for obtaining position-dependent
rotation tensors. Eg,

      ... = cs.transform(globalPt, someVector);

In some cases it can be useful to use query uniform() to avoid
storage of redundant values.

      if (cs.uniform())
      {
          vector xx = cs.transform(someVector);
      }
      else
      {
          List<vector> xx = cs.transform(manyPoints, someVector);
      }

Support transform/invTransform for common data types:
   (scalar, vector, sphericalTensor, symmTensor, tensor).

====================
  Breaking Changes
====================

- These changes to coordinate systems and rotations may represent
  a breaking change for existing user coding.

- Relocating the rotation tensor into coordinateSystem itself means
  that the coordinate system 'R()' method now returns the rotation
  directly instead of the coordinateRotation. The method name 'R()'
  was chosen for consistency with other low-level entities (eg,
  quaternion).

  The following changes will be needed in coding:

      Old:  tensor rot = cs.R().R();
      New:  tensor rot = cs.R();

      Old:  cs.R().transform(...);
      New:  cs.transform(...);

  Accessing the runTime selectable coordinateRotation
  has moved to the rotation() method:

      Old:  Info<< "Rotation input: " << cs.R() << nl;
      New:  Info<< "Rotation input: " << cs.rotation() << nl;

- Naming consistency changes may also cause code to break.

      Old:  transformVector()
      New:  transformPrincipal()

  The old method name transformTensor() now simply becomes transform().

====================
  New methods
====================

For operations requiring caching of the coordinate rotations, the
'R()' method can be used with multiple input points:

       tensorField rots(cs.R(somePoints));

   and later

       Foam::transformList(rots, someVectors);

The rotation() method can also be used to change the rotation tensor
via a new coordinateRotation definition (issue #879).

The new methods transformPoint/invTransformPoint provide
transformations with an origin offset using Cartesian for both local
and global points. These can be used to determine the local position
based on the origin/rotation without interpreting it as a r-theta-z
value, for example.

================
  Input format
================

- Streamline dictionary input requirements

  * The default type is cartesian.
  * The default rotation type is the commonly used axes rotation
    specification (with e1/e2/3), which is assumed if the 'rotation'
    sub-dictionary does not exist.

    Example,

    Compact specification:

        coordinateSystem
        {
            origin  (0 0 0);
            e2      (0 1 0);
            e3      (0.5 0 0.866025);
        }

    Full specification (also accepts the longer 'coordinateRotation'
    sub-dictionary name):

        coordinateSystem
        {
            type    cartesian;
            origin  (0 0 0);

            rotation
            {
                type    axes;
                e2      (0 1 0);
                e3      (0.5 0 0.866025);
            }
        }

   This simplifies the input for many cases.

- Additional rotation specification 'none' (an identity rotation):

      coordinateSystem
      {
          origin  (0 0 0);
          rotation { type none; }
      }

- Additional rotation specification 'axisAngle', which is similar
  to the -rotate-angle option for transforming points (issue #660).
  For some cases this can be more intuitive.

  For example,

      rotation
      {
          type    axisAngle;
          axis    (0 1 0);
          angle   30;
      }
  vs.
      rotation
      {
          type    axes;
          e2      (0 1 0);
          e3      (0.5 0 0.866025);
      }

- shorter names (or older longer names) for the coordinate rotation
  specification.

     euler         EulerRotation
     starcd        STARCDRotation
     axes          axesRotation

================
  Coding Style
================
- use Foam::coordSystem namespace for categories of coordinate systems
  (cartesian, cylindrical, indirect). This reduces potential name
  clashes and makes a clearer declaration. Eg,

      coordSystem::cartesian csys_;

  The older names (eg, cartesianCS, etc) remain available via typedefs.

- added coordinateRotations namespace for better organization and
  reduce potential name clashes.
2018-10-01 13:54:10 +02:00
6e35bcda70 ENH: Updated config for release v1806 2018-06-28 12:56:00 +01:00
16a6379183 TUT: Cleaned up headers 2018-06-26 17:37:38 +01:00
8bf98e74da TUT: added tutorial files (issue #671)
- also cleanup by using 0.orig/ directory.
- use foamListRegions to obtain region names
2017-12-19 14:40:33 +01:00
a9ffcab5af ENH: region-wise decomposition specification for decomposeParDict
Within decomposeParDict, it is now possible to specify a different
  decomposition method, methods coefficients or number of subdomains
  for each region individually.

  The top-level numberOfSubdomains remains mandatory, since this
  specifies the number of domains for the entire simulation.
  The individual regions may use the same number or fewer domains.

  Any optional method coefficients can be specified in a general
  "coeffs" entry or a method-specific one, eg "metisCoeffs".

  For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
  is used, and is also mandatory.

----

ENH: shortcut specification for multiLevel.

  In addition to the longer dictionary form, it is also possible to
  use a shorter notation for multiLevel decomposition when the same
  decomposition method applies to each level.
2017-11-09 12:30:24 +01:00
c792a9d7df TUT: script cleanup, provide cleanCase0 for commonly used operation 2017-10-12 19:20:56 +02:00
c2a0663cc7 TUT: use general 'scale' instead of 'convertToMeters' in blockMeshDict
- although this has been supported for many years, the tutorials
  continued to use "convertToMeters" entry, which is specific to blockMesh.
  The "scale" is more consistent with other dictionaries.

ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
  consistent with use elsewhere.
2017-08-03 06:38:30 +02:00
91b90da4f3 Integrated Foundation code to commit 104aac5 2017-05-17 16:35:18 +01:00
8b55ea4fb1 fvOptions: The "<type>Coeffs" sub-dictionary is now optional
For example the actuationDiskSource fvOption may now be specified

disk1
{
    type            actuationDiskSource;

    fields      (U);

    selectionMode   cellSet;
    cellSet         actuationDisk1;
    diskDir         (1 0 0);    // Orientation of the disk
    Cp              0.386;
    Ct              0.58;
    diskArea        40;
    upstreamPoint   (581849 4785810 1065);
}

rather than

disk1
{
    type            actuationDiskSource;
    active          on;

    actuationDiskSourceCoeffs
    {
        fields      (U);

        selectionMode   cellSet;
        cellSet         actuationDisk1;
        diskDir         (1 0 0);    // Orientation of the disk
        Cp              0.386;
        Ct              0.58;
        diskArea        40;
        upstreamPoint   (581849 4785810 1065);
    }
}

but this form is supported for backward compatibility.
2017-04-13 13:30:17 +01:00
dcb1a95e35 MRG: Integrated Foundation code to commit 7d6845d 2017-03-23 14:33:33 +00:00
c52e4b58a1 thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
1f826361c6 STYLE: Consistency updates to change input of <var>Name to <var>. Fixes #306 2016-11-22 14:50:33 +00:00
a6a90838fa STYLE: adjust tutorial Allrun scripts (issue #310)
- A few without a 'cd' at the start.
  Use $(getApplication) directly in more places (for clarity).
2016-11-21 10:18:00 +01:00
21679c04e4 STYLE: adjust tutorial Allclean scripts (issue #310)
- A few without a 'cd' at the start.
  Several remove files that are already covered by the cleanCase function.
2016-11-20 17:26:44 +01:00
9fbd612672 GIT: Initial state after latest Foundation merge 2016-09-20 14:49:08 +01:00
0857f479a8 PBiCGStab: New preconditioned bi-conjugate gradient stabilized solver for asymmetric lduMatrices
using a run-time selectable preconditioner

References:
    Van der Vorst, H. A. (1992).
    Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
    for the solution of nonsymmetric linear systems.
    SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.

    Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
    Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
    (1994).
    Templates for the solution of linear systems:
    building blocks for iterative methods
    (Vol. 43). Siam.

See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.

This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead.  If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
2016-09-05 11:46:42 +01:00
dd60cfcd06 FIX: provide restore0Dir function to fix issue #159
- makes it easier to ensure the correct behaviour, consistently
2016-06-27 16:33:55 +02:00
344f435f54 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:12 +01:00
3d810c11dc Tutorials: made laplacianSchemes consistent and correct 2016-06-13 23:38:03 +01:00
3eec5854be Standardized the selection of required and optional fields in BCs, fvOptions, functionObjects etc.
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry.  Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':

        Property     | Description             | Required    | Default value
        U            | velocity field name     | no          | U
        phi          | flux field name         | no          | phi
        .
        .
        .

However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.

        Property     | Description             | Required    | Default value
        pName        | pressure field name     | no          | p
        UName        | velocity field name     | no          | U

This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance.  In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
2016-05-21 20:28:20 +01:00
1b34231340 tutorials: Renamed .org -> .orig
See http://www.openfoam.org/mantisbt/view.php?id=2076
  - .org is the file extension for emacs org-mode as well
  - .orig is more to the point (.org isn't always recognized as "original")
  - .original is too long, although more consistent with the convention
    of source code file naming

Update script contributed by Bruno Santos
2016-04-30 21:53:50 +01:00
4bc77e6aff Sprucing up the tutorials folder and adding -dict to "collapseEdges"
Patch provided by Bruno Santos
Resolves patch application request http://www.openfoam.org/mantisbt/view.php?id=2015
2016-03-06 19:06:44 +00:00
fd9d801e2d GIT: Initial commit after latest foundation merge 2016-04-25 11:40:48 +01:00
daf44fda3d tutorials and templates: Updated wall BC for velocity to noSlip 2016-02-09 20:08:34 +00:00
b3d47f0423 bin/tools/RunFunctions: runParallel now obtains the number of processors from numberOfSubdomains
in decomposeParDict.

This default number of processors may be overridden by the new "-np"
option to runParallel which must be specified before the application
name e.g.:

runParallel -np 4 pisoFoam
2016-01-27 14:19:25 +00:00
f0c3e8d599 STYLE: Updated version to 'plus' 2015-12-22 23:14:17 +00:00
0e01c44129 GIT: Resolved conflict 2015-12-09 16:19:28 +00:00
8837a89237 STYLE: Updated links from openfoam.org to openfoam.com 2015-12-09 15:03:05 +00:00
33fdce88f5 porosityModels: Specification of name and dimensions of porosity coefficients is now optional
e.g.

    DarcyForchheimerCoeffs
    {
        d   (5e7 -1000 -1000);
        f   (0 0 0);

        coordinateSystem
        {
            type    cartesian;
            origin  (0 0 0);
            coordinateRotation
            {
                type    axesRotation;
                e1      (1 0 0);
                e2      (0 0 1);
            }
        }
    }
2015-11-17 12:05:57 +00:00
f5a3702e58 Corrected headers 2015-10-27 16:26:40 +00:00
37cfc3ab46 tutorials: Removed unnecessary spaces between parentheses and values in vectors 2015-07-21 20:55:44 +01:00
0fb6a01280 fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
3a004fda10 fvOptions: Separate options for all cells, cellSets and inter-region coupling
by introducing rational base-classes rather than using the hideous
'switch' statement.  Further rationalization of the cell-selection
mechanism will be implemented via an appropriate class hierarchy to
replace the remaining 'switch' statement.

Mesh-motion is currently handled very inefficiently for cellSets and not
at all for inter-region coupling.  The former will be improved when the
cell-selection classes are written and the latter by making the
meshToMesh class a MeshObject after it has been corrected for mapFields.
2015-05-31 16:38:01 +01:00
c3ee2348a6 MRF: Separate MRF from fvOptions
fvOptions does not have the appropriate structure to support MRF as it
is based on option selection by user-specified fields whereas MRF MUST
be applied to all velocity fields in the particular solver.  A
consequence of the particular design choices in fvOptions made it
difficult to support MRF for multiphase and it is easier to support
frame-related and field related options separately.

Currently the MRF functionality provided supports only rotations but
the structure will be generalized to support other frame motions
including linear acceleration, SRF rotation and 6DoF which will be
run-time selectable.
2015-05-29 23:35:43 +01:00
50ada7c994 blockMesh: Change default location of blockMeshDict from constant/polyMesh to system
For multi-region cases the default location of blockMeshDict is now system/<region name>

If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
2015-04-24 22:29:57 +01:00
77a6995346 tutorials: Simplify rhoMax and rhoMin specification 2015-02-17 10:55:02 +00:00
d919d6758a tutorials/heatTransfer/chtMultiRegionSimpleFoam/heatExchanger/system/air/topoSetDict.1: further correction to avoid duplicate registration 2015-02-14 10:13:11 +00:00
332c3cc37f Tutorials: change topoSetDicts to avoid duplicate names 2015-02-12 10:01:31 +00:00
2aec249647 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00
3dd0c19758 Rename foamClearPolyMesh -> foamCleanPolyMesh for consistency with the other foamClear.* scripts 2015-01-11 15:42:10 +00:00
41368addc9 Minor change to comment 2014-12-14 21:50:14 +00:00
9fb26d59d3 GIT: Repo update 2014-12-11 08:35:10 +00:00
fbb3ddf2c4 Updated for release 2.3.0 2014-02-17 10:21:46 +00:00
333818408f STYLE: sh instead of bash for tutorial scripts 2014-02-05 16:53:44 +00:00
54b98a8ce1 BUG: Bug in F for DarcyForchheimer porosity model.
Changing to Lists the contact resistances of turbulentTemperatureRadCoupledMixed and turbulentTemperatureCoupled BC's
Updating fvOption in heatExchanger tutorial
2014-01-08 17:12:46 +00:00
79081fe33f Add value to BC 2013-09-11 11:29:16 +01:00
0e10f00241 tutorials/heatTransfer/chtMultiRegionSimpleFoam/heatExchanger: use fixedFluxPressure not buoyantPressure BCs 2013-09-11 11:23:29 +01:00