Pstream: added maxCommsSize setting to do (unstructured) parallel transfers in blocks.
Tested:
- with maxCommsSize 0 produces exactly same result as plus.develop
- compiles with label64
- with maxCommsSize e.g. 3 produces exactly same result as plus.develop
- with maxCommsSize=0 exactly the same messages (with Pstream::debug = 1) as plus.develop
See merge request !85
1) Using divU instead of fvc::absolute(phi,U) in TEqn as the latter uses latest time meshPhi which is inconsistent
2) Adding fvc::interpolate(U) when topo changes
3) in pEq for compressible dgdt is updated using the latest rho1 and rho2 after compressible effects are considered
ENH: improve objectRegistry functionality (issue #322)
- Recursive searching for objects within a registry is now optional
(previous it was always done).
A recursive search effectively blocks the construction of sub-sub-registries
if their names are 'masked' by some parent level sub-registry with
the same name! (BUG)
- Recursive search is now turned OFF by default, which makes it consistent
with dictionary and probably causes the least number of surprises.
----
Various new convenience methods added:
lookupObjectRef()
- returns a non-const reference.
For example,
volScalarField& U = mesh().lookupObjectRef<volScalarField>("U");
Instead of
volScalarField& U = const_cast<volScalarField&>
(
mesh().lookupObject<volScalarField>("U")
);
--
lookupObjectPtr()
- returns a const pointer, and nullptr on failure.
For example,
const volScalarField* Uptr = mesh().lookupObjectPtr<volScalarField>("U");
if (Uptr)
{
const volScalarField& U = *Uptr;
...
}
Instead of
if (mesh().foundObject<volScalarField>("U"))
{
const volScalarField& U = mesh().lookupObject<volScalarField>("U");
...
}
--
lookupObjectRefPtr()
- returns a non-const pointer, and nullptr on failure.
For example,
volScalarField* Uptr = mesh().lookupObjectRefPtr<volScalarField>("U");
if (Uptr)
{
volScalarField& U = *Uptr; // use as reference
(*Uptr) = ...; // or use directly
}
Instead of
if (mesh().foundObject<volScalarField>("U"))
{
volScalarField& U = const_cast<volScalarField&>
(
mesh().lookupObject<volScalarField>("U")
);
}
--
sortedNames()
- now works with template parameters and with regular expression
matching as well.
For example,
wordList names = mesh().sortedNames();
wordList fields = mesh().sortedName<volScalarField>();
Instead of
wordList names = mesh().sortedNames();
wordList fields = mesh().names<volScalarField>();
Foam::sort(fields);
--
See merge request !83
- Recursive searching for objects within a registry is now optional
(previous it was always done).
A recursive search effectively blocks the construction of sub-sub-registries
if their names are 'masked' by some parent level sub-registry with
the same name! (BUG)
- Recursive search is now turned OFF by default, which makes it consistent
with dictionary and probably causes the least number of surprises.
----
Various new convenience methods added:
lookupObjectRef()
- returns a non-const reference.
For example,
volScalarField& U = mesh().lookupObjectRef<volScalarField>("U");
Instead of
volScalarField& U = const_cast<volScalarField&>
(
mesh().lookupObject<volScalarField>("U")
);
--
lookupObjectPtr()
- returns a const pointer, and nullptr on failure.
For example,
const volScalarField* Uptr = mesh().lookupObjectPtr<volScalarField>("U");
if (Uptr)
{
const volScalarField& U = *Uptr;
...
}
Instead of
if (mesh().foundObject<volScalarField>("U"))
{
const volScalarField& U = mesh().lookupObject<volScalarField>("U");
...
}
--
lookupObjectRefPtr()
- returns a non-const pointer, and nullptr on failure.
For example,
volScalarField* Uptr = mesh().lookupObjectRefPtr<volScalarField>("U");
if (Uptr)
{
volScalarField& U = *Uptr; // use as reference
(*Uptr) = ...; // or use directly
}
Instead of
if (mesh().foundObject<volScalarField>("U"))
{
volScalarField& U = const_cast<volScalarField&>
(
mesh().lookupObject<volScalarField>("U")
);
}
--
sortedNames()
- now works with template parameters and with regular expression
matching as well.
For example,
wordList names = mesh().sortedNames();
wordList fields = mesh().sortedName<volScalarField>();
Instead of
wordList names = mesh().sortedNames();
wordList fields = mesh().names<volScalarField>();
Foam::sort(fields);
--
- provides support for manipulating polyMesh/boundary
- changed behaviour of disableFunctionEntries option to preserve
#include
- dictionary: added reading of lists of dictionaries.
+ each list element may be accessed using the 'entryDDD' keyword
according to their list index.
Patch contributed by Mattijs Janssens
- these directories are sometimes used for a central, non-thirdparty, non-system
installation
- leave gmp and mpfr as is, since it is not clear how these would interact with system
versions
cellZones and pointZones can now be created in one action without the
need to first create a cellSet or pointSet and converting that to the
corresponding zone, e.g.
actions
(
// Example: create cellZone from a box region
{
name c0;
type cellZoneSet;
action new;
source boxToCell;
sourceInfo
{
box (0.04 0 0)(0.06 100 100);
}
}
);
- identical code was present in surfaceCheck (original source),
and isoSurface, isoSurfaceCell (copies).
- add in a MeshedSurface<face> variant as well, since this will likely
be needed in the near future
- The null constructor already creates a dimensionless Zero,
but named "undefined".
Provide an constructor for a dimensioned Zero,
but named "0" for universal clarity to its value.
- only occurs in combination with distributedTriSurfaceMesh in snappy.
- workaround similar to that previously used for surfaceRedistributePar
(issue #60).
Minor adjustment of incompressible motorBike tutorial to detect use of
distributedTriSurfaceMesh.
- there was a slight mix of MUST_READ and MUST_READ_IF_MODIFIED
but with no obvious code to handle runtime modified values
of the decomposition, or how this works with alternative
dictionaries.
- in specific cases it can be useful to suppress searching the instances.
For example, if one only wishes to check if a "points" is available at
the given time instance, without searching backwards through all
times.
BUG: resolve some decomposeParDict problems (issues #60, #265).
- Cleanup/centralize handling of -decomposeParDict by relocating
common code into argList. Ensures that all processes receive
identical information about the -decomposeParDict opton.
- Only use alternative decomposeParDict for simpleFoam/motorBike
tutorial so that this will be included in the test loop for snappy.
- Added Mattijs' fix for surfaceRedistributePar.
See merge request !73
- A special purpose MeshedSurface that exposes the stored values
for direct modification.
- Its usage should be restricted to special cases where the surface
needs modifications as an atomic operation.