Commit Graph

326 Commits

Author SHA1 Message Date
39476bde1c GIT: Resolve conflict associated with cherry-pick of Foundation commit 79ff91350
79ff91350 - rhoPimpleFoam: Improved support for compressible liquids
(2017-05-17 17:05:43 +0100) <Henry Weller>
2017-05-17 17:05:43 +01:00
9a864bdd85 GIT: Resolved merge conflict when merging develop branch 2017-05-24 12:30:09 +01:00
3b2cd0b107 DPMDyMFoam, DPMDyMFoam: Corrected support for closed-domain simulations
Also added support for extrapolated pressure boundary conditions.
2017-05-04 09:39:23 +01:00
f68896605e ENH: Clean-up after latest Foundation integrations 2017-05-17 17:33:47 +01:00
91b90da4f3 Integrated Foundation code to commit 104aac5 2017-05-17 16:35:18 +01:00
976ad36776 ENH: Initial attempt to track oriented surface fields 2017-04-24 10:34:05 +01:00
1805b3c98f radiationModel: Added "he" argument to the "Sh" function
for consistency with the other energy sources.
2017-04-13 13:57:33 +01:00
707abb910e DPMDyMFoam, MPPICDyMFoam: New dynamic mesh versions of DPMFoam and MPPICFoam
supporting both mesh morphing and topology change.
2017-04-11 10:33:34 +01:00
e6b67f6790 ENH: Clean-up after latest Foundation integrations 2017-03-28 14:21:07 +01:00
dcb1a95e35 MRG: Integrated Foundation code to commit 7d6845d 2017-03-23 14:33:33 +00:00
04c3d535b0 MRG: Integrated Foundation code to commit 47bd8e1 2017-03-23 10:12:38 +00:00
c1ca2f4a38 BUG: missing chdir in Allwclean for wallFunctionTable
STYLE: improve consistency in Allwclean scripts
2017-02-23 01:07:10 +01:00
d2be645483 thermophysicalProperties: New base-class for liquidProperties and in the future gasProperties
Description
    Base-class for thermophysical properties of solids, liquids and gases
    providing an interface compatible with the templated thermodynamics
    packages.

liquidProperties, solidProperties and thermophysicalFunction libraries have been
combined with the new thermophysicalProperties class into a single
thermophysicalProperties library to simplify compilation and linkage of models,
libraries and applications dependent on these classes.
2017-02-18 21:53:20 +00:00
c52e4b58a1 thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
b99817d924 Rationalized heat release rate functions
Combined 'dQ()' and 'Sh()' into 'Qdot()' which returns the heat-release rate in
the normal units [kg/m/s3] and used as the heat release rate source term in
the energy equations, to set the field 'Qdot' in several combustion solvers
and for the evaluation of the local time-step when running LTS.
2016-12-15 17:10:21 +00:00
5514b74922 sprayFoam: Explicitly write cloud when not solving flow 2016-12-13 13:19:22 +00:00
f31623d337 pimpleControl: Added optional 'solveFlow' control
sprayFoam: Added support for the optional 'solveFlow' control to allow
           simulation of the spray evolution with all sub-models in a 'frozen'
           flow-field.
2016-12-12 14:35:21 +00:00
c0f44ac4f3 MRG: Integrated foundation code 2016-12-12 12:10:29 +00:00
1f826361c6 STYLE: Consistency updates to change input of <var>Name to <var>. Fixes #306 2016-11-22 14:50:33 +00:00
80db302666 Allwmake: Remove 'set -x' which generates a lot of noise
'set -x' should be used for debugging.

Added command printing into wmake and Allwmake as a replacement for
'set -x' to log current target.
2016-11-13 18:08:22 +00:00
bd0e982d99 MRG: Initial commit after latest Foundation merge 2016-09-30 11:16:28 +01:00
b9940cbbb1 COMP: Multiple changes - first clean build after latest merge - UNTESTED 2016-09-23 15:36:53 +01:00
6b42dbae41 TurbulenceModels: Created a general base-class and selection mechanism for laminar stress models
Renamed the original 'laminar' model to 'Stokes' to indicate it is a
linear stress model supporting both Newtonian and non-Newtonian
viscosity.

This general framework will support linear, non-linear, visco-elastic
etc. laminar transport models.

For backward compatibility the 'Stokes' laminar stress model can be
selected either the original 'laminar' 'simulationType'
specification in turbulenceProperties:

    simulationType laminar;

or using the new more general 'laminarModel' specification:

    simulationType laminar;

    laminar
    {
        laminarModel        Stokes;
    }

which allows other laminar stress models to be selected.
2016-09-20 15:05:43 +01:00
e468d1ecc9 reactingParcelFilmFoam: Corrected support for -postProcess option 2016-09-20 14:50:41 +01:00
9fbd612672 GIT: Initial state after latest Foundation merge 2016-09-20 14:49:08 +01:00
b32bd3f295 solvers: Moved createRDeltaT.H into createFields.H so that it is available with the -postProcess option
Required to support LTS with the -postProcess option with sub-models dependent on ddt
terms during construction, in particular reactingTwoPhaseEulerFoam.
2016-09-19 22:08:39 +01:00
46ba7267de TurbulenceModels: Reorganized support macros to simplify the creation of additional turbulence model libraries 2016-07-29 15:59:09 +01:00
1d57269680 TDACChemistryModel: New chemistry model providing Tabulation of Dynamic Adaptive Chemistry
Provides efficient integration of complex laminar reaction chemistry,
combining the advantages of automatic dynamic specie and reaction
reduction with ISAT (in situ adaptive tabulation).  The advantages grow
as the complexity of the chemistry increases.

References:
    Contino, F., Jeanmart, H., Lucchini, T., & D’Errico, G. (2011).
    Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:
    An effective method for solving combustion in engine simulations.
    Proceedings of the Combustion Institute, 33(2), 3057-3064.

    Contino, F., Lucchini, T., D'Errico, G., Duynslaegher, C.,
    Dias, V., & Jeanmart, H. (2012).
    Simulations of advanced combustion modes using detailed chemistry
    combined with tabulation and mechanism reduction techniques.
    SAE International Journal of Engines,
    5(2012-01-0145), 185-196.

    Contino, F., Foucher, F., Dagaut, P., Lucchini, T., D’Errico, G., &
    Mounaïm-Rousselle, C. (2013).
    Experimental and numerical analysis of nitric oxide effect on the
    ignition of iso-octane in a single cylinder HCCI engine.
    Combustion and Flame, 160(8), 1476-1483.

    Contino, F., Masurier, J. B., Foucher, F., Lucchini, T., D’Errico, G., &
    Dagaut, P. (2014).
    CFD simulations using the TDAC method to model iso-octane combustion
    for a large range of ozone seeding and temperature conditions
    in a single cylinder HCCI engine.
    Fuel, 137, 179-184.

Two tutorial cases are currently provided:
    + tutorials/combustion/chemFoam/ic8h18_TDAC
    + tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC

the first of which clearly demonstrates the advantage of dynamic
adaptive chemistry providing ~10x speedup,

the second demonstrates ISAT on the modest complex GRI mechanisms for
methane combustion, providing a speedup of ~4x.

More tutorials demonstrating TDAC on more complex mechanisms and cases
will be provided soon in addition to documentation for the operation and
settings of TDAC.  Also further updates to the TDAC code to improve
consistency and integration with the rest of OpenFOAM and further
optimize operation can be expected.

Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.

Implementation updated, optimized and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.
2016-07-17 15:13:54 +01:00
7e53be1560 Reacting solvers: Added check for the existence of the inert specie 2016-07-06 17:45:34 +01:00
dea6a3c6e8 wmake/Allwmake: Completed support for targetType 'objects'
Patch contributed by Mattijs Janssens
2016-06-24 15:25:11 +01:00
288ead131d Descriptions of solvers corrected and made more consistent and more user-friendly 2016-06-09 18:59:40 +01:00
0dc0301da7 applications/solvers/lagrangian: Added -postProcess option
See also commit cc455173ff
2016-05-09 15:55:23 +01:00
4c5052a3a1 applications/solvers: include readTimeControls.H in the time-loop rather than createTimeControls.H
Patch contributed by Bruno Santos
Resolved bug-report http://www.openfoam.org/mantisbt/view.php?id=2079
2016-05-01 11:06:21 +01:00
81f31acbb3 Updated headers 2016-04-30 21:53:19 +01:00
3c053c2fe6 GeometricField: Renamed internalField() -> primitiveField() and dimensionedInternalField() -> internalField()
These new names are more consistent and logical because:

primitiveField():
primitiveFieldRef():
    Provides low-level access to the Field<Type> (primitive field)
    without dimension or mesh-consistency checking.  This should only be
    used in the low-level functions where dimensional consistency is
    ensured by careful programming and computational efficiency is
    paramount.

internalField():
internalFieldRef():
    Provides access to the DimensionedField<Type, GeoMesh> of values on
    the internal mesh-type for which the GeometricField is defined and
    supports dimension and checking and mesh-consistency checking.
2016-04-30 21:40:09 +01:00
ccd958a8f1 GeometricField::dimensionedInteralFieldRef() -> GeometricField::ref()
In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention.  Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information.  For consistency with the new convention in
"tmp"  "dimensionedInteralFieldRef()" has been renamed "ref()".
2016-04-30 18:43:51 +01:00
5df2b96489 GeometricField::internalField() -> GeometricField::internalFieldRef()
Non-const access to the internal field now obtained from a specifically
named access function consistent with the new names for non-canst access
to the boundary field boundaryFieldRef() and dimensioned internal field
dimensionedInternalFieldRef().

See also commit 22f4ad32b1
2016-04-30 14:25:21 +01:00
4a57b9be2e GeometricField: Rationalized and simplified access to the dimensioned internal field
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so

volScalarField::DimensionedInternalField -> volScalarField::Internal

In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions.  To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
2016-04-27 21:32:45 +01:00
dc2951ca2f GeometricField::dimensionedInternalField() -> GeometricField::dimensionedInternalFieldRef()
See also commit 22f4ad32b1
2016-04-26 16:29:43 +01:00
8c6fa81eba vector::zero -> Zero 2016-04-16 18:34:41 +01:00
77b03e2e0c Specialized dotInterpolate for the efficient calculation of flux fields
e.g. (fvc::interpolate(HbyA) & mesh.Sf()) -> fvc::flux(HbyA)

This removes the need to create an intermediate face-vector field when
computing fluxes which is more efficient, reduces the peak storage and
improved cache coherency in addition to providing a simpler and cleaner
API.
2016-04-06 20:20:53 +01:00
a9b8bb13e0 applications/.*/Allwmake: Updated to support "stop on 1st error"
Patch contributed by Bruno Santos
Resolved bug-report http://www.openfoam.org/mantisbt/view.php?id=2042
2016-04-04 09:03:40 +01:00
cd852be3da OpenFOAM: Updated all libraries, solvers and utilities to use the new const-safe tmp
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file.  However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.

Please report any problems on Mantis.

Henry G. Weller
CFD Direct.
2016-02-26 17:31:28 +00:00
c02bf70ea7 tmp: Improved reference count checks to provide better error diagnostics
in case of tmp misuse.

Simplified tmp reuse pattern in field algebra to use tmp copy and
assignment rather than the complex delayed call to 'ptr()'.

Removed support for unused non-const 'REF' storage of non-tmp objects due to C++
limitation in constructor overloading: if both tmp(T&) and tmp(const T&)
constructors are provided resolution is ambiguous.

The turbulence libraries have been upgraded and '-DCONST_TMP' option
specified in the 'options' file to switch to the new 'tmp' behavior.
2016-02-24 12:47:36 +00:00
7d389bcead STYLE: Consistency in Copyright statement 2016-06-27 22:38:50 +01:00
fd9d801e2d GIT: Initial commit after latest foundation merge 2016-04-25 11:40:48 +01:00
aa81dee52d sprayEngineFoam: Corrected included pEqn.H
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=2000
2016-02-18 08:27:21 +00:00
fc2ce73723 Solvers: Added support for extrapolated pressure boundary conditions
The boundary conditions of HbyA are now constrained by the new "constrainHbyA"
function which applies the velocity boundary values for patches for which the
velocity cannot be modified by assignment and pressure extrapolation is
not specified via the new
"fixedFluxExtrapolatedPressureFvPatchScalarField".

The new function "constrainPressure" sets the pressure gradient
appropriately for "fixedFluxPressureFvPatchScalarField" and
"fixedFluxExtrapolatedPressureFvPatchScalarField" boundary conditions to
ensure the evaluated flux corresponds to the known velocity values at
the boundary.

The "fixedFluxPressureFvPatchScalarField" boundary condition operates
exactly as before, ensuring the correct flux at fixed-flux boundaries by
compensating for the body forces (gravity in particular) with the
pressure gradient.

The new "fixedFluxExtrapolatedPressureFvPatchScalarField" boundary
condition may be used for cases with or without body-forces to set the
pressure gradient to compensate not only for the body-force but also the
extrapolated "HbyA" which provides a second-order boundary condition for
pressure.  This is useful for a range a problems including impinging
flow, extrapolated inlet conditions with body-forces or for highly
viscous flows, pressure-induced separation etc.  To test this boundary
condition at walls in the motorBike tutorial case set

    lowerWall
    {
        type            fixedFluxExtrapolatedPressure;
    }

    motorBikeGroup
    {
        type            fixedFluxExtrapolatedPressure;
    }

Currently the new extrapolated pressure boundary condition is supported
for all incompressible and sub-sonic compressible solvers except those
providing implicit and tensorial porosity support.  The approach will be
extended to cover these solvers and options in the future.

Note: the extrapolated pressure boundary condition is experimental and
requires further testing to assess the range of applicability,
stability, accuracy etc.

Henry G. Weller
CFD Direct Ltd.
2016-02-13 17:48:26 +00:00
9e3ce4ec7f Merge branch 'master' of develop.openfoam.com:Development/OpenFOAM-plus into feature-shared-file
Conflicts:
	applications/utilities/mesh/advanced/refinementLevel/refinementLevel.C
	applications/utilities/mesh/generation/foamyMesh/conformalVoronoiMesh/initialPointsMethod/pointFile/pointFile.C
	applications/utilities/miscellaneous/foamHelp/helpTypes/helpBoundary/helpBoundary.C
	applications/utilities/postProcessing/graphics/PV3Readers/PV3FoamReader/vtkPV3Foam/vtkPV3FoamUpdateInfo.C
	applications/utilities/postProcessing/graphics/PV4Readers/PV4FoamReader/vtkPV4Foam/vtkPV4FoamUpdateInfo.C
	applications/utilities/postProcessing/turbulence/createTurbulenceFields/createTurbulenceFields.C
	applications/utilities/postProcessing/velocityField/Co/Co.C
	applications/utilities/postProcessing/velocityField/Pe/Pe.C
	applications/utilities/preProcessing/applyBoundaryLayer/applyBoundaryLayer.C
	applications/utilities/preProcessing/changeDictionary/changeDictionary.C
	applications/utilities/preProcessing/setFields/setFields.C
	applications/utilities/surface/surfaceMeshConvert/surfaceMeshConvert.C
	applications/utilities/surface/surfaceMeshExport/surfaceMeshExport.C
	applications/utilities/surface/surfaceMeshImport/surfaceMeshImport.C
	applications/utilities/surface/surfaceRedistributePar/surfaceRedistributePar.C
	src/OpenFOAM/db/IOobject/IOobject.C
	src/OpenFOAM/db/IOobjects/CompactIOList/CompactIOList.C
	src/OpenFOAM/db/IOobjects/IOField/IOField.C
	src/OpenFOAM/db/IOobjects/IOList/IOList.C
	src/OpenFOAM/db/IOobjects/IOPtrList/IOPtrList.C
	src/OpenFOAM/db/IOobjects/IOdictionary/IOdictionary.C
	src/OpenFOAM/db/Time/findInstance.C
	src/OpenFOAM/db/regIOobject/regIOobject.C
	src/OpenFOAM/db/regIOobject/regIOobjectI.H
	src/OpenFOAM/db/regIOobject/regIOobjectRead.C
	src/OpenFOAM/db/regIOobject/regIOobjectWrite.C
	src/OpenFOAM/meshes/polyMesh/mapPolyMesh/mapDistribute/IOmapDistribute.C
	src/OpenFOAM/meshes/polyMesh/polyBoundaryMesh/polyBoundaryMesh.C
	src/OpenFOAM/meshes/polyMesh/zones/ZoneMesh/ZoneMesh.C
	src/dynamicMesh/fvMeshDistribute/IOmapDistributePolyMesh.C
	src/dynamicMesh/motionSolver/componentDisplacement/componentDisplacementMotionSolver.C
	src/dynamicMesh/polyTopoChange/polyTopoChange/hexRef8/hexRef8Data.C
	src/dynamicMesh/polyTopoChange/polyTopoChange/hexRef8/refinementHistory.C
	src/dynamicMesh/polyTopoChange/polyTopoChanger/polyTopoChanger.C
	src/edgeMesh/edgeMeshFormats/edgeMesh/edgeMeshFormat.C
	src/edgeMesh/extendedEdgeMesh/extendedEdgeMeshFormats/extendedEdgeMeshFormat/extendedEdgeMeshFormat.C
	src/edgeMesh/extendedEdgeMesh/extendedFeatureEdgeMesh/extendedFeatureEdgeMesh.C
	src/fvMotionSolver/fvMotionSolvers/displacement/interpolation/displacementInterpolationMotionSolver.C
	src/fvMotionSolver/pointPatchFields/derived/uniformInterpolatedDisplacement/uniformInterpolatedDisplacementPointPatchVectorField.C
	src/lagrangian/basic/Cloud/CloudIO.C
	src/meshTools/sets/cellSources/fieldToCell/fieldToCell.C
	src/postProcessing/foamCalcFunctions/basic/addSubtract/addSubtract.C
	src/postProcessing/functionObjects/field/fieldCoordinateSystemTransform/fieldCoordinateSystemTransformTemplates.C
	src/postProcessing/functionObjects/field/readFields/readFieldsTemplates.C
	src/thermophysicalModels/radiation/radiationModels/fvDOM/radiativeIntensityRay/radiativeIntensityRay.C
	src/triSurface/triSurface/surfacePatch/surfacePatchIOList.C
2016-01-25 16:29:04 +00:00
e424059208 ENH: glboal file handling: initial commit
Moved file path handling to regIOobject and made it type specific so
now every object can have its own rules. Examples:
- faceZones are now processor local (and don't search up anymore)
- timeStampMaster is now no longer hardcoded inside IOdictionary
  (e.g. uniformDimensionedFields support it as well)
- the distributedTriSurfaceMesh is properly processor-local; no need
  for fileModificationChecking manipulation.
2016-01-25 13:03:15 +00:00