When a finite-area case could not find an entry for "lnGradSchemes"
in the "faSchemes" file, the "corrected" scheme has been picked up
by default. Therefore, any changes in "snGradSchemes" entry will not
be read by finite-area models.
For example,
T
{
solver PBiCGStab;
preconditioner DILU;
tolerance 1e-6;
norm none;
}
STYLE: define defaultMaxIter, defaultTolerance directly in lduMatrix
- barycentric coordinates in interpolation (instead of x/y/z)
- ease U (velocity) requirement.
Needn't be named in the sampled fields.
- default tracking direction is 'forward'
phaseSystemModels function objects are relocated within
functionObjects in order to enable broader usage.
ENH: multiphaseInterHtcModel: new heatTransferCoeff function object model
COMP: createExternalCoupledPatchGeometry: add new dependencies
COMP: alphaContactAngle: avoid duplicate entries between multiphaseEuler and reactingEuler
TUT: damBreak4Phase: rename alphaContactAngle as multiphaseEuler::alphaContactAngle
thermoTools is a relocation of various existing tools:
- src/TurbulenceModels/compressible/turbulentFluidThermoModels/derivedFvPatchFields/
- src/semiPermeableBaffle/derivedFvPatchFields/
- src/thermophysicalModels/thermophysicalPropertiesFvPatchFields/liquidProperties/
ENH: Allwmake: reordering various compilation steps
Co-authored-by: Kutalmis Bercin <kutalmis.bercin@esi-group.com>
- this allows the "relocation" of sampled surfaces. For example,
to reposition into a different coordinate system for importing
into CAD.
- incorporate output scaling for all surface writer types.
This was previously done on an adhoc basis for different writers,
but with now included in the base-level so that all writers
can automatically use scale + transform.
Example:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
origin (0.05 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
in cases with more than one primal or adjoint solvers
TUT: removed all occurances of useSolverNameForFields
from the optimisation tutorials since it is now set
automatically.
- update the area-centres processor/processor information as part of
faMesh::init() after all of the global data and geometry data is
setup.
- improve flattenEdgeField helper to properly handle empty patches.
This change removes the false fails when testing edge-centre
redistribution (FULLDEBUG mode).
TUT: add filmPanel (rivulet) tutorial
- include constant/faMesh cleanup (cleanFaMesh) as part of standard
cleanCase
- simplify cleanPolyMesh function to now just warn about old
constant/polyMesh/blockMeshDict but not try to remove anything
- cleanup cellDist.vtu (decomposePar -dry-run) as well
ENH: foamRunTutorials - fallback to Allrun-parallel, Allrun-serial
TUT: call m4 with file argument instead of redirected stdin
TUT: adjust suffixes on decomposeParDict variants
- simpler to write for sampled cutting planes etc.
For example,
slice
{
type cuttingPlane;
point (0 0 0);
normal (0 0 1);
interpolate true;
}
instead of
slice
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0);
normal (0 0 1);
}
interpolate true;
}
STYLE: add noexcept to some plane methods
- can specify rotations that are not "axes" in a compact form:
transform
{
origin (0 0 0);
rotation none;
}
transform
{
origin (0 0 0);
rotation axisAngle;
axis (0 0 1);
angle 45;
}
An expanded dictionary form also remains possible:
transform
{
origin (0 0 0);
rotation
{
type axisAngle;
axis (0 0 1);
angle 45;
}
}
STYLE: verbose deprecation for "coordinateRotation" keyword
- the "coordinateRotation" keyword was replaced by the "rotation"
keyword (OpenFOAM-v1812 and later) but was handled silently.
Now elevated to non-silent.
STYLE: alias lookups "axesRotation", "EulerRotation", "STARCDRotation"
- these warn and report the equivalent short form, which aids in
upgrading. Previously had silent lookups.
- can be more intuitive to specify for some cases:
rotation
{
type euler;
order rollPitchYaw;
angles (0 20 45);
}
- refactor starcd rotation to reuse Euler ZXY ordering
(code reduction)
ENH: add -rotate-x, -rotate-y, -rotate-z for transformPoints etc
- easier to specify for simple rotations
- ensightWrite, vtkWrite, fv::cellSetOption
ENH: additional topoSet "ignore" action
- this no-op can be used to skip an action step, instead of removing
the entire entry
- this allows more flexibility when defining the location or intensity
of sources.
For example,
{
type scalarSemiImplicitSource;
volumeMode specific;
selectionMode all;
sources
{
tracer0
{
explicit
{
type exprField;
functions<scalar>
{
square
{
type square;
scale 0.0025;
level 0.0025;
frequency 10;
}
}
expression
#{
(hypot(pos().x() + 0.025, pos().y()) < 0.01)
? fn:square(time())
: 0
#};
}
}
}
}
ENH: SemiImplicitSource: handle "sources" with explicit/implicit entries
- essentially the same as injectionRateSuSp with Su/Sp,
but potentially clearer in purpose.
ENH: add Function1 good() method to define if function can be evaluated
- for example, provides a programmatic means of avoiding the 'none'
function
- similar to the geometric decomposition constraint,
allows a compositing selection of cells based on topoSet sources
which also include various searchableSurface mechanisms.
This makes for potentially easier placement of sources without
resorting to defining a cellSet.
ENH: support zone group selection for fv::cellSetOption and fa::faceSetOption
Reports cloud information for particles passing through a specified cell
zone.
Example usage:
cloudFunctions
{
particleZoneInfo1
{
type particleZoneInfo;
cellZone leftFluid;
// Optional entries
//writer vtk;
}
}
Results are written to file:
- \<case\>/postProcessing/lagrangian/\<cloudName\>/\<functionName\>/\<time\>
\# cellZone : leftFluid
\# time : 1.0000000000e+00
\#
\# origID origProc (x y z) time0 age d0 d mass0 mass
Where
- origID : particle ID
- origProc : processor ID
- (x y z) : Cartesian co-ordinates
- time0 : time particle enters the cellZone
- age : time spent in the cellZone
- d0 : diameter on entry to the cellZone
- d : current diameter
- mass0 : mass on entry to the cellZone
- mass : current mass
If the optional \c writer entry is supplied, cloud data is written in the
specified format.
During the run, output statistics are reported after the cloud solution,
e.g.:
particleZoneInfo:
Cell zone = leftFluid
Contributions = 257
Here, 'Contributions' refers to the number of incremental particle-move
contributions recorded during this time step. At write times, the output
is extended, e.g.:
particleZoneInfo:
Cell zone = leftFluid
Contributions = 822
Number of particles = 199
Written data to "postProcessing/lagrangian/reactingCloud1/
TUT: filter: add an example for the particleZoneInfo function object
- Previously, the multiFieldValue function object was limited to operate on
lists of fieldValue function objects.
- Any function objects that generate results can now be used, e.g.
pressureAverage
{
type multiFieldValue;
libs (fieldFunctionObjects);
operation average;
functions
{
inlet
{
type surfaceFieldValue;
operation areaAverage;
regionType patch;
name inlet;
fields (p);
writeFields no;
writeToFile no;
log no;
resultFields (areaAverage(inlet,p));
}
outlet
{
type surfaceFieldValue;
operation areaAverage;
regionType patch;
name outlet;
fields (p);
writeFields no;
writeToFile no;
log no;
}
average
{
type valueAverage;
functionObject testSample1;
fields (average(p));
writeToFile no;
log no;
}
}
}
TUT: cavity: add an example for the multiFieldValue function object