A Helmholtz-like filter is applied to the original field of sensitivity
derivatives. The corresponding PDE is solved on the sensitivity patches,
using the finite area infrastructure. A smoothing radius is needed,
which is computed based on the average 'length' of the boundary faces,
if not provided by the user explicitly.
If an faMesh is provided, it will be used; otherwise it will be created
on the fly based on either an faMeshDefinition dictionary in system or
one constructed internally based on the sensitivity patches.
Surface gradient scheme with under-/over-relaxed
full or limited explicit non-orthogonal correction.
A minimal example by using system/fvSchemes:
snGradSchemes
{
snGrad(<term>) relaxed;
}
and by using system/fvSolution:
relaxationFactors
{
fields
{
snGrad(<term>) <relaxation factor>;
}
}
A second-order gradient scheme using face-interpolation,
Gauss' theorem and iterative skew correction.
Minimal example by using system/fvSchemes:
gradSchemes
{
grad(<term>) iterativeGauss <interpolation scheme> <number of iters>;
}
- fix overly aggressive match in the API value
- allow `INTELMPI*` generic value, this can be used to specify something
like INTELMPI_custom and populate the corresponding wmake rule
manually
STYLE: mention FOAM_BUILDROOT in wmake -help-full output
STYLE: adjust openfoam shell session welcome information
- adjust internal variable names to reduce collision potential
- improve handling of openfoam -etc=...
Description
Writes point data in glTF v2 format
Two files are generated:
- filename.bin : a binary file containing all scene entities
- filename.gltf : a JSON file that ties fields to the binary data
The output can contain both geometry and fields, with additional support
for colours using a user-supplied colour map, and animation of particle
tracks.
Controls are provided via the optional formatOptions dictionary.
For non-particle track data:
\verbatim
formatOptions
{
// Apply colours flag (yes | no ) [optional]
colours yes;
// List of options per field
fieldInfo
{
p
{
// Colour map [optional]
colourMap <colourMap>;
// Colour map minimum and maximum limits [optional]
// Uses field min and max if not specified
min 0;
max 1;
// Alpha channel [optional] (uniform | field)
alpha uniform;
alphaValue 0.5;
//alpha field;
//alphaField T;
//normalise yes;
}
}
}
\verbatim
For particle tracks:
\verbatim
formatOptions
{
// Apply colours flag (yes | no) [optional]
colours yes;
// Animate tracks (yes | no) [optional]
animate yes;
// Animation properties [optional]
animationInfo
{
// Colour map [optional]
colourMap <colourMap>;
// Colour [optional] (uniform | field)
colour uniform;
colourValue (1 0 0); // RGB in range [0-1]
//colour field;
//colourField d;
// Colour map minimum and maximum limits [optional]
// Note: for colour = field option
// Uses field min and max if not specified
min 0;
max 1;
// Alpha channel [optional] (uniform | field)
alpha uniform;
alphaValue 0.5;
//alpha field;
//alphaField T;
//normalise yes;
}
}
\endverbatim
Note
When writing particle animations, the particle field and colour properties
correspond to initial particle state (first data point) and cannot be
animated (limitation of the file format).
For more information on the specification see
https://www.khronos.org/registry/glTF/
The utility will now add field data to all tracks (previous version only
created the geometry)
The new 'fields' entry can be used to output specific fields.
Example
cloud reactingCloud1;
sampleFrequency 1;
maxPositions 1000000;
fields (d U); // includes wildcard support
STYLE: minor typo fix
- specify any of these
./Allwmake -build-root=...
wmake -build-root=...
FOAM_BUILDROOT=... wmake
these specify an alternative root where build artifacts are to land.
Currently only used as an alternative for the 'build/' hierarchy
since the 'platforms/' target normally includes inputs as well.
Possible use:
```
(
export WM_MPLIB="%{foam_mplib}"
export FOAM_MPI="%{foam_mpi}"
export MPI_ARCH_PATH="%{mpi_prefix}"
export FOAM_BUILDROOT=/tmp/mpibuild
export FOAM_MPI_LIBBIN="$FOAM_BUILDROOT/platforms/$WM_OPTIONS/lib/$FOAM_MPI"
src/Pstream/Allwmake-mpi
)
```
- exposed by the new embedded function handling.
Requires local copies of dictionary content instead
(similar to coded BCs handling)
BUG: incorrect formatting for expression function output
ENH: simpler copyDict version taking wordList instead of wordRes
- corresponds to the most common use case at the moment
ENH: expression string writeEntry method
- write as verbatim for better readability
- this revises the changes made in 95cd8ee75c to replace the
SFINAE-type of handling of string hashes with direct definitions.
This places a bit more burden on the developer if creating hashable
classes derived from std::string or variants of Foam::string, but
improves reliability when linking.
STYLE: drop template key defaulting from HashSet
- this was never used and `HashSet<>` is much less transparent
than writing `HashSet<word>` or `wordHashSet`
- Generic thermophysical properties class for a liquid in which the
functions and coefficients for each property are run-time selected.
Code adapted from openfoam.org
- had lookups into the merge-point map instead of
determining/remapping the duplicate points directly.
The result was a jumble of face/point addressing.
STYLE: additional debug/verbosity comment for mergePoints
- marks if the value is considered to be independent of 'x'.
Propagate into PatchFunction1 instead ad hoc checks there.
- adjust method name in PatchFunction1 to 'whichDb()' to reflect
final changes in Function1 method names.
ENH: add a Function1 'none' placeholder function
- This is principally useful for interfaces that expect a Function1
but where it is not necessarily used by a particular submodel.
TUT: update Function1 creation to use objectRegistry