- output the "uniform", "nonuniform" Field entry tags as words instead
of raw character strings, which can help for direct tokenization or
when sending/receiving via Pstreams.
- some support for "uniform" bool fields. Calculating an averaged
value for a boolField does not work very well, but we simply define
that the field average is 'true' when more than 1/2 of its values
are true. Not exactly true, but allows templated definitions to work
smoothly.
- additional output method writeValue().
This outputs the single (uniform) value or the first value of the
field.
- ITstream append() would previously have used the append from the
underlying tokenList, which leaves the tokenIndex untouched and
renders the freshly appended tokens effectively invisible if
interspersed with primitiveEntry::read() that itself uses tokenIndex
when building the list.
The new append() method makes this hidden ITstream bi-directionality
easier to manage. For efficiency, we only append lists
(not individual tokens) and support a 'lazy' resizing that allows
the final resizing to occur later when all tokens have been appended.
- The new ITstream seek() method provides a conveniently means to move
to the end of the list or reposition to the middle.
Using rewind() and using seek(0) are identical.
ENH: added OTstream to output directly to a list of tokens
---
BUG: List::newElem resized incorrectly
- had a simple doubling of the List size without checking that this
would indeed be sufficient for the requested index.
Bug was not triggered since primitiveEntry was the only class using
this call, and it added the tokens sequentially.
This adds automatic deletion of cells inside small gaps. This is
generally used to avoid having excessive numbers of cells in irrelevant
areas of a geometry. It is nearly the opposite of automatic gap refinement
- that refines cells to resolve the gap; this functionality removes cells
to not mesh the gap.
The proximity handling will remove those cells which are inside 'thin' gaps
where 'thin' is defined as a distance of 2*'blockLevel'
It will
- detect surfaces which have the new 'blockLevel' specification
- convert this to a minimum gap distance
- detect cells which are inside this gap
- remove these cells and add exposed faces to the nearest 'real' patch
- The case files may contain #... comment lines
- The geometry file may contain an optional "extents" entry
- Properly handle element id specifications (off|assign|ignore|given).
- Partially handle node id specifications (off|assign|ignore|given).
Treat "given" like "ignore", since results in the lightest amount of
coding and in many cases the "given" node ids are in fact 1-based
contiguous values and thus no different than "ignore" for our
purposes.
- allows use of Enum in more situations where a tiny Map/HashTable
replacement is desirable. The new methods can be combined with
null constructed for to have a simple low-weight caching system
for words/integers instead of fitting in a HashTable.
ENH: downgrade error on type-mismatch to a warning
- Ensight data files generated by OpenFOAM will start with the name of
the data type (Eg, "scalar", "vector" etc), but this convention may
fail for data files that have been generated elsewhere.
- since pointPatchField is not derived from Field, methods such as
negate() or a unary min(), max() are missing.
These have apparently not been needed thus far, but are used
indirectly via GeometricField.
- improves similarity to autoPtr. Simplifies coding.
Example,
tmp<volScalarField> tfield;
// sometime later...
tfield.reset
(
volScalarField::New("myfield", mesh, dimensionedScalar(Zero))
);
- as per tmp, disallow tmpNrc assignment from literal nullptr
- as per autoPtr, allow explicit test as bool (same as valid).
- can be useful when a scalarField has been used to store booleans and
we need to recover a bool directly and deal with potential rounding
issues.
ENH: support "any" as a Switch counterpart to "none"
- now indicate that the dictionary entry is missing, not that it is
an unknown function type.
STYLE: adjust PatchFunction1New.C to have logic structure look similar