- this can be used to apply a uniform field level to remove from
a sampled field. For example,
fieldLevel
{
"p.*" 1e5; // Absolute -> gauge [Pa]
T 273.15; // [K] -> [C]
U #eval{ 10/sqrt(3) }; // Uniform mag(U)=10
}
After the fieldLevel has been removed, any fieldScale is applied.
For example
fieldScale
{
"p.*" 0.01; // [Pa] -> [mbar]
}
The fieldLevel for vector and tensor fields may still need some
further refinement.
The runTimeControl function object can activate further function objects using
triggers. Previously the trigger index could only advance; this change set
allows users to set smaller values to enable function object recycling, e.g.
Repeat for N cycles:
1. average the pressure at a point in space
2. when the average stabilises, run for a further 100 iterations
3. set a new patch inlet velocity
- back to (1)
- Removes old default behaviour that only permitted an increase in the
trigger level. This type of 'ratcheting' mechanism (if required) is
now the responsibility of the derived function object.
- notably affects writing continuous data in binary. If generating a
compound token (eg, List<label>), need to add in the size prefix
otherwise it cannot actually be parsed properly as a List.
BUG: bad fallthrough for compound reading (FixedList)
- the branch was likely never reached, but would have attempted to
read twice due to a bad fall-through condition.
GIT: relocate globalIndex (is independent of mesh)
STYLE: include label/scalar Fwd in contiguous.H
STYLE: unneed commSchedule include in GeometricField
- as a side-effect of changes to probes, the file pointers are not
automatically creating when reading the dictionary but delayed
until prepare(WRITE_ACTION) is called.
This nuance was missed in thermoCoupleProbes.
- added in special handling for monitoring controlDict.
Since controlDict is an unwatchedIOdictionary (not IOdictionary) and
not registered either, the usual objectRegistry caching is not
available. Instead, access directly from Time.
Left the balance of the file handling largely intact (for handling
unregistered dictionaries) but could potentially revisit in the
future and attempt master-only file access if required. However,
most other IOdictionary types will be registered, otherwise the
READ_IF_MODIFIED mechanism would not really work properly.
- add writer support for VERTICES
- updated use of globalIndex
ENH: add base vtk writer for points/verts/lines
STYLE: noexcept, explicit constructors etc
- when used with *any* alphaField and normalised (the usual case)
would largely give a 0-1 corresponding to the min/max of the first
component, but could also yield negative values.
- if the alpha field corresponds identically to colour field, it is
readily possible to combine as into RGBA sequences. However, if the
fields are different it potentially means referencing an opacity
field that has not yet been sampled. This impedes using the format
for a streaming sampler without additional overhead and/or rewriting
the alpha channel later.
- scene
- write with fileName, additional getMesh accessor
- addColourToMesh accepts an alpha field size 1 as a constant
alpha value
- sceneWriter wrapper
ENH: improve gltf handling of colour and alpha specification
- accept plain input directly.
Eg,
colour (1 0 1);
vs
colour uniform;
colourValue (1 0 1);
- use field magnitude for colouring of non-scalar fields.
Eg, having three different colour maps for a vector field simply
does not help much with visualisation.
- meshTools is the first layer in which coordSet is actually needed
STYLE: rename writer implementations in advance of upcoming changes (#2347)
- simplifies tracing of code changes (git blame)
- supports sampling/probing of values to obtain min/max/average/size
at execution intervals without writing any output or generating
output directories.
- 'verbose' option for additional output
- min, max, average and sample size results now stored in
functionObjectProperties similar to sampledSets, e.g. for field p
- min(p)
- max(p)
- average(p)
- size(p)
ENH: provide fieldTypes::surface names (as per fieldTypes::volume)
ENH: reduce number of files for surface fields
- combine face and point field declarations/definitions,
simplify typeName definitions
- used low-level MPI gather, but the wrapping routine contains an
additional safety check for is_contiguous which is not defined for
various std::pair<..> combination.
So std::pair<label,vector> (which is actually contiguous, but not
declared as is_contiguous) would falsely trip the check.
Avoid by simply gathering unbundled values instead.
- do not need STRINGIFY macros in ragel code
- remove wordPairHashTable.H and use equivalent wordPairHashes.H instead
STYLE: replace addDictOption with explicit option
- the usage text is otherwise misleading
GIT: combine Pair/Tuple2 directories
- unused in regular OpenFOAM code
- POSIX version uses deprecated gethostbyname()
- Windows version never worked
COMP: localize, noexcept on internal OSspecific methods
STYLE: support fileName::Type SYMLINK and LINK as synonyms
The logic was not maintaining consistent sets of constraints
on different processors. A single processor with a full
match (very easy with 0 local faces) would invalidate
adding the constraint.
- for contiguous data, added mpiGatherOp() to complement the
gatherOp() static method
- the gather ops (static methods) populate the globalIndex on the
master only (not needed on other procs) for reduced communication
- rename inplace gather methods to include 'inplace' in their name.
Regular gather methods return the gathered data directly, which
allows the following:
const scalarField mergedWeights(globalFaces().gather(wghtSum));
vs.
scalarField mergedWeights;
globalFaces().gather(wghtSum, mergedWeights());
or even:
scalarField mergedWeights;
List<scalarField> allWeights(Pstream::nProcs());
allWeights[Pstream::myProcNo()] = wghtSum;
Pstream::gatherList(allWeights);
if (Pstream::master())
{
mergedWeights =
ListListOps::combine<scalarField>
(
allWeights, accessOp<scalarField>()
);
}
- add parRun guards on various globalIndex gather methods
(simple copies or no-ops in serial) to simplify the effort for callers.
ENH: reduce code effort for clearing linked-lists
ENH: adjust linked-list method name
- complement linked-list append() method with prepend() method
instead of 'insert', which is not very descriptive
Assumes that gap is formed when both surfaces agree i.e.
it takes the minimum distance of the two. This means that
any wave only needs to be propagated according to the
originating surface.
- set() was silently deprecated in favour of reset() FEB-2018
since the original additional check for overwriting an existing
pointer was never used. The reset(...) name is more consistent
with unique_ptr, tmp etc.
Now emit deprecations for set().
- use direct test for autoPtr, tmp instead of valid() method.
More consistent with unique_ptr etc.
STYLE: eliminate redundant ptr() use on cloned quantities
- partial revert for 13740de427 (#2158)
MS-MPI does not currently have a MPI_Comm_create_group(),
so keep using MPI_Comm_create() there.
Only affects multi-world simulations.
CONFIG: retain dummy version of libPstream.dll
- retain as libPstream.dll-dummy so that it is available for
manual replacement of the regular libPstream.dll (#2290)
Keep extra copy of libPstream.dll as libPstream.dll-msmpi
(for example) for manual replacement.
- this is now consistent with what the internal
"get(Vol|Surface|Point)Field" methods deliver
(ie, zero-gradient for volume, calculated otherwise).
Still some slight inconsistencies with what the internal
"new(Vol|Surface|Point)Field" methods deliver however.
There they are always "calculated"
Enables particles to interact with mesh faces (decsribed using faceZones).
faceInteraction1
{
type faceInteraction;
faceZones
(
(blockageFaces stick)
// (blockageFaces escape)
// (blockageFaces rebound) // not applicable for this test case (!)
);
dMin 0;
dMax 1;
}
The faceZones entry is a list of (faceZoneName interactionType), where
interaction type is either stick, escape or rebound.
The parcel initial velocity can now be set using the new `velocityType`
entry, taking one of the following options:
- fixedValue : (default) same as earlier versions, requires U0
- patchValue : velocity set to seed patch face value
- zeroGradient : velocity set to seed patch face adjacent cell value
Example usage:
model1
{
type patchInjection;
massTotal 1;
SOI 0;
parcelBasisType mass;
patch cylinder;
duration 10;
parcelsPerSecond 100;
velocityType patchValue;
//velocityType zeroGradient;
//U0 (-10 0 0);
flowRateProfile constant 1;
sizeDistribution
{
type normal;
normalDistribution
{
expectation 1e-3;
variance 1e-4;
minValue 1e-5;
maxValue 2e-3;
}
}
}
See the new $FOAM_TUTORIALS/lagrangian/kinematicParcelFoam/spinningDisk tutorial
The turbulentTemperatureCoupledBaffleMixed boundary condition
has been superseded by the turbulentTemperatureRadCoupledMixed condition
TUT: injectorPipe: remove an unused entry
TUT: waveMakerFlap: remove uncompressed entry
ENH: Copying alphatLiquid value to alphatVapour for boiling regimes.
When using correlations for boiling regimes the phases next to the
wall are not relevant to these. Therefore the alphat is copied
accordingly from the alphat for liquid.
Only in the sub-cooling RPI model the partition of heat flux
between vapour and liquid is considered.
Calculates propeller performance and wake field properties.
Controlled by executeControl:
- Propeller performance
- Thrust coefficient, Kt
- Torque coefficient, 10*Kq
- Advance coefficient, J
- Open water efficiency, etaO
- Written to postProcessing/<name>/<time>/propellerPerformance.dat
Controlled by writeControl:
- Wake field text file
- Wake: 1 - UzMean/URef
- Velocity in cylindrical coordinates at xyz locations
- Written to postProcessing/<name>/<time>/wake.dat
- Axial wake field text file
- 1 - Uz/URef at r/R and angle
- Written to postProcessing/<name>/<time>/axialWake.dat
- Velocity surface
- Written to postProcessing/<name>/surfaces/time>/disk.<fileType>
Usage
Example of function object specification:
\verbatim
propellerInfo1
{
type propellerInfo;
libs (forces);
writeControl writeTime;
patches ("propeller.*");
URef 5; // Function1 type; 'constant' form shown here
rho rhoInf; // incompressible
rhoInf 1.2;
// Optionally write propeller performance data
writePropellerPerformance yes;
// Propeller data:
// Radius
radius 0.1;
rotationMode specified; // specified | MRF
// rotationMode = specified:
origin (0 -0.1 0);
n 25.15;
axis (0 1 0);
// Optional reference direction for angle (alpha) = 0
alphaAxis (1 0 0);
//// rotationMode = mrf
//// MRF MRFZoneName;
//// (origin, n and axis retrieved from MRF model)
// Optionally write wake text files
// Note: controlled by writeControl
writeWakeFields yes;
// Sample plane (disk) properties
// Note: controlled by writeControl
sampleDisk
{
surfaceWriter vtk;
r1 0.05;
r2 0.2;
nTheta 36;
nRadial 10;
interpolationScheme cellPoint;
errorOnPointNotFound false;
}
}
\endverbatim
Where the entries comprise:
\table
Property | Description | Required | Deflt value
type | Type name: propellerInfo | yes |
log | Write to standard output | no | no
patches | Patches included in the forces calculation | yes |
p | Pressure field name | no | p
U | Velocity field name | no | U
rho | Density field name | no | rho
URef | Reference velocity | yes |
rotationMode | Rotation mode (see below) | yes |
origin | Sample disk centre | no* |
n | Revolutions per second | no* |
axis | Propeller axis | no* |
alphaAxis | Axis that defines alpha=0 dir | no |
MRF | Name of MRF zone | no* |
originOffset | Origin offset for MRF mode | no | (0 0 0)
writePropellerPerformance| Write propeller performance text file | yes |
writeWakeFields | Write wake field text files | yes |
surfaceWriter | Sample disk surface writer | no* |
r1 | Sample disk inner radius | no | 0
r2 | Sample disk outer radius | no* |
nTheta | Divisions in theta direction | no* |
nRadial | Divisions in radial direction | no* |
interpolationScheme | Sampling interpolation scheme | no* | cell
\endtable
Note
- URef is a scalar Function1 type, i.e. supports constant, table, lookup values
- rotationMode is used to set the origin, axis and revolutions per second
- if set to 'specified' all 3 entries are required
- note: origin is the sample disk origin
- if set to 'MRF' only the MRF entry is required
- to move the sample disk away from the MRF origin, use the originOffset
- if writePropellerPerformance is set to on|true:
- propellerPerformance text file will be written
- if writeWakeFields is set to on|true:
- wake and axialWake text files will be written
- if the surfaceWriter entry is set, the sample disk surface will be written
- extents set according to the r1 and r2 entries
- discretised according to the nTheta and nRadial entries
- provides a simple means of defining/modifying fields. For example,
```
<name1>
{
type exprField;
libs (fieldFunctionObjects);
field pTotal;
expression "p + 0.5*(rho*magSqr(U))";
dimensions [ Pa ];
}
```
It is is also possible to modify an existing field.
For example, to modify the previous one.
```
<name2>
{
type exprField;
libs (fieldFunctionObjects);
field pTotal;
action modify;
// Static pressure only in these regions
fieldMask
#{
(mag(pos()) < 0.05) && (pos().y() > 0)
|| cellZone(inlet)
#};
expression "p";
}
```
To use as a simple post-process calculator, simply avoid storing the
result and only generate on write:
```
<name2>
{
store false;
executionControl none;
writeControl writeTime;
...
}
```
- literal lookups only for expression strings
- code reduction for setExprFields.
- changed keyword "condition" to "fieldMask" (option -field-mask).
This is a better description of its purpose and avoids possible
naming ambiguities with functionObject triggers (for example)
if we apply similar syntax elsewhere.
BUG: erroneous check in volumeExpr::parseDriver::isResultType()
- not triggered since this method is not used anywhere
(may remove in future version)
Based on:
Cao, L., Sun, F., Chen, T., Tang, Y., & Liao, D. (2018).
Quantitative prediction of oxide inclusion defects inside
the casting and on the walls during cast-filling processes.
International Journal of Heat and Mass Transfer, 119, 614-623.
DOI:10.1016/j.ijheatmasstransfer.2017.11.127
Co-authored-by: Kutalmis Bercin <kutalmis.bercin@esi-group.com>
- this refines commit c233961d45, which added prefix scoping.
Default is now off (v2106 behaviour).
The 'useNamePrefix' keyword can be specified on a per function basis
or at the top-level of "functions".
```
functions
{
errors warn;
useNamePrefix true;
func1
{
type ...;
useNamePrefix false;
}
func2
{
type ...;
// Uses current default for useNamePrefix
}
}
```
- at the moment there is no significant difference since FieldBase is
essentially just a refCount anyhow, but changing the inheritance
ensures that reinterpret casting from SubField -> Field will
continue to work if FieldBase is changed in the future.
A Helmholtz-like filter is applied to the original field of sensitivity
derivatives. The corresponding PDE is solved on the sensitivity patches,
using the finite area infrastructure. A smoothing radius is needed,
which is computed based on the average 'length' of the boundary faces,
if not provided by the user explicitly.
If an faMesh is provided, it will be used; otherwise it will be created
on the fly based on either an faMeshDefinition dictionary in system or
one constructed internally based on the sensitivity patches.
Surface gradient scheme with under-/over-relaxed
full or limited explicit non-orthogonal correction.
A minimal example by using system/fvSchemes:
snGradSchemes
{
snGrad(<term>) relaxed;
}
and by using system/fvSolution:
relaxationFactors
{
fields
{
snGrad(<term>) <relaxation factor>;
}
}
A second-order gradient scheme using face-interpolation,
Gauss' theorem and iterative skew correction.
Minimal example by using system/fvSchemes:
gradSchemes
{
grad(<term>) iterativeGauss <interpolation scheme> <number of iters>;
}
- fix overly aggressive match in the API value
- allow `INTELMPI*` generic value, this can be used to specify something
like INTELMPI_custom and populate the corresponding wmake rule
manually
STYLE: mention FOAM_BUILDROOT in wmake -help-full output
STYLE: adjust openfoam shell session welcome information
- adjust internal variable names to reduce collision potential
- improve handling of openfoam -etc=...
Description
Writes point data in glTF v2 format
Two files are generated:
- filename.bin : a binary file containing all scene entities
- filename.gltf : a JSON file that ties fields to the binary data
The output can contain both geometry and fields, with additional support
for colours using a user-supplied colour map, and animation of particle
tracks.
Controls are provided via the optional formatOptions dictionary.
For non-particle track data:
\verbatim
formatOptions
{
// Apply colours flag (yes | no ) [optional]
colours yes;
// List of options per field
fieldInfo
{
p
{
// Colour map [optional]
colourMap <colourMap>;
// Colour map minimum and maximum limits [optional]
// Uses field min and max if not specified
min 0;
max 1;
// Alpha channel [optional] (uniform | field)
alpha uniform;
alphaValue 0.5;
//alpha field;
//alphaField T;
//normalise yes;
}
}
}
\verbatim
For particle tracks:
\verbatim
formatOptions
{
// Apply colours flag (yes | no) [optional]
colours yes;
// Animate tracks (yes | no) [optional]
animate yes;
// Animation properties [optional]
animationInfo
{
// Colour map [optional]
colourMap <colourMap>;
// Colour [optional] (uniform | field)
colour uniform;
colourValue (1 0 0); // RGB in range [0-1]
//colour field;
//colourField d;
// Colour map minimum and maximum limits [optional]
// Note: for colour = field option
// Uses field min and max if not specified
min 0;
max 1;
// Alpha channel [optional] (uniform | field)
alpha uniform;
alphaValue 0.5;
//alpha field;
//alphaField T;
//normalise yes;
}
}
\endverbatim
Note
When writing particle animations, the particle field and colour properties
correspond to initial particle state (first data point) and cannot be
animated (limitation of the file format).
For more information on the specification see
https://www.khronos.org/registry/glTF/
The utility will now add field data to all tracks (previous version only
created the geometry)
The new 'fields' entry can be used to output specific fields.
Example
cloud reactingCloud1;
sampleFrequency 1;
maxPositions 1000000;
fields (d U); // includes wildcard support
STYLE: minor typo fix
- specify any of these
./Allwmake -build-root=...
wmake -build-root=...
FOAM_BUILDROOT=... wmake
these specify an alternative root where build artifacts are to land.
Currently only used as an alternative for the 'build/' hierarchy
since the 'platforms/' target normally includes inputs as well.
Possible use:
```
(
export WM_MPLIB="%{foam_mplib}"
export FOAM_MPI="%{foam_mpi}"
export MPI_ARCH_PATH="%{mpi_prefix}"
export FOAM_BUILDROOT=/tmp/mpibuild
export FOAM_MPI_LIBBIN="$FOAM_BUILDROOT/platforms/$WM_OPTIONS/lib/$FOAM_MPI"
src/Pstream/Allwmake-mpi
)
```
- exposed by the new embedded function handling.
Requires local copies of dictionary content instead
(similar to coded BCs handling)
BUG: incorrect formatting for expression function output
ENH: simpler copyDict version taking wordList instead of wordRes
- corresponds to the most common use case at the moment
ENH: expression string writeEntry method
- write as verbatim for better readability
- this revises the changes made in 95cd8ee75c to replace the
SFINAE-type of handling of string hashes with direct definitions.
This places a bit more burden on the developer if creating hashable
classes derived from std::string or variants of Foam::string, but
improves reliability when linking.
STYLE: drop template key defaulting from HashSet
- this was never used and `HashSet<>` is much less transparent
than writing `HashSet<word>` or `wordHashSet`
- Generic thermophysical properties class for a liquid in which the
functions and coefficients for each property are run-time selected.
Code adapted from openfoam.org
- had lookups into the merge-point map instead of
determining/remapping the duplicate points directly.
The result was a jumble of face/point addressing.
STYLE: additional debug/verbosity comment for mergePoints
- marks if the value is considered to be independent of 'x'.
Propagate into PatchFunction1 instead ad hoc checks there.
- adjust method name in PatchFunction1 to 'whichDb()' to reflect
final changes in Function1 method names.
ENH: add a Function1 'none' placeholder function
- This is principally useful for interfaces that expect a Function1
but where it is not necessarily used by a particular submodel.
TUT: update Function1 creation to use objectRegistry
- allows an additional HashTable of pointers to reference external
content which not otherwise directly available via an
objectRegistry.
This could typically be used to provide a function-local "rho"
to the expression evaluation.
- for cell quantities, these evaluate on the faceCells associated with
that patch to produce a field of true/false values
- for face quantities, these simply correspond to the mesh faces
associated with that patch to produce a field of true/false values
- similar idea to swak timelines/lookuptables but combined together
and based on Function1 for more flexibility.
Specified as 'functions<scalar>' or 'functions<vector>'.
For example,
functions<scalar>
{
intakeType table ((0 0) (10 1.2));
p_inlet
{
type sine;
frequency 3000;
scale 50;
level 101325;
}
}
These can be referenced in the expressions as a nullary function or a
unary function.
Within the parser, the names are prefixed with "fn:" (function).
It is thus possible to define "fn:sin()" that is different than
the builtin "sin()" function.
* A nullary call uses time value
- Eg, fn:p_inlet()
* A unary call acts as a remapper function.
- Eg, fn:intakeType(6.25)
- previously simply reused the scan token, which works fine for
non-nested tokenizations but becomes too fragile with nesting.
Now changed to use tagged unions that can be copied about
and still retain some rudimentary knowledge of their types,
which can be manually triggered with a destroy() call.
- provide an 'identifier' non-terminal as an additional catch
to avoid potential leakage on parsing failure.
- adjust lemon rules and infrastructure:
- use %token to predefine standard tokens.
Will reduce some noise on the generated headers by retaining the
order on the initial token names.
- Define BIT_NOT, internal token rename NOT -> LNOT
- handle non-terminal vector values.
Support vector::x, vector::y and vector::z constants
- permit fieldExpr access to time().
Probably not usable or useful for an '#eval' expression,
but useful for a Function1.
- provisioning for hooks into function calls. Establishes token
names for next commit(s).
Returns a 0/1 value corresponding to function object trigger levels.
Usage:
\verbatim
<entryName> functionObjectTrigger;
<entryName>Coeffs
{
triggers (1 3 5);
defaultValue false; // Default when no triggers activated
}
\endverbatim
ENH: add reset() method for Constant Function1
ENH: allow forced change of trigger index
- the triggers are normally increase only,
but can now override this optionally
Description
Function1 wrapper that maps the input value prior to it being used by
another Function1.
Example usage for limiting a polynomial:
\verbatim
<entryName>
{
type inputValueMapper;
mode minMax;
min 0.4;
max 1.4;
value polynomial
(
(5 1)
(-2 2)
(-2 3)
(1 4)
);
}
\endverbatim
Here the return value will be:
- poly(0.4) for x <= 0.4;
- poly(1.4) for x >= 1.4; and
- poly(x) for 0.4 < x < 1.4.
Example usage for supplying a patch mass flux for a table lookup:
\verbatim
<entryName>
{
type inputValueMapper;
mode function;
function
{
type functionObjectValue;
functionObject surfaceFieldValue1;
functionObjectResult sum(outlet,phi);
}
value
{
type table;
file "<system>/fanCurve.txt";
}
}
\endverbatim
Where:
\table
Property | Description | Required
mode | Mapping mode (see below) | yes
function | Mapping Function1 | no*
min | Minimum input value | no*
max | Maximum input value | no*
value | Function of type Function1<Type> | yes
\endtable
Mapping modes include
- none : the input value is simply passed to the 'value' Function1
- function : the input value is passed through the 'function' Function1
before being passed to the 'value' Function1
- minMax : limits the input value to 'min' and 'max' values before being
passed to the 'value' Function1
Note
Replaces the LimitRange Function1 (v2106 and earlier)
Returns a value retrieved from a function object result.
Usage:
<entryName> functionObjectValue;
<entryName>Coeffs
{
functionObject <name>;
functionObjectResult <function object result field name>
}
Function1 can now be created with an object registry, e.g. time or mesh
database. This enables access to other stored objects, e.g. fields,
dictionaries etc. making Function1 much more flexible.
Note: will allow TimeFunction1 to be deprecated
- created new functionObjects::properties class derived from IOdictionary
- replaces raw state IOdictionary owned by functionObjectList
- state dictionary access/manipulators moved from stateFunctionObject
- stateFunctionObject now acts as a light wrapper around
functionObjecties::properties
- updated dependent code
- more closely reflect what the binaries report
- report the installation path
- change PS1 case/separator to roughly correspond to package names
STYLE: adjust README to mention upcoming v2112
- use `#word` to concatenate, expand content with the resulting string
being treated as a word token. Can be used in dictionary or
primitive context.
In dictionary context, it fills the gap for constructing dictionary
names on-the-fly. For example,
```
#word "some_prefix_solverInfo_${application}"
{
type solverInfo;
libs (utilityFunctionObjects);
...
}
```
The '#word' directive will automatically squeeze out non-word
characters. In the block content form, it will also strip out
comments. This means that this type of content should also work:
```
#word {
some_prefix_solverInfo
/* Appended with application name (if defined) */
${application:+_} // Use '_' separator
${application} // The application
}
{
type solverInfo;
libs (utilityFunctionObjects);
...
}
```
This is admittedly quite ugly, but illustrates its capabilities.
- use `#message` to report expanded string content to stderr.
For example,
```
T
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-10;
relTol 0;
#message "using solver: $solver"
}
```
Only reports on the master node.
- use FACE_DATA (was SURFACE_DATA) for similarity with polySurface
ENH: add expression value enumerations and traits
- simple enumeration of standard types (bool, label, scalar, vector)
that can be used as a value type-code for internal bookkeeping.
GIT: relocate pTraits into general traits/ directory
- releases ownership of the pointer. A no-op (and returns nullptr)
for references.
Naming consistent with unique_ptr and autoPtr.
DOC: adjust wording for memory-related classes
- add is_const() method for tmp, refPtr.
Drop (ununsed and confusing looking) isTmp method from refPtr
in favour of is_pointer() or movable() checks
ENH: noexcept for some pTraits methods, remove redundant 'inline'
- test for const first for tmp/refPtr (simpler logic)
- previously had codeAddSup used for both incompressible and
compressible source terms. However, it was not actually possible to
use it for compressible sources since any references to the 'rho'
parameter would cause a compilation error for the incompressible case.
Added 'codeAddSupRho' to distinguish the compressible case.
User must supply one or both of them on input.
- decomposePar: -no-fields to suppress decomposition of fields
- makeFaMesh: -no-decompose to suppress creation of *ProcAddressing
and fields, -no-fields to suppress decomposition of fields only
- switch from default topology merge to point merge if degenerate
blocks are detected. This should alleviate the problems noted in
#1862.
NB: this detection only works for blocks with duplicate vertex
indices, not ones with geometrically duplicate points.
ENH: add patch block/face summary in blockMesh generation
- add blockMesh -verbose option to override the static or dictionary
settings. The -verbose option can be used multiple times to increase
the verbosity.
ENH: extend hexCell handling with more cellShape-type methods
- allows better reuse in blockMesh.
Remove blockMesh-local hex edge definitions that shadowed the
hexCell values.
ENH: simplify some of the block-edge internals
- similar to -dry-run handling, can be interrogated from argList,
which makes it simpler to add into utilities.
- support multiple uses of -dry-run and -verbose to increase the
level. For example, could have
someApplication -verbose -verbose
and inside of the application:
if (args.verbose() > 2) ...
BUG: error with empty distributed roots specification (fixes#2196)
- previously used the size of distributed roots to transmit if the
case was running in distributed mode, but this behaves rather poorly
with bad input. Specifically, the following questionable setup:
distributed true;
roots ( /*none*/ );
Now transmit the ParRunControl distributed() value instead,
and also emit a gentle warning for the user:
WARNING: running distributed but did not specify roots!
COMP: implicit cast scope name to C++-string in IOobject::scopedName
- handles 'const char*' and allows a check for an empty scope name
COMP: avoid potential name conflict in local function (Istream)
- reportedly some resolution issues (unconfirmed) with Fujitsu clang
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.