mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
226 lines
6.8 KiB
C++
226 lines
6.8 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
InNamespace
|
|
Foam
|
|
|
|
Description
|
|
3D tensor transformation operations.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#ifndef transform_H
|
|
#define transform_H
|
|
|
|
#include "tensor.H"
|
|
#include "mathematicalConstants.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
inline tensor rotationTensor
|
|
(
|
|
const vector& n1,
|
|
const vector& n2
|
|
)
|
|
{
|
|
return
|
|
(n1 & n2)*I
|
|
+ (1 - (n1 & n2))*sqr(n1 ^ n2)/(magSqr(n1 ^ n2) + VSMALL)
|
|
+ (n2*n1 - n1*n2);
|
|
}
|
|
|
|
|
|
inline label transform(const tensor&, const label i)
|
|
{
|
|
return i;
|
|
}
|
|
|
|
|
|
inline scalar transform(const tensor&, const scalar s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline Vector<Cmpt> transform(const tensor& tt, const Vector<Cmpt>& v)
|
|
{
|
|
return tt & v;
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline Tensor<Cmpt> transform(const tensor& tt, const Tensor<Cmpt>& t)
|
|
{
|
|
//return tt & t & tt.T();
|
|
return Tensor<Cmpt>
|
|
(
|
|
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.xx()
|
|
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.xy()
|
|
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.xz(),
|
|
|
|
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.yx()
|
|
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.yy()
|
|
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.yz(),
|
|
|
|
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.zx()
|
|
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.zy()
|
|
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.zz(),
|
|
|
|
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.xx()
|
|
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.xy()
|
|
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.xz(),
|
|
|
|
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.yx()
|
|
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.yy()
|
|
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.yz(),
|
|
|
|
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.zx()
|
|
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.zy()
|
|
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.zz(),
|
|
|
|
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.xx()
|
|
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.xy()
|
|
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.xz(),
|
|
|
|
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.yx()
|
|
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.yy()
|
|
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.yz(),
|
|
|
|
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.zx()
|
|
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.zy()
|
|
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.zz()
|
|
);
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline SphericalTensor<Cmpt> transform
|
|
(
|
|
const tensor& tt,
|
|
const SphericalTensor<Cmpt>& st
|
|
)
|
|
{
|
|
return st;
|
|
}
|
|
|
|
|
|
template<class Cmpt>
|
|
inline SymmTensor<Cmpt> transform(const tensor& tt, const SymmTensor<Cmpt>& st)
|
|
{
|
|
return SymmTensor<Cmpt>
|
|
(
|
|
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.xx()
|
|
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.xy()
|
|
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.xz(),
|
|
|
|
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.yx()
|
|
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.yy()
|
|
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.yz(),
|
|
|
|
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.zx()
|
|
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.zy()
|
|
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.zz(),
|
|
|
|
(tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.yx()
|
|
+ (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.yy()
|
|
+ (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.yz(),
|
|
|
|
(tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.zx()
|
|
+ (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.zy()
|
|
+ (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.zz(),
|
|
|
|
(tt.zx()*st.xx() + tt.zy()*st.xy() + tt.zz()*st.xz())*tt.zx()
|
|
+ (tt.zx()*st.xy() + tt.zy()*st.yy() + tt.zz()*st.yz())*tt.zy()
|
|
+ (tt.zx()*st.xz() + tt.zy()*st.yz() + tt.zz()*st.zz())*tt.zz()
|
|
);
|
|
}
|
|
|
|
|
|
template<class Type1, class Type2>
|
|
inline Type1 transformMask(const Type2& t)
|
|
{
|
|
return t;
|
|
}
|
|
|
|
|
|
template<>
|
|
inline sphericalTensor transformMask<sphericalTensor>(const tensor& t)
|
|
{
|
|
return sph(t);
|
|
}
|
|
|
|
|
|
template<>
|
|
inline symmTensor transformMask<symmTensor>(const tensor& t)
|
|
{
|
|
return symm(t);
|
|
}
|
|
|
|
//- Estimate angle of vec in coordinate system (e0, e1, e0^e1).
|
|
// Is guaranteed to return increasing number but is not correct
|
|
// angle. Used for sorting angles. All input vectors need to be normalized.
|
|
//
|
|
// Calculates scalar which increases with angle going from e0 to vec in
|
|
// the coordinate system e0, e1, e0^e1
|
|
//
|
|
// Jumps from 2PI -> 0 at -SMALL so parallel vectors with small rounding errors
|
|
// should hopefully still get the same quadrant.
|
|
//
|
|
inline scalar pseudoAngle
|
|
(
|
|
const vector& e0,
|
|
const vector& e1,
|
|
const vector& vec
|
|
)
|
|
{
|
|
scalar cos = vec & e0;
|
|
scalar sin = vec & e1;
|
|
|
|
if (sin < -SMALL)
|
|
{
|
|
return (3.0 + cos)*constant::mathematical::piByTwo;
|
|
}
|
|
else
|
|
{
|
|
return (1.0 - cos)*constant::mathematical::piByTwo;
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
} // End namespace Foam
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
#endif
|
|
|
|
// ************************************************************************* //
|