Files
openfoam/src/OpenFOAM/fields/FieldFields/FieldField/FieldFieldFunctions.C
Mark Olesen e1a710014c ENH: define lerp field functions
- defined for lerp between two fields,
  either with a constant or a field of interpolation factors.

  * plain Field, DimensionedField, FieldField, GeometricFields

- using a field to lerp between two constants is not currently
  supported
2023-02-21 10:05:27 +01:00

938 lines
37 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2019-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "PstreamReduceOps.H"
#include "FieldFieldReuseFunctions.H"
#define TEMPLATE template<template<class> class Field, class Type>
#include "FieldFieldFunctionsM.C"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/* * * * * * * * * * * * * * * * Global functions * * * * * * * * * * * * * */
template<template<class> class Field, class Type>
void component
(
FieldField<Field, typename FieldField<Field, Type>::cmptType>& sf,
const FieldField<Field, Type>& f,
const direction d
)
{
const label loopLen = (sf).size();
for (label i = 0; i < loopLen; ++i)
{
component(sf[i], f[i], d);
}
}
template<template<class> class Field, class Type>
void T(FieldField<Field, Type>& f1, const FieldField<Field, Type>& f2)
{
const label loopLen = (f1).size();
for (label i = 0; i < loopLen; ++i)
{
T(f1[i], f2[i]);
}
}
template<template<class> class Field, class Type, direction r>
void pow
(
FieldField<Field, typename powProduct<Type, r>::type>& f,
const FieldField<Field, Type>& vf
)
{
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
pow(f[i], vf[i]);
}
}
template<template<class> class Field, class Type, direction r>
tmp<FieldField<Field, typename powProduct<Type, r>::type>>
pow
(
const FieldField<Field, Type>& f, typename powProduct<Type, r>::type
)
{
typedef typename powProduct<Type, r>::type resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
pow<Type, r>(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type, direction r>
tmp<FieldField<Field, typename powProduct<Type, r>::type>>
pow
(
const tmp<FieldField<Field, Type>>& tf, typename powProduct<Type, r>::type
)
{
typedef typename powProduct<Type, r>::type resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
pow<Type, r>(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void sqr
(
FieldField<Field, typename outerProduct<Type, Type>::type>& f,
const FieldField<Field, Type>& vf
)
{
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
sqr(f[i], vf[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename outerProduct<Type, Type>::type>>
sqr(const FieldField<Field, Type>& f)
{
typedef typename outerProduct<Type, Type>::type resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
sqr(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename outerProduct<Type, Type>::type>>
sqr(const tmp<FieldField<Field, Type>>& tf)
{
typedef typename outerProduct<Type, Type>::type resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
sqr(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void magSqr
(
FieldField<Field, typename typeOfMag<Type>::type>& sf,
const FieldField<Field, Type>& f
)
{
const label loopLen = (sf).size();
for (label i = 0; i < loopLen; ++i)
{
magSqr(sf[i], f[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename typeOfMag<Type>::type>>
magSqr(const FieldField<Field, Type>& f)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
magSqr(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename typeOfMag<Type>::type>>
magSqr(const tmp<FieldField<Field, Type>>& tf)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
magSqr(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void mag
(
FieldField<Field, typename typeOfMag<Type>::type>& sf,
const FieldField<Field, Type>& f
)
{
const label loopLen = (sf).size();
for (label i = 0; i < loopLen; ++i)
{
mag(sf[i], f[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename typeOfMag<Type>::type>>
mag(const FieldField<Field, Type>& f)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
mag(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename typeOfMag<Type>::type>>
mag(const tmp<FieldField<Field, Type>>& tf)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
mag(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void cmptMax
(
FieldField<Field, typename FieldField<Field, Type>::cmptType>& cf,
const FieldField<Field, Type>& f
)
{
const label loopLen = (cf).size();
for (label i = 0; i < loopLen; ++i)
{
cmptMax(cf[i], f[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename FieldField<Field, Type>::cmptType>> cmptMax
(
const FieldField<Field, Type>& f
)
{
typedef typename FieldField<Field, Type>::cmptType resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
cmptMax(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename FieldField<Field, Type>::cmptType>> cmptMax
(
const tmp<FieldField<Field, Type>>& tf
)
{
typedef typename FieldField<Field, Type>::cmptType resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
cmptMax(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void cmptMin
(
FieldField<Field, typename FieldField<Field, Type>::cmptType>& cf,
const FieldField<Field, Type>& f
)
{
const label loopLen = (cf).size();
for (label i = 0; i < loopLen; ++i)
{
cmptMin(cf[i], f[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename FieldField<Field, Type>::cmptType>> cmptMin
(
const FieldField<Field, Type>& f
)
{
typedef typename FieldField<Field, Type>::cmptType resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
cmptMin(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename FieldField<Field, Type>::cmptType>> cmptMin
(
const tmp<FieldField<Field, Type>>& tf
)
{
typedef typename FieldField<Field, Type>::cmptType resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
cmptMin(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void cmptAv
(
FieldField<Field, typename FieldField<Field, Type>::cmptType>& cf,
const FieldField<Field, Type>& f
)
{
const label loopLen = (cf).size();
for (label i = 0; i < loopLen; ++i)
{
cmptAv(cf[i], f[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename FieldField<Field, Type>::cmptType>> cmptAv
(
const FieldField<Field, Type>& f
)
{
typedef typename FieldField<Field, Type>::cmptType resultType;
auto tres = FieldField<Field, resultType>::NewCalculatedType(f);
cmptAv(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, typename FieldField<Field, Type>::cmptType>> cmptAv
(
const tmp<FieldField<Field, Type>>& tf
)
{
typedef typename FieldField<Field, Type>::cmptType resultType;
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf);
cmptAv(tres.ref(), tf());
tf.clear();
return tres;
}
template<template<class> class Field, class Type>
void cmptMag
(
FieldField<Field, Type>& cf,
const FieldField<Field, Type>& f
)
{
const label loopLen = (cf).size();
for (label i = 0; i < loopLen; ++i)
{
cmptMag(cf[i], f[i]);
}
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, Type>> cmptMag
(
const FieldField<Field, Type>& f
)
{
auto tres = FieldField<Field, Type>::NewCalculatedType(f);
cmptMag(tres.ref(), f);
return tres;
}
template<template<class> class Field, class Type>
tmp<FieldField<Field, Type>> cmptMag
(
const tmp<FieldField<Field, Type>>& tf
)
{
tmp<FieldField<Field, Type>> tres(New(tf));
cmptMag(tres.ref(), tf());
tf.clear();
return tres;
}
#define TMP_UNARY_FUNCTION(ReturnType, Func) \
\
template<template<class> class Field, class Type> \
ReturnType Func(const tmp<FieldField<Field, Type>>& tf1) \
{ \
ReturnType res = Func(tf1()); \
tf1.clear(); \
return res; \
}
template<template<class> class Field, class Type>
Type max(const FieldField<Field, Type>& f)
{
Type result = pTraits<Type>::min;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
if (f[i].size())
{
result = max(max(f[i]), result);
}
}
return result;
}
TMP_UNARY_FUNCTION(Type, max)
template<template<class> class Field, class Type>
Type min(const FieldField<Field, Type>& f)
{
Type result = pTraits<Type>::max;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
if (f[i].size())
{
result = min(min(f[i]), result);
}
}
return result;
}
TMP_UNARY_FUNCTION(Type, min)
template<template<class> class Field, class Type>
Type sum(const FieldField<Field, Type>& f)
{
Type result = Zero;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
result += sum(f[i]);
}
return result;
}
TMP_UNARY_FUNCTION(Type, sum)
template<template<class> class Field, class Type>
typename typeOfMag<Type>::type sumMag(const FieldField<Field, Type>& f)
{
typedef typename typeOfMag<Type>::type resultType;
resultType result = Zero;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
result += sumMag(f[i]);
}
return result;
}
TMP_UNARY_FUNCTION(typename typeOfMag<Type>::type, sumMag)
template<template<class> class Field, class Type>
Type average(const FieldField<Field, Type>& f)
{
label n = 0;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
n += f[i].size();
}
if (n)
{
Type avrg = sum(f)/n;
return avrg;
}
WarningInFunction
<< "empty fieldField, returning zero" << endl;
return Zero;
}
TMP_UNARY_FUNCTION(Type, average)
template<template<class> class Field, class Type>
MinMax<Type> minMax(const FieldField<Field, Type>& f)
{
MinMax<Type> result;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
result += minMax(f[i]);
}
return result;
}
TMP_UNARY_FUNCTION(MinMax<Type>, minMax)
template<template<class> class Field, class Type>
scalarMinMax minMaxMag(const FieldField<Field, Type>& f)
{
scalarMinMax result;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
result += minMaxMag(f[i]);
}
return result;
}
TMP_UNARY_FUNCTION(scalarMinMax, minMaxMag)
// With reduction on ReturnType
#define G_UNARY_FUNCTION(ReturnType, gFunc, Func, rFunc) \
\
template<template<class> class Field, class Type> \
ReturnType gFunc(const FieldField<Field, Type>& f) \
{ \
ReturnType res = Func(f); \
reduce(res, rFunc##Op<ReturnType>()); \
return res; \
} \
TMP_UNARY_FUNCTION(ReturnType, gFunc)
G_UNARY_FUNCTION(Type, gMax, max, max)
G_UNARY_FUNCTION(Type, gMin, min, min)
G_UNARY_FUNCTION(Type, gSum, sum, sum)
G_UNARY_FUNCTION(MinMax<Type>, gMinMax, minMax, sum)
G_UNARY_FUNCTION(scalarMinMax, gMinMaxMag, minMaxMag, sum)
G_UNARY_FUNCTION(typename typeOfMag<Type>::type, gSumMag, sumMag, sum)
#undef G_UNARY_FUNCTION
template<template<class> class Field, class Type>
Type gAverage(const FieldField<Field, Type>& f)
{
label n = 0;
const label loopLen = (f).size();
for (label i = 0; i < loopLen; ++i)
{
n += f[i].size();
}
reduce(n, sumOp<label>());
if (n)
{
Type avrg = gSum(f)/n;
return avrg;
}
WarningInFunction
<< "Empty FieldField, returning zero" << endl;
return Zero;
}
TMP_UNARY_FUNCTION(Type, gAverage)
#undef TMP_UNARY_FUNCTION
BINARY_FUNCTION(Type, Type, Type, max)
BINARY_FUNCTION(Type, Type, Type, min)
BINARY_FUNCTION(Type, Type, Type, cmptMultiply)
BINARY_FUNCTION(Type, Type, Type, cmptDivide)
BINARY_TYPE_FUNCTION(Type, Type, Type, max)
BINARY_TYPE_FUNCTION(Type, Type, Type, min)
BINARY_TYPE_FUNCTION(Type, Type, Type, cmptMultiply)
BINARY_TYPE_FUNCTION(Type, Type, Type, cmptDivide)
// Note: works with zero_one through implicit conversion to MinMax
BINARY_TYPE_FUNCTION_FS(Type, Type, MinMax<Type>, clamp)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
TERNARY_FUNCTION(Type, Type, Type, scalar, lerp)
TERNARY_TYPE_FUNCTION_FFS(Type, Type, Type, scalar, lerp)
/* * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * */
UNARY_OPERATOR(Type, Type, -, negate)
BINARY_OPERATOR(Type, Type, scalar, *, multiply)
BINARY_OPERATOR(Type, scalar, Type, *, multiply)
BINARY_OPERATOR(Type, Type, scalar, /, divide)
BINARY_TYPE_OPERATOR_SF(Type, scalar, Type, *, multiply)
BINARY_TYPE_OPERATOR_FS(Type, Type, scalar, *, multiply)
BINARY_TYPE_OPERATOR_FS(Type, Type, scalar, /, divide)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#define PRODUCT_OPERATOR(product, Op, OpFunc) \
\
template \
< \
template<class> class Field1, \
template<class> class Field2, \
class Type1, \
class Type2 \
> \
void OpFunc \
( \
FieldField<Field1, typename product<Type1, Type2>::type>& f, \
const FieldField<Field1, Type1>& f1, \
const FieldField<Field2, Type2>& f2 \
) \
{ \
const label loopLen = (f).size(); \
\
for (label i = 0; i < loopLen; ++i) \
{ \
OpFunc(f[i], f1[i], f2[i]); \
} \
} \
\
template \
< \
template<class> class Field1, \
template<class> class Field2, \
class Type1, \
class Type2 \
> \
tmp<FieldField<Field1, typename product<Type1, Type2>::type>> \
operator Op \
( \
const FieldField<Field1, Type1>& f1, \
const FieldField<Field2, Type2>& f2 \
) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = FieldField<Field1, resultType>::NewCalculatedType(f1); \
OpFunc(tres.ref(), f1, f2); \
return tres; \
} \
\
template<template<class> class Field, class Type1, class Type2> \
tmp<FieldField<Field, typename product<Type1, Type2>::type>> \
operator Op \
( \
const FieldField<Field, Type1>& f1, \
const tmp<FieldField<Field, Type2>>& tf2 \
) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = reuseTmpFieldField<Field, resultType, Type2>::New(tf2); \
OpFunc(tres.ref(), f1, tf2()); \
tf2.clear(); \
return tres; \
} \
\
template \
< \
template<class> class Field1, \
template<class> class Field2, \
class Type1, \
class Type2 \
> \
tmp<FieldField<Field, typename product<Type1, Type2>::type>> \
operator Op \
( \
const FieldField<Field1, Type1>& f1, \
const tmp<FieldField<Field2, Type2>>& tf2 \
) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = FieldField<Field1, resultType>::NewCalculatedType(f1); \
OpFunc(tres.ref(), f1, tf2()); \
tf2.clear(); \
return tres; \
} \
\
template \
< \
template<class> class Field1, \
template<class> class Field2, \
class Type1, \
class Type2 \
> \
tmp<FieldField<Field1, typename product<Type1, Type2>::type>> \
operator Op \
( \
const tmp<FieldField<Field1, Type1>>& tf1, \
const FieldField<Field2, Type2>& f2 \
) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = reuseTmpFieldField<Field1, resultType, Type1>::New(tf1); \
OpFunc(tres.ref(), tf1(), f2); \
tf1.clear(); \
return tres; \
} \
\
template \
< \
template<class> class Field1, \
template<class> class Field2, \
class Type1, \
class Type2 \
> \
tmp<FieldField<Field1, typename product<Type1, Type2>::type>> \
operator Op \
( \
const tmp<FieldField<Field1, Type1>>& tf1, \
const tmp<FieldField<Field2, Type2>>& tf2 \
) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres \
( \
reuseTmpTmpFieldField<Field1, resultType, Type1, Type1, Type2>::New \
(tf1, tf2) \
); \
OpFunc(tres.ref(), tf1(), tf2()); \
tf1.clear(); \
tf2.clear(); \
return tres; \
} \
\
template \
< \
template<class> class Field, \
class Type, \
class Form, \
class Cmpt, \
direction nCmpt \
> \
void OpFunc \
( \
FieldField<Field, typename product<Type, Form>::type>& result, \
const FieldField<Field, Type>& f1, \
const VectorSpace<Form,Cmpt,nCmpt>& vs \
) \
{ \
const label loopLen = (result).size(); \
\
for (label i = 0; i < loopLen; ++i) \
{ \
OpFunc(result[i], f1[i], vs); \
} \
} \
\
template \
< \
template<class> class Field, \
class Type, \
class Form, \
class Cmpt, \
direction nCmpt \
> \
tmp<FieldField<Field, typename product<Type, Form>::type>> \
operator Op \
( \
const FieldField<Field, Type>& f1, \
const VectorSpace<Form,Cmpt,nCmpt>& vs \
) \
{ \
typedef typename product<Type, Form>::type resultType; \
auto tres = FieldField<Field, resultType>::NewCalculatedType(f1); \
OpFunc(tres.ref(), f1, static_cast<const Form&>(vs)); \
return tres; \
} \
\
template \
< \
template<class> class Field, \
class Type, \
class Form, \
class Cmpt, \
direction nCmpt \
> \
tmp<FieldField<Field, typename product<Type, Form>::type>> \
operator Op \
( \
const tmp<FieldField<Field, Type>>& tf1, \
const VectorSpace<Form,Cmpt,nCmpt>& vs \
) \
{ \
typedef typename product<Type, Form>::type resultType; \
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf1); \
OpFunc(tres.ref(), tf1(), static_cast<const Form&>(vs)); \
tf1.clear(); \
return tres; \
} \
\
template \
< \
template<class> class Field, \
class Type, \
class Form, \
class Cmpt, \
direction nCmpt \
> \
void OpFunc \
( \
FieldField<Field, typename product<Form, Type>::type>& result, \
const VectorSpace<Form,Cmpt,nCmpt>& vs, \
const FieldField<Field, Type>& f1 \
) \
{ \
const label loopLen = (result).size(); \
\
for (label i = 0; i < loopLen; ++i) \
{ \
OpFunc(result[i], vs, f1[i]); \
} \
} \
\
template \
< \
template<class> class Field, \
class Type, \
class Form, \
class Cmpt, \
direction nCmpt \
> \
tmp<FieldField<Field, typename product<Form, Type>::type>> \
operator Op \
( \
const VectorSpace<Form,Cmpt,nCmpt>& vs, \
const FieldField<Field, Type>& f1 \
) \
{ \
typedef typename product<Form, Type>::type resultType; \
auto tres = FieldField<Field, resultType>::NewCalculatedType(f1); \
OpFunc(tres.ref(), static_cast<const Form&>(vs), f1); \
return tres; \
} \
\
template \
< \
template<class> class Field, \
class Type, \
class Form, \
class Cmpt, \
direction nCmpt \
> \
tmp<FieldField<Field, typename product<Form, Type>::type>> \
operator Op \
( \
const VectorSpace<Form,Cmpt,nCmpt>& vs, \
const tmp<FieldField<Field, Type>>& tf1 \
) \
{ \
typedef typename product<Form, Type>::type resultType; \
auto tres = reuseTmpFieldField<Field, resultType, Type>::New(tf1); \
OpFunc(tres.ref(), static_cast<const Form&>(vs), tf1()); \
tf1.clear(); \
return tres; \
}
PRODUCT_OPERATOR(typeOfSum, +, add)
PRODUCT_OPERATOR(typeOfSum, -, subtract)
PRODUCT_OPERATOR(outerProduct, *, outer)
PRODUCT_OPERATOR(crossProduct, ^, cross)
PRODUCT_OPERATOR(innerProduct, &, dot)
PRODUCT_OPERATOR(scalarProduct, &&, dotdot)
#undef PRODUCT_OPERATOR
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "undefFieldFunctionsM.H"
// ************************************************************************* //