Files
openfoam/src/functionObjects/field/wallBoundedStreamLine/wallBoundedStreamLine.C
Mark Olesen 60840eb031 ENH: simplify construction of zero-sized Clouds
- use Foam::zero as a dispatch tag

FIX: return moleculeCloud::constProps() List by reference not copy

STYLE: more consistent typedefs / declarations for Clouds
2023-12-13 20:04:56 +01:00

363 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2015-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "wallBoundedStreamLine.H"
#include "wallBoundedStreamLineParticleCloud.H"
#include "sampledSet.H"
#include "faceSet.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(wallBoundedStreamLine, 0);
addToRunTimeSelectionTable
(
functionObject,
wallBoundedStreamLine,
dictionary
);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::Tuple2<Foam::tetIndices, Foam::point>
Foam::functionObjects::wallBoundedStreamLine::findNearestTet
(
const bitSet& isWallPatch,
const point& seedPt,
const label celli
) const
{
const cell& cFaces = mesh_.cells()[celli];
label minFacei = -1;
label minTetPti = -1;
scalar minDistSqr = sqr(GREAT);
point nearestPt(GREAT, GREAT, GREAT);
for (label facei : cFaces)
{
if (isWallPatch[facei])
{
const face& f = mesh_.faces()[facei];
const label fp0 = mesh_.tetBasePtIs()[facei];
const point& basePoint = mesh_.points()[f[fp0]];
label fp = f.fcIndex(fp0);
for (label i = 2; i < f.size(); i++)
{
const point& thisPoint = mesh_.points()[f[fp]];
const label nextFp = f.fcIndex(fp);
const point& nextPoint = mesh_.points()[f[nextFp]];
const triPointRef tri(basePoint, thisPoint, nextPoint);
//const scalar d2 = magSqr(tri.centre() - seedPt);
const pointHit nearInfo(tri.nearestPoint(seedPt));
const scalar d2 = nearInfo.distance();
if (d2 < minDistSqr)
{
nearestPt = nearInfo.point();
minDistSqr = d2;
minFacei = facei;
minTetPti = i-1;
}
fp = nextFp;
}
}
}
// Return tet and nearest point on wall triangle
return Tuple2<Foam::tetIndices, Foam::point>
(
tetIndices
(
celli,
minFacei,
minTetPti
),
nearestPt
);
}
Foam::point Foam::functionObjects::wallBoundedStreamLine::pushIn
(
const triPointRef& tri,
const point& pt
) const
{
//pointHit nearPt(tri.nearestPoint(pt));
//if (nearPt.distance() > ROOTSMALL)
//{
// FatalErrorInFunction << "tri:" << tri
// << " seed:" << pt << exit(FatalError);
//}
return (1.0 - ROOTSMALL)*pt + ROOTSMALL*tri.centre();
}
void Foam::functionObjects::wallBoundedStreamLine::track()
{
// Determine the 'wall' patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// These are the faces that need to be followed
autoPtr<indirectPrimitivePatch> boundaryPatch(wallPatch());
bitSet isWallPatch(mesh_.nFaces(), boundaryPatch().addressing());
// Find nearest wall particle for the seedPoints
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wallBoundedStreamLineParticleCloud particles
(
mesh_,
Foam::zero{},
cloudName_
);
{
// Get the seed points
// ~~~~~~~~~~~~~~~~~~~
const sampledSet& seedPoints = sampledSetPoints();
forAll(seedPoints, seedi)
{
const label celli = seedPoints.cells()[seedi];
if (celli != -1)
{
const point& seedPt = seedPoints[seedi];
Tuple2<tetIndices, point> nearestId
(
findNearestTet(isWallPatch, seedPt, celli)
);
const tetIndices& ids = nearestId.first();
if (ids.face() != -1 && isWallPatch[ids.face()])
{
//Pout<< "Seeding particle :" << nl
// << " seedPt:" << seedPt << nl
// << " face :" << ids.face() << nl
// << " at :" << mesh_.faceCentres()[ids.face()]
// << nl
// << " cell :" << mesh_.cellCentres()[ids.cell()]
// << nl << endl;
particles.addParticle
(
new wallBoundedStreamLineParticle
(
mesh_,
// Perturb seed point to be inside triangle
pushIn(ids.faceTri(mesh_), nearestId.second()),
ids.cell(),
ids.face(), // tetFace
ids.tetPt(),
-1, // not on a mesh edge
-1, // not on a diagonal edge
(trackDir_ == trackDirType::FORWARD), // forward?
lifeTime_ // lifetime
)
);
if (trackDir_ == trackDirType::BIDIRECTIONAL)
{
// Additional particle for other half of track
particles.addParticle
(
new wallBoundedStreamLineParticle
(
mesh_,
// Perturb seed point to be inside triangle
pushIn(ids.faceTri(mesh_), nearestId.second()),
ids.cell(),
ids.face(), // tetFace
ids.tetPt(),
-1, // not on a mesh edge
-1, // not on a diagonal edge
true, // forward
lifeTime_ // lifetime
)
);
}
}
else
{
Pout<< type() << " : ignoring seed " << seedPt
<< " since not in wall cell." << endl;
}
}
}
}
const label nSeeds = returnReduce(particles.size(), sumOp<label>());
Log << type() << " : seeded " << nSeeds << " particles." << endl;
// Field interpolators
PtrList<interpolation<scalar>> vsInterp;
PtrList<interpolation<vector>> vvInterp;
refPtr<interpolation<vector>> UInterp
(
initInterpolations(nSeeds, vsInterp, vvInterp)
);
// Additional particle info
wallBoundedStreamLineParticle::trackingData td
(
particles,
vsInterp,
vvInterp,
UInterp.cref(), // velocity interpolator (possibly within vvInterp)
trackLength_, // fixed track length
isWallPatch, // which faces are to follow
allTracks_,
allScalars_,
allVectors_
);
// Set very large dt. Note: cannot use GREAT since 1/GREAT is SMALL
// which is a trigger value for the tracking...
const scalar trackTime = Foam::sqrt(GREAT);
// Track
particles.move(particles, td, trackTime);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::wallBoundedStreamLine::wallBoundedStreamLine
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
streamLineBase(name, runTime, dict)
{
read(dict_);
}
Foam::functionObjects::wallBoundedStreamLine::wallBoundedStreamLine
(
const word& name,
const Time& runTime,
const dictionary& dict,
const wordList& fieldNames
)
:
streamLineBase(name, runTime, dict, fieldNames)
{
read(dict_);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::wallBoundedStreamLine::read(const dictionary& dict)
{
if (streamLineBase::read(dict))
{
// Make sure that the mesh is trackable
if (debug)
{
// 1. Positive volume decomposition tets
faceSet faces(mesh_, "lowQualityTetFaces", mesh_.nFaces()/100+1);
if
(
polyMeshTetDecomposition::checkFaceTets
(
mesh_,
polyMeshTetDecomposition::minTetQuality,
true,
&faces
)
)
{
label nFaces = returnReduce(faces.size(), sumOp<label>());
WarningInFunction
<< "Found " << nFaces
<<" faces with low quality or negative volume "
<< "decomposition tets. Writing to faceSet " << faces.name()
<< endl;
}
// 2. All edges on a cell having two faces
EdgeMap<label> numFacesPerEdge;
for (const cell& cFaces : mesh_.cells())
{
numFacesPerEdge.clear();
for (const label facei : cFaces)
{
const face& f = mesh_.faces()[facei];
forAll(f, fp)
{
const edge e(f[fp], f.nextLabel(fp));
++(numFacesPerEdge(e, 0));
}
}
forAllConstIters(numFacesPerEdge, iter)
{
if (iter() != 2)
{
FatalErrorInFunction
<< "problem cell:" << cFaces
<< abort(FatalError);
}
}
}
}
}
return true;
}
// ************************************************************************* //