mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
765 lines
18 KiB
C
765 lines
18 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2019 OpenCFD Ltd.
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
| Copyright (C) 2011-2016 OpenFOAM Foundation
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
inline Foam::quaternion::quaternion()
|
|
{}
|
|
|
|
|
|
inline Foam::quaternion::quaternion(const Foam::zero)
|
|
:
|
|
w_(Zero),
|
|
v_(Zero)
|
|
{}
|
|
|
|
|
|
inline Foam::quaternion::quaternion(const scalar w, const vector& v)
|
|
:
|
|
w_(w),
|
|
v_(v)
|
|
{}
|
|
|
|
|
|
inline Foam::quaternion::quaternion(const vector& d, const scalar theta)
|
|
:
|
|
w_(cos(0.5*theta)),
|
|
v_((sin(0.5*theta)/mag(d))*d)
|
|
{}
|
|
|
|
|
|
inline Foam::quaternion::quaternion
|
|
(
|
|
const vector& d,
|
|
const scalar cosTheta,
|
|
const bool normalized
|
|
)
|
|
{
|
|
scalar cosHalfTheta2 = 0.5*(cosTheta + 1);
|
|
w_ = sqrt(cosHalfTheta2);
|
|
|
|
if (normalized)
|
|
{
|
|
v_ = sqrt(1 - cosHalfTheta2)*d;
|
|
}
|
|
else
|
|
{
|
|
v_ = (sqrt(1 - cosHalfTheta2)/mag(d))*d;
|
|
}
|
|
}
|
|
|
|
|
|
inline Foam::quaternion::quaternion(const scalar w)
|
|
:
|
|
w_(w),
|
|
v_(Zero)
|
|
{}
|
|
|
|
|
|
inline Foam::quaternion::quaternion(const vector& v)
|
|
:
|
|
w_(0),
|
|
v_(v)
|
|
{}
|
|
|
|
|
|
inline Foam::quaternion Foam::quaternion::unit(const vector& v)
|
|
{
|
|
return quaternion(sqrt(1 - magSqr(v)), v);
|
|
}
|
|
|
|
|
|
inline Foam::quaternion::quaternion
|
|
(
|
|
const eulerOrder order,
|
|
const vector& angles
|
|
)
|
|
{
|
|
switch (order)
|
|
{
|
|
case ZYX:
|
|
{
|
|
operator=(quaternion(vector(0, 0, 1), angles.x()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.y()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case ZYZ:
|
|
{
|
|
operator=(quaternion(vector(0, 0, 1), angles.x()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.y()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case ZXY:
|
|
{
|
|
operator=(quaternion(vector(0, 0, 1), angles.x()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.y()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case ZXZ:
|
|
{
|
|
operator=(quaternion(vector(0, 0, 1), angles.x()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.y()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case YXZ:
|
|
{
|
|
operator=(quaternion(vector(0, 1, 0), angles.x()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.y()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case YXY:
|
|
{
|
|
operator=(quaternion(vector(0, 1, 0), angles.x()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.y()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case YZX:
|
|
{
|
|
operator=(quaternion(vector(0, 1, 0), angles.x()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.y()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case YZY:
|
|
{
|
|
operator=(quaternion(vector(0, 1, 0), angles.x()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.y()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case XYZ:
|
|
{
|
|
operator=(quaternion(vector(1, 0, 0), angles.x()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.y()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case XYX:
|
|
{
|
|
operator=(quaternion(vector(1, 0, 0), angles.x()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.y()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case XZY:
|
|
{
|
|
operator=(quaternion(vector(1, 0, 0), angles.x()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.y()));
|
|
operator*=(quaternion(vector(0, 1, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
case XZX:
|
|
{
|
|
operator=(quaternion(vector(1, 0, 0), angles.x()));
|
|
operator*=(quaternion(vector(0, 0, 1), angles.y()));
|
|
operator*=(quaternion(vector(1, 0, 0), angles.z()));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
FatalErrorInFunction
|
|
<< "Unknown euler rotation order "
|
|
<< int(order) << abort(FatalError);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
inline Foam::quaternion::quaternion
|
|
(
|
|
const tensor& rotationTensor
|
|
)
|
|
{
|
|
scalar trace =
|
|
rotationTensor.xx()
|
|
+ rotationTensor.yy()
|
|
+ rotationTensor.zz();
|
|
|
|
if (trace > 0)
|
|
{
|
|
scalar s = 0.5/Foam::sqrt(trace + 1.0);
|
|
|
|
w_ = 0.25/s;
|
|
v_[0] = (rotationTensor.zy() - rotationTensor.yz())*s;
|
|
v_[1] = (rotationTensor.xz() - rotationTensor.zx())*s;
|
|
v_[2] = (rotationTensor.yx() - rotationTensor.xy())*s;
|
|
}
|
|
else
|
|
{
|
|
if
|
|
(
|
|
rotationTensor.xx() > rotationTensor.yy()
|
|
&& rotationTensor.xx() > rotationTensor.zz()
|
|
)
|
|
{
|
|
const scalar s = 2.0*Foam::sqrt
|
|
(
|
|
1.0
|
|
+ rotationTensor.xx()
|
|
- rotationTensor.yy()
|
|
- rotationTensor.zz()
|
|
);
|
|
|
|
w_ = (rotationTensor.zy() - rotationTensor.yz())/s;
|
|
v_[0] = 0.25*s;
|
|
v_[1] = (rotationTensor.xy() + rotationTensor.yx())/s;
|
|
v_[2] = (rotationTensor.xz() + rotationTensor.zx())/s;
|
|
}
|
|
else if
|
|
(
|
|
rotationTensor.yy() > rotationTensor.zz()
|
|
)
|
|
{
|
|
const scalar s = 2.0*Foam::sqrt
|
|
(
|
|
1.0
|
|
+ rotationTensor.yy()
|
|
- rotationTensor.xx()
|
|
- rotationTensor.zz()
|
|
);
|
|
|
|
w_ = (rotationTensor.xz() - rotationTensor.zx())/s;
|
|
v_[0] = (rotationTensor.xy() + rotationTensor.yx())/s;
|
|
v_[1] = 0.25*s;
|
|
v_[2] = (rotationTensor.yz() + rotationTensor.zy())/s;
|
|
}
|
|
else
|
|
{
|
|
const scalar s = 2.0*Foam::sqrt
|
|
(
|
|
1.0
|
|
+ rotationTensor.zz()
|
|
- rotationTensor.xx()
|
|
- rotationTensor.yy()
|
|
);
|
|
|
|
w_ = (rotationTensor.yx() - rotationTensor.xy())/s;
|
|
v_[0] = (rotationTensor.xz() + rotationTensor.zx())/s;
|
|
v_[1] = (rotationTensor.yz() + rotationTensor.zy())/s;
|
|
v_[2] = 0.25*s;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
inline Foam::scalar Foam::quaternion::w() const
|
|
{
|
|
return w_;
|
|
}
|
|
|
|
|
|
inline const Foam::vector& Foam::quaternion::v() const
|
|
{
|
|
return v_;
|
|
}
|
|
|
|
|
|
inline Foam::scalar& Foam::quaternion::w()
|
|
{
|
|
return w_;
|
|
}
|
|
|
|
|
|
inline Foam::vector& Foam::quaternion::v()
|
|
{
|
|
return v_;
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::quaternion::normalized() const
|
|
{
|
|
return *this/mag(*this);
|
|
}
|
|
|
|
|
|
inline void Foam::quaternion::normalize()
|
|
{
|
|
operator/=(mag(*this));
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::quaternion::mulq0v(const vector& u) const
|
|
{
|
|
return quaternion(-(v() & u), w()*u + (v() ^ u));
|
|
}
|
|
|
|
|
|
inline Foam::vector Foam::quaternion::transform(const vector& u) const
|
|
{
|
|
return (mulq0v(u)*conjugate(*this)).v();
|
|
}
|
|
|
|
|
|
inline Foam::vector Foam::quaternion::invTransform(const vector& u) const
|
|
{
|
|
return (conjugate(*this).mulq0v(u)*(*this)).v();
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::quaternion::transform(const quaternion& q) const
|
|
{
|
|
return Foam::normalize((*this)*q);
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::quaternion::invTransform
|
|
(
|
|
const quaternion& q
|
|
) const
|
|
{
|
|
return Foam::normalize(conjugate(*this)*q);
|
|
}
|
|
|
|
|
|
inline Foam::tensor Foam::quaternion::R() const
|
|
{
|
|
const scalar w2 = sqr(w());
|
|
const scalar x2 = sqr(v().x());
|
|
const scalar y2 = sqr(v().y());
|
|
const scalar z2 = sqr(v().z());
|
|
|
|
const scalar txy = 2*v().x()*v().y();
|
|
const scalar twz = 2*w()*v().z();
|
|
const scalar txz = 2*v().x()*v().z();
|
|
const scalar twy = 2*w()*v().y();
|
|
const scalar tyz = 2*v().y()*v().z();
|
|
const scalar twx = 2*w()*v().x();
|
|
|
|
return tensor
|
|
(
|
|
w2 + x2 - y2 - z2, txy - twz, txz + twy,
|
|
txy + twz, w2 - x2 + y2 - z2, tyz - twx,
|
|
txz - twy, tyz + twx, w2 - x2 - y2 + z2
|
|
);
|
|
}
|
|
|
|
|
|
inline Foam::vector Foam::quaternion::twoAxes
|
|
(
|
|
const scalar t11,
|
|
const scalar t12,
|
|
const scalar c2,
|
|
const scalar t31,
|
|
const scalar t32
|
|
)
|
|
{
|
|
return vector(atan2(t11, t12), acos(c2), atan2(t31, t32));
|
|
}
|
|
|
|
|
|
inline Foam::vector Foam::quaternion::threeAxes
|
|
(
|
|
const scalar t11,
|
|
const scalar t12,
|
|
const scalar s2,
|
|
const scalar t31,
|
|
const scalar t32
|
|
)
|
|
{
|
|
return vector(atan2(t11, t12), asin(s2), atan2(t31, t32));
|
|
}
|
|
|
|
|
|
inline Foam::vector Foam::quaternion::eulerAngles
|
|
(
|
|
const eulerOrder order
|
|
) const
|
|
{
|
|
const scalar w2 = sqr(w());
|
|
const scalar x2 = sqr(v().x());
|
|
const scalar y2 = sqr(v().y());
|
|
const scalar z2 = sqr(v().z());
|
|
|
|
switch (order)
|
|
{
|
|
case ZYX:
|
|
{
|
|
return threeAxes
|
|
(
|
|
2*(v().x()*v().y() + w()*v().z()),
|
|
w2 + x2 - y2 - z2,
|
|
2*(w()*v().y() - v().x()*v().z()),
|
|
2*(v().y()*v().z() + w()*v().x()),
|
|
w2 - x2 - y2 + z2
|
|
);
|
|
break;
|
|
}
|
|
|
|
case ZYZ:
|
|
{
|
|
return twoAxes
|
|
(
|
|
2*(v().y()*v().z() - w()*v().x()),
|
|
2*(v().x()*v().z() + w()*v().y()),
|
|
w2 - x2 - y2 + z2,
|
|
2*(v().y()*v().z() + w()*v().x()),
|
|
2*(w()*v().y() - v().x()*v().z())
|
|
);
|
|
break;
|
|
}
|
|
|
|
case ZXY:
|
|
{
|
|
return threeAxes
|
|
(
|
|
2*(w()*v().z() - v().x()*v().y()),
|
|
w2 - x2 + y2 - z2,
|
|
2*(v().y()*v().z() + w()*v().x()),
|
|
2*(w()*v().y() - v().x()*v().z()),
|
|
w2 - x2 - y2 + z2
|
|
);
|
|
break;
|
|
}
|
|
|
|
case ZXZ:
|
|
{
|
|
return twoAxes
|
|
(
|
|
2*(v().x()*v().z() + w()*v().y()),
|
|
2*(w()*v().x() - v().y()*v().z()),
|
|
w2 - x2 - y2 + z2,
|
|
2*(v().x()*v().z() - w()*v().y()),
|
|
2*(v().y()*v().z() + w()*v().x())
|
|
);
|
|
break;
|
|
}
|
|
|
|
case YXZ:
|
|
{
|
|
return threeAxes
|
|
(
|
|
2*(v().x()*v().z() + w()*v().y()),
|
|
w2 - x2 - y2 + z2,
|
|
2*(w()*v().x() - v().y()*v().z()),
|
|
2*(v().x()*v().y() + w()*v().z()),
|
|
w2 - x2 + y2 - z2
|
|
);
|
|
break;
|
|
}
|
|
|
|
case YXY:
|
|
{
|
|
return twoAxes
|
|
(
|
|
2*(v().x()*v().y() - w()*v().z()),
|
|
2*(v().y()*v().z() + w()*v().x()),
|
|
w2 - x2 + y2 - z2,
|
|
2*(v().x()*v().y() + w()*v().z()),
|
|
2*(w()*v().x() - v().y()*v().z())
|
|
);
|
|
break;
|
|
}
|
|
|
|
case YZX:
|
|
{
|
|
return threeAxes
|
|
(
|
|
2*(w()*v().y() - v().x()*v().z()),
|
|
w2 + x2 - y2 - z2,
|
|
2*(v().x()*v().y() + w()*v().z()),
|
|
2*(w()*v().x() - v().y()*v().z()),
|
|
w2 - x2 + y2 - z2
|
|
);
|
|
break;
|
|
}
|
|
|
|
case YZY:
|
|
{
|
|
return twoAxes
|
|
(
|
|
2*(v().y()*v().z() + w()*v().x()),
|
|
2*(w()*v().z() - v().x()*v().y()),
|
|
w2 - x2 + y2 - z2,
|
|
2*(v().y()*v().z() - w()*v().x()),
|
|
2*(v().x()*v().y() + w()*v().z())
|
|
);
|
|
break;
|
|
}
|
|
|
|
case XYZ:
|
|
{
|
|
return threeAxes
|
|
(
|
|
2*(w()*v().x() - v().y()*v().z()),
|
|
w2 - x2 - y2 + z2,
|
|
2*(v().x()*v().z() + w()*v().y()),
|
|
2*(w()*v().z() - v().x()*v().y()),
|
|
w2 + x2 - y2 - z2
|
|
);
|
|
break;
|
|
}
|
|
|
|
case XYX:
|
|
{
|
|
return twoAxes
|
|
(
|
|
2*(v().x()*v().y() + w()*v().z()),
|
|
2*(w()*v().y() - v().x()*v().z()),
|
|
w2 + x2 - y2 - z2,
|
|
2*(v().x()*v().y() - w()*v().z()),
|
|
2*(v().x()*v().z() + w()*v().y())
|
|
);
|
|
break;
|
|
}
|
|
|
|
case XZY:
|
|
{
|
|
return threeAxes
|
|
(
|
|
2*(v().y()*v().z() + w()*v().x()),
|
|
w2 - x2 + y2 - z2,
|
|
2*(w()*v().z() - v().x()*v().y()),
|
|
2*(v().x()*v().z() + w()*v().y()),
|
|
w2 + x2 - y2 - z2
|
|
);
|
|
break;
|
|
}
|
|
|
|
case XZX:
|
|
{
|
|
return twoAxes
|
|
(
|
|
2*(v().x()*v().z() - w()*v().y()),
|
|
2*(v().x()*v().y() + w()*v().z()),
|
|
w2 + x2 - y2 - z2,
|
|
2*(v().x()*v().z() + w()*v().y()),
|
|
2*(w()*v().z() - v().x()*v().y())
|
|
);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
FatalErrorInFunction
|
|
<< "Unknown euler rotation order "
|
|
<< int(order) << abort(FatalError);
|
|
break;
|
|
}
|
|
|
|
return Zero;
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
|
|
|
|
inline void Foam::quaternion::operator=(const quaternion& q)
|
|
{
|
|
w_ = q.w_;
|
|
v_ = q.v_;
|
|
}
|
|
|
|
inline void Foam::quaternion::operator+=(const quaternion& q)
|
|
{
|
|
w_ += q.w_;
|
|
v_ += q.v_;
|
|
}
|
|
|
|
inline void Foam::quaternion::operator-=(const quaternion& q)
|
|
{
|
|
w_ -= q.w_;
|
|
v_ -= q.v_;
|
|
}
|
|
|
|
inline void Foam::quaternion::operator*=(const quaternion& q)
|
|
{
|
|
scalar w0 = w();
|
|
w() = w()*q.w() - (v() & q.v());
|
|
v() = w0*q.v() + q.w()*v() + (v() ^ q.v());
|
|
}
|
|
|
|
inline void Foam::quaternion::operator/=(const quaternion& q)
|
|
{
|
|
return operator*=(inv(q));
|
|
}
|
|
|
|
|
|
inline void Foam::quaternion::operator=(const scalar s)
|
|
{
|
|
w_ = s;
|
|
}
|
|
|
|
|
|
inline void Foam::quaternion::operator=(const vector& v)
|
|
{
|
|
v_ = v;
|
|
}
|
|
|
|
|
|
inline void Foam::quaternion::operator*=(const scalar s)
|
|
{
|
|
w_ *= s;
|
|
v_ *= s;
|
|
}
|
|
|
|
inline void Foam::quaternion::operator/=(const scalar s)
|
|
{
|
|
w_ /= s;
|
|
v_ /= s;
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * //
|
|
|
|
inline Foam::scalar Foam::magSqr(const quaternion& q)
|
|
{
|
|
return magSqr(q.w()) + magSqr(q.v());
|
|
}
|
|
|
|
|
|
inline Foam::scalar Foam::mag(const quaternion& q)
|
|
{
|
|
return sqrt(magSqr(q));
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::conjugate(const quaternion& q)
|
|
{
|
|
return quaternion(q.w(), -q.v());
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::inv(const quaternion& q)
|
|
{
|
|
scalar magSqrq = magSqr(q);
|
|
return quaternion(q.w()/magSqrq, -q.v()/magSqrq);
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::normalize(const quaternion& q)
|
|
{
|
|
return q/mag(q);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * //
|
|
|
|
inline bool Foam::operator==(const quaternion& q1, const quaternion& q2)
|
|
{
|
|
return (equal(q1.w(), q2.w()) && equal(q1.v(), q2.v()));
|
|
}
|
|
|
|
|
|
inline bool Foam::operator!=(const quaternion& q1, const quaternion& q2)
|
|
{
|
|
return !operator==(q1, q2);
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator+
|
|
(
|
|
const quaternion& q1,
|
|
const quaternion& q2
|
|
)
|
|
{
|
|
return quaternion(q1.w() + q2.w(), q1.v() + q2.v());
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator-(const quaternion& q)
|
|
{
|
|
return quaternion(-q.w(), -q.v());
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator-
|
|
(
|
|
const quaternion& q1,
|
|
const quaternion& q2
|
|
)
|
|
{
|
|
return quaternion(q1.w() - q2.w(), q1.v() - q2.v());
|
|
}
|
|
|
|
|
|
inline Foam::scalar Foam::operator&(const quaternion& q1, const quaternion& q2)
|
|
{
|
|
return q1.w()*q2.w() + (q1.v() & q2.v());
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator*
|
|
(
|
|
const quaternion& q1,
|
|
const quaternion& q2
|
|
)
|
|
{
|
|
return quaternion
|
|
(
|
|
q1.w()*q2.w() - (q1.v() & q2.v()),
|
|
q1.w()*q2.v() + q2.w()*q1.v() + (q1.v() ^ q2.v())
|
|
);
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator/
|
|
(
|
|
const quaternion& q1,
|
|
const quaternion& q2
|
|
)
|
|
{
|
|
return q1*inv(q2);
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator*(const scalar s, const quaternion& q)
|
|
{
|
|
return quaternion(s*q.w(), s*q.v());
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator*(const quaternion& q, const scalar s)
|
|
{
|
|
return quaternion(s*q.w(), s*q.v());
|
|
}
|
|
|
|
|
|
inline Foam::quaternion Foam::operator/(const quaternion& q, const scalar s)
|
|
{
|
|
return quaternion(q.w()/s, q.v()/s);
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|