Files
openfoam/src/OpenFOAM/primitives/quaternion/quaternionI.H

765 lines
18 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2019 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2011-2016 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
inline Foam::quaternion::quaternion()
{}
inline Foam::quaternion::quaternion(const Foam::zero)
:
w_(Zero),
v_(Zero)
{}
inline Foam::quaternion::quaternion(const scalar w, const vector& v)
:
w_(w),
v_(v)
{}
inline Foam::quaternion::quaternion(const vector& d, const scalar theta)
:
w_(cos(0.5*theta)),
v_((sin(0.5*theta)/mag(d))*d)
{}
inline Foam::quaternion::quaternion
(
const vector& d,
const scalar cosTheta,
const bool normalized
)
{
scalar cosHalfTheta2 = 0.5*(cosTheta + 1);
w_ = sqrt(cosHalfTheta2);
if (normalized)
{
v_ = sqrt(1 - cosHalfTheta2)*d;
}
else
{
v_ = (sqrt(1 - cosHalfTheta2)/mag(d))*d;
}
}
inline Foam::quaternion::quaternion(const scalar w)
:
w_(w),
v_(Zero)
{}
inline Foam::quaternion::quaternion(const vector& v)
:
w_(0),
v_(v)
{}
inline Foam::quaternion Foam::quaternion::unit(const vector& v)
{
return quaternion(sqrt(1 - magSqr(v)), v);
}
inline Foam::quaternion::quaternion
(
const eulerOrder order,
const vector& angles
)
{
switch (order)
{
case ZYX:
{
operator=(quaternion(vector(0, 0, 1), angles.x()));
operator*=(quaternion(vector(0, 1, 0), angles.y()));
operator*=(quaternion(vector(1, 0, 0), angles.z()));
break;
}
case ZYZ:
{
operator=(quaternion(vector(0, 0, 1), angles.x()));
operator*=(quaternion(vector(0, 1, 0), angles.y()));
operator*=(quaternion(vector(0, 0, 1), angles.z()));
break;
}
case ZXY:
{
operator=(quaternion(vector(0, 0, 1), angles.x()));
operator*=(quaternion(vector(1, 0, 0), angles.y()));
operator*=(quaternion(vector(0, 1, 0), angles.z()));
break;
}
case ZXZ:
{
operator=(quaternion(vector(0, 0, 1), angles.x()));
operator*=(quaternion(vector(1, 0, 0), angles.y()));
operator*=(quaternion(vector(0, 0, 1), angles.z()));
break;
}
case YXZ:
{
operator=(quaternion(vector(0, 1, 0), angles.x()));
operator*=(quaternion(vector(1, 0, 0), angles.y()));
operator*=(quaternion(vector(0, 0, 1), angles.z()));
break;
}
case YXY:
{
operator=(quaternion(vector(0, 1, 0), angles.x()));
operator*=(quaternion(vector(1, 0, 0), angles.y()));
operator*=(quaternion(vector(0, 1, 0), angles.z()));
break;
}
case YZX:
{
operator=(quaternion(vector(0, 1, 0), angles.x()));
operator*=(quaternion(vector(0, 0, 1), angles.y()));
operator*=(quaternion(vector(1, 0, 0), angles.z()));
break;
}
case YZY:
{
operator=(quaternion(vector(0, 1, 0), angles.x()));
operator*=(quaternion(vector(0, 0, 1), angles.y()));
operator*=(quaternion(vector(0, 1, 0), angles.z()));
break;
}
case XYZ:
{
operator=(quaternion(vector(1, 0, 0), angles.x()));
operator*=(quaternion(vector(0, 1, 0), angles.y()));
operator*=(quaternion(vector(0, 0, 1), angles.z()));
break;
}
case XYX:
{
operator=(quaternion(vector(1, 0, 0), angles.x()));
operator*=(quaternion(vector(0, 1, 0), angles.y()));
operator*=(quaternion(vector(1, 0, 0), angles.z()));
break;
}
case XZY:
{
operator=(quaternion(vector(1, 0, 0), angles.x()));
operator*=(quaternion(vector(0, 0, 1), angles.y()));
operator*=(quaternion(vector(0, 1, 0), angles.z()));
break;
}
case XZX:
{
operator=(quaternion(vector(1, 0, 0), angles.x()));
operator*=(quaternion(vector(0, 0, 1), angles.y()));
operator*=(quaternion(vector(1, 0, 0), angles.z()));
break;
}
default:
FatalErrorInFunction
<< "Unknown euler rotation order "
<< int(order) << abort(FatalError);
break;
}
}
inline Foam::quaternion::quaternion
(
const tensor& rotationTensor
)
{
scalar trace =
rotationTensor.xx()
+ rotationTensor.yy()
+ rotationTensor.zz();
if (trace > 0)
{
scalar s = 0.5/Foam::sqrt(trace + 1.0);
w_ = 0.25/s;
v_[0] = (rotationTensor.zy() - rotationTensor.yz())*s;
v_[1] = (rotationTensor.xz() - rotationTensor.zx())*s;
v_[2] = (rotationTensor.yx() - rotationTensor.xy())*s;
}
else
{
if
(
rotationTensor.xx() > rotationTensor.yy()
&& rotationTensor.xx() > rotationTensor.zz()
)
{
const scalar s = 2.0*Foam::sqrt
(
1.0
+ rotationTensor.xx()
- rotationTensor.yy()
- rotationTensor.zz()
);
w_ = (rotationTensor.zy() - rotationTensor.yz())/s;
v_[0] = 0.25*s;
v_[1] = (rotationTensor.xy() + rotationTensor.yx())/s;
v_[2] = (rotationTensor.xz() + rotationTensor.zx())/s;
}
else if
(
rotationTensor.yy() > rotationTensor.zz()
)
{
const scalar s = 2.0*Foam::sqrt
(
1.0
+ rotationTensor.yy()
- rotationTensor.xx()
- rotationTensor.zz()
);
w_ = (rotationTensor.xz() - rotationTensor.zx())/s;
v_[0] = (rotationTensor.xy() + rotationTensor.yx())/s;
v_[1] = 0.25*s;
v_[2] = (rotationTensor.yz() + rotationTensor.zy())/s;
}
else
{
const scalar s = 2.0*Foam::sqrt
(
1.0
+ rotationTensor.zz()
- rotationTensor.xx()
- rotationTensor.yy()
);
w_ = (rotationTensor.yx() - rotationTensor.xy())/s;
v_[0] = (rotationTensor.xz() + rotationTensor.zx())/s;
v_[1] = (rotationTensor.yz() + rotationTensor.zy())/s;
v_[2] = 0.25*s;
}
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
inline Foam::scalar Foam::quaternion::w() const
{
return w_;
}
inline const Foam::vector& Foam::quaternion::v() const
{
return v_;
}
inline Foam::scalar& Foam::quaternion::w()
{
return w_;
}
inline Foam::vector& Foam::quaternion::v()
{
return v_;
}
inline Foam::quaternion Foam::quaternion::normalized() const
{
return *this/mag(*this);
}
inline void Foam::quaternion::normalize()
{
operator/=(mag(*this));
}
inline Foam::quaternion Foam::quaternion::mulq0v(const vector& u) const
{
return quaternion(-(v() & u), w()*u + (v() ^ u));
}
inline Foam::vector Foam::quaternion::transform(const vector& u) const
{
return (mulq0v(u)*conjugate(*this)).v();
}
inline Foam::vector Foam::quaternion::invTransform(const vector& u) const
{
return (conjugate(*this).mulq0v(u)*(*this)).v();
}
inline Foam::quaternion Foam::quaternion::transform(const quaternion& q) const
{
return Foam::normalize((*this)*q);
}
inline Foam::quaternion Foam::quaternion::invTransform
(
const quaternion& q
) const
{
return Foam::normalize(conjugate(*this)*q);
}
inline Foam::tensor Foam::quaternion::R() const
{
const scalar w2 = sqr(w());
const scalar x2 = sqr(v().x());
const scalar y2 = sqr(v().y());
const scalar z2 = sqr(v().z());
const scalar txy = 2*v().x()*v().y();
const scalar twz = 2*w()*v().z();
const scalar txz = 2*v().x()*v().z();
const scalar twy = 2*w()*v().y();
const scalar tyz = 2*v().y()*v().z();
const scalar twx = 2*w()*v().x();
return tensor
(
w2 + x2 - y2 - z2, txy - twz, txz + twy,
txy + twz, w2 - x2 + y2 - z2, tyz - twx,
txz - twy, tyz + twx, w2 - x2 - y2 + z2
);
}
inline Foam::vector Foam::quaternion::twoAxes
(
const scalar t11,
const scalar t12,
const scalar c2,
const scalar t31,
const scalar t32
)
{
return vector(atan2(t11, t12), acos(c2), atan2(t31, t32));
}
inline Foam::vector Foam::quaternion::threeAxes
(
const scalar t11,
const scalar t12,
const scalar s2,
const scalar t31,
const scalar t32
)
{
return vector(atan2(t11, t12), asin(s2), atan2(t31, t32));
}
inline Foam::vector Foam::quaternion::eulerAngles
(
const eulerOrder order
) const
{
const scalar w2 = sqr(w());
const scalar x2 = sqr(v().x());
const scalar y2 = sqr(v().y());
const scalar z2 = sqr(v().z());
switch (order)
{
case ZYX:
{
return threeAxes
(
2*(v().x()*v().y() + w()*v().z()),
w2 + x2 - y2 - z2,
2*(w()*v().y() - v().x()*v().z()),
2*(v().y()*v().z() + w()*v().x()),
w2 - x2 - y2 + z2
);
break;
}
case ZYZ:
{
return twoAxes
(
2*(v().y()*v().z() - w()*v().x()),
2*(v().x()*v().z() + w()*v().y()),
w2 - x2 - y2 + z2,
2*(v().y()*v().z() + w()*v().x()),
2*(w()*v().y() - v().x()*v().z())
);
break;
}
case ZXY:
{
return threeAxes
(
2*(w()*v().z() - v().x()*v().y()),
w2 - x2 + y2 - z2,
2*(v().y()*v().z() + w()*v().x()),
2*(w()*v().y() - v().x()*v().z()),
w2 - x2 - y2 + z2
);
break;
}
case ZXZ:
{
return twoAxes
(
2*(v().x()*v().z() + w()*v().y()),
2*(w()*v().x() - v().y()*v().z()),
w2 - x2 - y2 + z2,
2*(v().x()*v().z() - w()*v().y()),
2*(v().y()*v().z() + w()*v().x())
);
break;
}
case YXZ:
{
return threeAxes
(
2*(v().x()*v().z() + w()*v().y()),
w2 - x2 - y2 + z2,
2*(w()*v().x() - v().y()*v().z()),
2*(v().x()*v().y() + w()*v().z()),
w2 - x2 + y2 - z2
);
break;
}
case YXY:
{
return twoAxes
(
2*(v().x()*v().y() - w()*v().z()),
2*(v().y()*v().z() + w()*v().x()),
w2 - x2 + y2 - z2,
2*(v().x()*v().y() + w()*v().z()),
2*(w()*v().x() - v().y()*v().z())
);
break;
}
case YZX:
{
return threeAxes
(
2*(w()*v().y() - v().x()*v().z()),
w2 + x2 - y2 - z2,
2*(v().x()*v().y() + w()*v().z()),
2*(w()*v().x() - v().y()*v().z()),
w2 - x2 + y2 - z2
);
break;
}
case YZY:
{
return twoAxes
(
2*(v().y()*v().z() + w()*v().x()),
2*(w()*v().z() - v().x()*v().y()),
w2 - x2 + y2 - z2,
2*(v().y()*v().z() - w()*v().x()),
2*(v().x()*v().y() + w()*v().z())
);
break;
}
case XYZ:
{
return threeAxes
(
2*(w()*v().x() - v().y()*v().z()),
w2 - x2 - y2 + z2,
2*(v().x()*v().z() + w()*v().y()),
2*(w()*v().z() - v().x()*v().y()),
w2 + x2 - y2 - z2
);
break;
}
case XYX:
{
return twoAxes
(
2*(v().x()*v().y() + w()*v().z()),
2*(w()*v().y() - v().x()*v().z()),
w2 + x2 - y2 - z2,
2*(v().x()*v().y() - w()*v().z()),
2*(v().x()*v().z() + w()*v().y())
);
break;
}
case XZY:
{
return threeAxes
(
2*(v().y()*v().z() + w()*v().x()),
w2 - x2 + y2 - z2,
2*(w()*v().z() - v().x()*v().y()),
2*(v().x()*v().z() + w()*v().y()),
w2 + x2 - y2 - z2
);
break;
}
case XZX:
{
return twoAxes
(
2*(v().x()*v().z() - w()*v().y()),
2*(v().x()*v().y() + w()*v().z()),
w2 + x2 - y2 - z2,
2*(v().x()*v().z() + w()*v().y()),
2*(w()*v().z() - v().x()*v().y())
);
break;
}
default:
FatalErrorInFunction
<< "Unknown euler rotation order "
<< int(order) << abort(FatalError);
break;
}
return Zero;
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
inline void Foam::quaternion::operator=(const quaternion& q)
{
w_ = q.w_;
v_ = q.v_;
}
inline void Foam::quaternion::operator+=(const quaternion& q)
{
w_ += q.w_;
v_ += q.v_;
}
inline void Foam::quaternion::operator-=(const quaternion& q)
{
w_ -= q.w_;
v_ -= q.v_;
}
inline void Foam::quaternion::operator*=(const quaternion& q)
{
scalar w0 = w();
w() = w()*q.w() - (v() & q.v());
v() = w0*q.v() + q.w()*v() + (v() ^ q.v());
}
inline void Foam::quaternion::operator/=(const quaternion& q)
{
return operator*=(inv(q));
}
inline void Foam::quaternion::operator=(const scalar s)
{
w_ = s;
}
inline void Foam::quaternion::operator=(const vector& v)
{
v_ = v;
}
inline void Foam::quaternion::operator*=(const scalar s)
{
w_ *= s;
v_ *= s;
}
inline void Foam::quaternion::operator/=(const scalar s)
{
w_ /= s;
v_ /= s;
}
// * * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * //
inline Foam::scalar Foam::magSqr(const quaternion& q)
{
return magSqr(q.w()) + magSqr(q.v());
}
inline Foam::scalar Foam::mag(const quaternion& q)
{
return sqrt(magSqr(q));
}
inline Foam::quaternion Foam::conjugate(const quaternion& q)
{
return quaternion(q.w(), -q.v());
}
inline Foam::quaternion Foam::inv(const quaternion& q)
{
scalar magSqrq = magSqr(q);
return quaternion(q.w()/magSqrq, -q.v()/magSqrq);
}
inline Foam::quaternion Foam::normalize(const quaternion& q)
{
return q/mag(q);
}
// * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * //
inline bool Foam::operator==(const quaternion& q1, const quaternion& q2)
{
return (equal(q1.w(), q2.w()) && equal(q1.v(), q2.v()));
}
inline bool Foam::operator!=(const quaternion& q1, const quaternion& q2)
{
return !operator==(q1, q2);
}
inline Foam::quaternion Foam::operator+
(
const quaternion& q1,
const quaternion& q2
)
{
return quaternion(q1.w() + q2.w(), q1.v() + q2.v());
}
inline Foam::quaternion Foam::operator-(const quaternion& q)
{
return quaternion(-q.w(), -q.v());
}
inline Foam::quaternion Foam::operator-
(
const quaternion& q1,
const quaternion& q2
)
{
return quaternion(q1.w() - q2.w(), q1.v() - q2.v());
}
inline Foam::scalar Foam::operator&(const quaternion& q1, const quaternion& q2)
{
return q1.w()*q2.w() + (q1.v() & q2.v());
}
inline Foam::quaternion Foam::operator*
(
const quaternion& q1,
const quaternion& q2
)
{
return quaternion
(
q1.w()*q2.w() - (q1.v() & q2.v()),
q1.w()*q2.v() + q2.w()*q1.v() + (q1.v() ^ q2.v())
);
}
inline Foam::quaternion Foam::operator/
(
const quaternion& q1,
const quaternion& q2
)
{
return q1*inv(q2);
}
inline Foam::quaternion Foam::operator*(const scalar s, const quaternion& q)
{
return quaternion(s*q.w(), s*q.v());
}
inline Foam::quaternion Foam::operator*(const quaternion& q, const scalar s)
{
return quaternion(s*q.w(), s*q.v());
}
inline Foam::quaternion Foam::operator/(const quaternion& q, const scalar s)
{
return quaternion(q.w()/s, q.v()/s);
}
// ************************************************************************* //