Compare commits

...

982 Commits

Author SHA1 Message Date
f871ecdc67 change to RCB cuts in load-balancing commands, also a new option for fix halt 2017-03-10 15:55:07 -07:00
470353e320 Merge pull request #408 from giacomofiorin/colvars-update-2017-03-10
Colvars update 2017-03-10
2017-03-10 14:51:16 -07:00
ffe02d20ca Merge pull request #406 from stanmoore1/kokkos_bugfix
Fix Kokkos issues
2017-03-10 14:51:04 -07:00
f70752c18f Include PDF of Colvars doc missing in previous commit 2017-03-10 15:58:35 -05:00
07fcfd6d54 Merge pull request #405 from stanmoore1/ev_setup_kk
Add alloc flag to ev_setup
2017-03-10 11:01:51 -07:00
c97feafca6 Merge pull request #407 from frobnitzem/master
Add error check to lammps_gather_atoms/lammps_scatter_atoms in library.cpp
2017-03-10 11:00:30 -07:00
b20d95d495 Merge pull request #402 from timattox/USER-DPD_spelling
Fix spelling "correction" from 3a054d1a: iterations not interactions and imd_writen not imd_written
2017-03-10 10:59:43 -07:00
0b4adaa9e6 Backport typo fixes that were not previously pushed to the Colvars repository 2017-03-10 09:24:46 -05:00
5fe6206638 Update Colvars module to version 2017-03-10 2017-03-10 09:16:58 -05:00
65964f3b31 Add error check to lammps_gather_atoms/lammps_scatter_atoms in library.cpp 2017-03-09 16:49:07 -05:00
b28b84d444 Fix half from full nlist issue with Kokkos 2017-03-09 14:00:27 -07:00
a001a5ceb0 Fixing memory overflow issue in comm_kokkos 2017-03-09 12:20:49 -07:00
2ef713ea1b restore incorrect change due to spell checking in fix imd 2017-03-08 16:40:16 -05:00
1f6c1942b3 Disable allocation of per-atom arrays in ev_setup for Kokkos styles 2017-03-08 12:42:44 -07:00
683023d820 Adding alloc flag to ev_setup 2017-03-08 12:36:23 -07:00
42d3a8f498 Fix spelling "correction" from 3a054d1a: iterations not interactions. :-) 2017-03-07 15:41:06 -05:00
79b005dc3d patch 7Mar17 2017-03-07 11:40:07 -07:00
a2fa6ef452 Merge pull request #393 from akohlmey/small-bugfixes
Small bugfixes
2017-03-07 09:56:03 -07:00
920641bbff Merge pull request #399 from rbberger/docs_spelling_fixes
Correct spelling errors in documentation
2017-03-07 09:47:22 -07:00
c2aabdec22 Merge pull request #398 from stanmoore1/kokkos_changes
Kokkos changes
2017-03-07 09:46:54 -07:00
e4aa735a68 Merge pull request #395 from timattox/USER-DPD_bugfix
USER-DPD: a variety of small but important bugfixes
2017-03-07 09:46:40 -07:00
4af6557568 Merge pull request #394 from jaapkroe/kolmogorov-crespi
Added Kolmogorov-Crespi potential
2017-03-07 09:46:08 -07:00
0798885bdb Merge pull request #389 from akohlmey/update-agni-potential
update AGNI potential for Al, reference runs and output and citation
2017-03-07 09:35:31 -07:00
020e75e7ef Merge pull request #386 from akohlmey/doc-consistentcy
improve consistency of manual
2017-03-07 09:33:14 -07:00
d6866f1cfd Merge pull request #376 from v0i0/airebo-bondorderLJ-fixes
Fixes for PairAIREBO::bondorderLJ
2017-03-07 09:32:30 -07:00
efaa4c6710 new neigh_modify exclude option, other SNAP changes 2017-03-07 09:31:12 -07:00
08baaa9d8e Fix more typos in tools 2017-03-07 01:00:25 -05:00
359af419a7 Fix typo in python README 2017-03-07 00:58:35 -05:00
21be86c423 Fix typos in txt2html 2017-03-07 00:58:03 -05:00
d6800405a5 Fix more typos in examples 2017-03-07 00:57:23 -05:00
3a054d1a82 Fix more typos in src files 2017-03-07 00:55:01 -05:00
007f3c66a0 Third batch of spelling fixes in manual 2017-03-07 00:51:31 -05:00
32708860a9 Add remaining false positives 2017-03-07 00:27:35 -05:00
fc9eebb936 Added spellcheck utility to documentation build
Uses the sphinxcontrib-spelling extension and requires PyEnchant and
aspell-en to be installed.

Adds the optional make target 'spelling' which produces the file
spelling/output.txt. It contains all words it detects.

Due to the large number of false positives, words in
utils/sphinx-config/false_positives.txt are ignored.
2017-03-05 21:23:41 -05:00
dd76ac5010 Fix typos in tools folder 2017-03-05 21:18:01 -05:00
17486a9319 Convert USER/lb/polymer files to UNIX line endings and remove trailing whitespace 2017-03-05 21:16:21 -05:00
778a79b8ee Fix typos in examples folder 2017-03-05 21:10:33 -05:00
7dd60f9737 Fix typos in src files 2017-03-05 21:03:40 -05:00
084d831bce Second batch of spelling fixes in manual 2017-03-05 21:02:51 -05:00
e261bef7bb Spelling fixes in source files 2017-03-05 18:30:39 -05:00
fd78486086 First batch of spelling fixes in manual 2017-03-05 18:27:38 -05:00
6382d3c89a Improving memory access in comm_kokkos 2017-03-03 09:14:47 -07:00
763a00e8b0 USER-DPD: pair_multi_lucy_rx bugfix for systems with multiple atom types 2017-03-03 09:29:17 -05:00
ce1a3f25e1 Merge branch 'pair_write_fix' of https://github.com/andeplane/lammps into small-bugfixes 2017-03-03 08:11:55 -05:00
eaf7ed7707 Print error if pair_write does not get correct number of arguments 2017-03-02 21:25:27 -08:00
9a560b9091 USER-DPD bugfix: make atom_vec_dpd work properly with atom_vec_hybrid.
We were sending too much data during pack_comm_hybrid/unpack_comm_hybrid.
2017-03-01 15:22:28 -05:00
8a0e44db83 updated documentation and ev_tally 2017-03-01 16:13:44 +01:00
1dc78a7e58 USER-DPD: correct off-by-one errors in PairMultiLucyRX::coeff() 2017-02-28 17:45:21 -05:00
7a593c2fc8 USER-DPD: correct off-by-one errors in PairTableRX::coeff() 2017-02-28 14:25:03 -05:00
3ac74a1d69 update lammps.book file for latest doc changes 2017-02-28 11:21:18 -05:00
3605208a45 add a few more missing details for integrating pair style kolmogorov/crespi/z 2017-02-28 11:16:27 -05:00
9b01949cac make the introduction of the command-by-category list less confusing 2017-02-28 11:05:40 -05:00
323570c920 added jpg for kolmogorov-crespi-z equations and fixed hybrid/overlay check in source 2017-02-28 15:39:01 +01:00
df13a7a003 email added 2017-02-28 15:12:35 +01:00
a1b40b902d Added Kolmogorov-Crespi potential 2017-02-28 14:59:13 +01:00
b921b69f47 implement bugfix from issue #388
this closes #388
2017-02-27 18:22:21 -05:00
c0cf50bce5 trigger recomputing ichunk between runs unless requested otherwise
this fixes #390
2017-02-27 18:19:59 -05:00
2708c86836 fix typos: moleclue -> molecule
this closes #386
2017-02-27 18:03:18 -05:00
9999f363a1 remove outdated log files, too. 2017-02-24 15:34:59 -05:00
a18b4ef4b0 update AGNI potential for Al, reference runs and output and citation 2017-02-24 15:33:13 -05:00
20a9ffe69d improve consistency and resolve dead links for USER-CGDNA related doc files 2017-02-21 21:27:34 -05:00
49e83b4348 patch 21Feb17 sync with GHub 2017-02-21 16:07:26 -07:00
6e89ccd522 Merge pull request #385 from akohlmey/collected-small-bugfixes
collected small bugfixes and updates
2017-02-21 15:59:06 -07:00
53f3df5bfc Merge pull request #384 from lammps/another_neigh_refactor
more neighbor list changes, some new options
2017-02-21 15:57:23 -07:00
3dbbea342a remove a debug print line 2017-02-21 15:57:03 -07:00
b70c670aac Merge pull request #383 from stanmoore1/rshan_class2_kk
Kokkos version of class2 bond, angle, dihedral, and improper from Ray Shan
2017-02-21 15:52:10 -07:00
1d17cae407 Merge pull request #382 from timattox/master_kokkos_neigh_bugfix
neighbor_kokkos.cpp: Don't call grow() on neighbor lists that are copies
2017-02-21 15:51:35 -07:00
429264a12b Merge pull request #380 from hheenen/core_shell_documentation
updated documentation and examples for coreshell
2017-02-21 15:50:53 -07:00
d001a09345 Merge pull request #379 from ndtrung81/pppm-gpu-compute-group-group
Fixed bugs with pppm/gpu when used with compute group/group
2017-02-21 15:50:28 -07:00
cb9d42da08 Merge pull request #378 from timattox/USER-DPD_ssa_update
USER-DPD: performance optimizations to ssa_update() in fix_shardlow
2017-02-21 15:50:07 -07:00
7185ec92b3 Merge pull request #377 from stanmoore1/kokkos_update
Kokkos library update
2017-02-21 15:49:50 -07:00
1cd4c48ccc new SNAP potential for W 2017-02-21 15:49:21 -07:00
a88136c3f5 correct a logic bug in fix wall/gran/region 2017-02-17 17:58:24 -05:00
ce20c7ffe9 remove debug code 2017-02-17 12:42:07 -05:00
4a80df3a99 more neighbor list changes, some new options 2017-02-15 16:45:33 -07:00
5f93fad012 Add copymode protection to class2 styles 2017-02-15 13:56:16 -07:00
ccaec315db Updating docs for Kokkos class2 2017-02-15 13:00:33 -07:00
c6c1852b3b Fix a few issues with Kokkos class2 files 2017-02-15 12:44:54 -07:00
69a8e19dc5 Add files from Ray Shan for Kokkos version of class2 angle, bond, etc. 2017-02-15 12:29:52 -07:00
928947dcea neighbor_kokkos.cpp: Don't call grow() on neighbor lists that are copies.
This corresponds to a bugfix from commit 9161bd98 on neighbor.cpp
2017-02-15 11:49:34 -05:00
904609a7a3 Fixed issue with switching function derivative in PairAIREBO::FLJ
Since we compute dvdw as d vdw / d rij, we have to also compute
dslw as d slw / d rij. Currently, we compute -1/r d slw/d rij,
which leads to incorrect results when the two are later combined.
Alternatively, one could also modify dvdw to be -1/r d vdw/d rij,
which would be a more standard way to do LJ calculations, but this
way seems more consistent.
2017-02-15 16:38:13 +01:00
fc3505fac4 Fixed a number of issues after verifying against the KIM version 2017-02-15 16:37:29 +01:00
48070011d9 update names in example, too 2017-02-14 07:42:36 -05:00
0fb8dacc00 one more Finchham to Fincham change 2017-02-14 07:41:05 -05:00
6b923476b9 updated documentation and examples for coreshell 2017-02-14 13:14:22 +01:00
20806dd86a Fixed bugs with pppm/gpu when used with compute group/group 2017-02-14 00:26:55 -06:00
90e5ae965d Add missing flags to Kokkos Makefile 2017-02-13 11:19:46 -07:00
15008c9d18 USER-DPD: performance optimizations to ssa_update() in fix_shardlow
Overall improvements range from 2% to 18% on our benchmarks
1) Newton has to be turned on for SSA, so remove those conditionals
2) Rework the math in ssa_update() to eliminate many ops and temporaries
3) Split ssa_update() into two versions, based on DPD vs. DPDE
4) Reorder code in ssa_update_*() to reduce register pressure
2017-02-13 13:11:19 -05:00
33af7ab248 Remove merge line 2017-02-13 10:59:22 -07:00
8f9b2aca06 Removing unused files in Kokkos lib 2017-02-13 10:53:51 -07:00
383da816c2 Updating Kokkos lib 2017-02-13 10:50:34 -07:00
a323ca1edd Moved variable declarations to front for consistency 2017-02-13 18:11:09 +01:00
de4af6f15d In PairAIREBO::bondorderLJ correct omega sum d/drij.
The code tries to make this distinction between the real distance (r23) and the facticious one (rij), but does not do so very well.
It is better if those two variables have the same value everywhere, and apply the correction where necessary.
The current way to use the values is incorrrect.

Remove those calculations that effectively are derivatives w.r.t. |rij| (the facticious distance), is constant and thus the chained derivative (d|rij|/dRij) is always zero.

Apply the corrections due to drij/dRij in the sum omega term.
2017-02-13 18:11:09 +01:00
0e16dc3ead In PairAIREBO::bondorderLJ: p^sigma pi account for d/drij derivatives.
The bonderorderLJ function operates on a facticious distance |rij|, i.e. everything gets calculated "as if" atoms i and j were a given distance alpha apart.
Mathematically, bondorderLJ is a function of rij (a vector), that is (in terms of the real distance Rij) rij = alpha * Rij/|Rij|.
When we calculate the forces in bondorderLJ, we have to make sure to chain in this derivative whenever we calculate derivatives w.r.t. rij.
The right correction, as it turns our, is Fij = alpha / |Rij| * (Identity(3,3) - Rij * Rij^T / |Rij|^2) * fij.
This commit only fixes this for the p_ij^sigma pi terms, which were modified to separate out the d/drij derivative in the cosine calculation.
Now, derivatives are taken w.r.t. the connecting edges instead of the edge points.
2017-02-13 18:11:01 +01:00
1b3f6e257a In PairAIREBO::bondorderLJ only compute torsion term once.
Since Etmp (representing sum_kijl omega_kijl * w_ik * w_jl) is not reset between the forward and reverse pass, the value used by later calculation will be twice the expected values.
One could instead reset Etmp between these passes, but there really is no reason to calculate it twice.
2017-02-13 17:14:52 +01:00
cb982f2f28 sync 13Feb17 patch back to GH 2017-02-13 09:05:03 -07:00
4843296d4e Merge pull request #372 from akohlmey/fft-cleanup
simplify FFT3d code by removing support for outdated FFT libraries
2017-02-13 08:53:13 -07:00
2bdda8f6c0 patch 12Feb17 - change int to tagint for compute group/group 2017-02-13 08:40:54 -07:00
0068ef5616 added molecule option to compute group/group command 2017-02-10 09:25:32 -07:00
02b0e6cc55 Merge pull request #375 from akohlmey/small-updates-and-fixes
Small updates and fixes
2017-02-10 09:23:51 -07:00
fbb24c2406 Merge pull request #374 from agiliopadua/master
Updated polarizer.py in USER-DRUDE to use coul/long/cs
2017-02-10 09:22:22 -07:00
a5f830c40c fix typo
(cherry picked from commit 6410797697)
2017-02-08 14:33:45 -05:00
8c074a363a Merge branch 'master' into small-updates-and-fixes 2017-02-08 14:32:44 -05:00
27aca14094 Updated polarizer.py to use coul/long/cs 2017-02-04 15:02:08 +01:00
191453e1c7 Merge branch 'master' into fft-cleanup 2017-02-03 16:53:10 -05:00
207adc3968 Merge pull request #373 from stanmoore1/kk_more_bugfixes
Fixing Kokkos per-atom energy/virial issues
2017-02-03 14:45:31 -07:00
84c517159d Merge pull request #368 from Pakketeretet2/kokkos_morse
Kokkos morse
2017-02-03 14:45:07 -07:00
6ca377436f Merge pull request #366 from rbberger/kokkos_lammps_bigbig_fix
Fix data type of molecule array in npair_kokkos.h
2017-02-03 14:43:33 -07:00
dc34a32602 Merge pull request #362 from ibaned/warnings2
fix Kokkos+kspace warnings
2017-02-03 14:43:12 -07:00
067119f6c6 Adding missing friend statement to pair_lj_class2_coul_cut_kokkos 2017-02-02 15:21:30 -07:00
1834a5e46c Fixing more Kokkos per-atom and fdotr issues 2017-02-02 15:21:21 -07:00
6a4918b39a Fixing typo in pair_buck_coul_cut_kokkos 2017-02-02 15:21:05 -07:00
5da0d39392 Fixing fdotr in pair_buck_coul_cut_kokkos 2017-02-02 13:35:51 -07:00
6f92429602 Fixing per-atom ev issue 2017-02-02 13:34:27 -07:00
38e0e4bb69 Add missing typedef in Kokkos pair styles 2017-02-02 13:24:05 -07:00
daf9f95381 Fixing Kokkos per-atom e/v issue 2017-02-02 13:09:52 -07:00
6595fde0a1 explain in more detail the handling of error checking for numerical inputs 2017-02-02 11:58:12 -05:00
6bcec9c61d Merge pull request #2 from stanmoore1/kk_tag_bugfixes
Fixing tagint and imageint issues in Kokkos package
2017-02-02 08:57:21 -05:00
9d1991bf84 remove support for obsolete legacy FFT libraries and point -DFFT_FFTW to FFTW3 2017-02-02 08:10:23 -05:00
0a87b7443a Updated contributing authors and docs 2017-02-02 13:42:47 +01:00
7ee45ec5f3 Fixing tagint and imageint issues in Kokkos package 2017-02-01 11:52:27 -07:00
d4c9e2500b Ported Morse to KOKKOS 2017-02-01 17:45:21 +01:00
6232073d3b Removed traces of pair morse/kk 2017-02-01 17:39:37 +01:00
ed59193d13 Removed traces of pair morse/kk 2017-02-01 17:39:06 +01:00
67bed8e853 Merge pull request #1 from akohlmey/tagint-issue
Fix additional tagint issue in fix qeq/reax/kk
2017-01-31 18:34:35 -05:00
bcb1d94b9a silence compiler warning about dead code 2017-01-31 18:28:04 -05:00
fbe30b5683 correct issue with compiling for -DLAMMPS_BIGBIG in fix qeq/reax/kk 2017-01-31 18:13:44 -05:00
9ef55fedf7 Merge branch 'kokkos_lammps_bigbig_fix' of https://github.com/rbberger/lammps into tagint-issue 2017-01-31 17:23:51 -05:00
997142a4c1 Merge pull request #364 from stanmoore1/kk_triclinic_neighlist
Add triclinic neighbor list support to Kokkos
2017-01-30 07:27:02 -07:00
033b07fdb7 Merge pull request #363 from ibaned/obey-datamask
Fix GPU sync bugs
2017-01-30 07:26:49 -07:00
51a0b6b445 Fix data type of molecule array in npair_kokkos.h
This showed up when trying to compile with -DLAMMPS_BIGBIG.
Fixes issue #365
2017-01-28 07:49:08 -05:00
59f4a77dd5 Whitespace change to npair_kokkos 2017-01-27 15:17:39 -07:00
579cc6d7aa More tweaks to npair_kokkos for triclinic 2017-01-27 15:13:37 -07:00
5afd3e995b Adding support to npair_kokkos for triclinic-newton-on neighborlists 2017-01-27 14:18:01 -07:00
2a6f5e651c more preference of datamask over custom sync
see commit 09fc8b0 for details on why
2017-01-27 09:35:55 -07:00
09fc8b0bd7 kspace & dihedral can't do their own sync/modify
because the verlet_kokkos system has
a "clever" optimization which will
alter the datamasks before calling sync/modify,
so the datamask framework must be
strictly obeyed for GPU correctness.
(the optimization is to concurrently
compute forces on the host and GPU,
and add them up at the end of an iteration.
calling your own sync will overwrite
the partial GPU forces with the
partial host forces).
2017-01-27 08:39:55 -07:00
e5d0bde783 pppm_kokkos: remove useless statement 2017-01-27 08:35:37 -07:00
9daf7fb650 pppm_kokkos: don't shadow member variables 2017-01-27 08:35:37 -07:00
b5d622c6a3 pppm_kokkos: remove unused variables 2017-01-27 08:35:37 -07:00
2023fa28e0 consistent #ifdefs for fft3d variable (2)
this variable is only used when FFTW3
is enabled, so its declaration and
initialization should be protected
under the same conditions to avoid
compiler warnings
2017-01-27 08:35:37 -07:00
5b29515849 fft3d: use C++ loop declarations
the variable (offset) is only
used in a subset of numerous
scenarios with #ifdef, it seems
better just to have each loop
declare it as needed.
(avoids compiler warnings)
2017-01-27 08:35:37 -07:00
5b18421dd2 fft3d : remove unused variables 2017-01-27 08:35:37 -07:00
cf95ea0709 fft3d: only declare variables when used
avoids compiler warnings
2017-01-27 08:35:36 -07:00
6a74a81da0 consistent #ifdefs for fft3d variable
this variable is only used when FFTW3
is enabled, so its declaration and
initialization should be protected
under the same conditions to avoid
compiler warnings
2017-01-27 08:35:36 -07:00
f0a4ed615d add missing KOKKOS_INLINE_FUNCTION for params 2017-01-27 08:35:36 -07:00
cfe818a175 remove unused variables from fix_cmap 2017-01-27 08:35:36 -07:00
f8506fee23 sync GHub with SVN 2017-01-26 14:06:43 -07:00
18e5584311 Merge pull request #354 from stanmoore1/kokkos_bugfixes
Kokkos bugfixes
2017-01-26 13:51:47 -07:00
851f80464f Merge pull request #361 from akohlmey/user-omp-fix-per-atom-data
fix USER-OMP bug on per-atom data with hybrid styles
2017-01-26 13:50:13 -07:00
5971d4c994 Merge pull request #358 from ibaned/warnings
warning fixes (Kokkos+CUDA)
2017-01-26 13:49:56 -07:00
868d95f0a5 Merge pull request #352 from akohlmey/fix-skip-with-ghost-issue
Fix skip with ghost issue
2017-01-26 13:47:12 -07:00
a5ff35435a Merge pull request #351 from timattox/USER-DPD_pair_exp6_bugfix
USER-DPD: Possible uninitialized variable in pair_exp6_rx.cpp bugfix.
2017-01-26 13:45:45 -07:00
8b7bd9d88e fix bug where per atom data for USER-OMP was reducing the wrong arrays with hybrid styles 2017-01-26 14:59:10 -05:00
672bbbe494 add more missing KOKKOS_INLINE_FUNCTION attributes 2017-01-25 16:03:11 -07:00
03c9c46533 add missing KOKKOS_INLINE_FUNCTION attributes 2017-01-25 15:49:05 -07:00
e992bfe510 remove unused variable 2017-01-25 15:40:52 -07:00
053ee54a27 remove unused variable 2017-01-25 15:38:41 -07:00
1074c6734b add missing return keywords 2017-01-25 15:37:27 -07:00
60b48c9d66 add missing KOKKOS_INLINE_FUNCTION attributes
this structure gets put inside a DualView,
so these members need to be able to execute
on the GPU
2017-01-25 15:36:24 -07:00
3d40b51708 remove unused variable 2017-01-25 15:24:52 -07:00
effbe18c46 fix domain boundary indexing
the compiler pointed out that
boundary[2][2] doesn't exist.
If I understand this correctly,
those checks should be against
boundary[*][0].
2017-01-25 15:24:01 -07:00
6328beb7d7 fix double-return warning
this #ifdef adds a return statement
for little endian machines, but leaves
the old one, which the compiler comlains
is unreachable. this commit combines
the conditionals so we can use #else
2017-01-25 15:22:42 -07:00
26c8d3d98f Fixing GPU memory issue in fix_langevin_kokkos 2017-01-25 12:53:55 -07:00
73177d650d Fixing GPU memory issue in domain_kokkos 2017-01-25 11:18:03 -07:00
b5cb74bd33 skip list build is compatible with NP_GHOST 2017-01-23 19:21:48 -05:00
31976d1dee skip list definition was missing NP_HALFFULL flag 2017-01-23 19:20:05 -05:00
c8260af37c Possible uninitialized variable in USER-DPD/pair_exp6_rx.cpp bugfix.
Added explicit initialization (to zero) for several variables inside the
inner j-loop to avoid using them uninitialized or from prior iterations
within rmOldij_12 == 0.
2017-01-23 13:34:51 -05:00
caea8973a3 add neighbor list kind output to screen 2017-01-20 13:24:09 -07:00
aa0ad9b483 Merge pull request #349 from akohlmey/collected-small-fixes
collected fixes and improvements
2017-01-20 13:19:43 -07:00
5d0e4e1ba9 Merge pull request #346 from stanmoore1/kokkos_fixes
Kokkos fixes
2017-01-20 13:15:16 -07:00
f8d3c4c740 Merge pull request #345 from timattox/USER-DPD_another_zero_compute
USER-DPD another zero compute optimization
2017-01-20 13:14:59 -07:00
e6996121d1 remove dead code 2017-01-20 14:30:46 -05:00
fbfb1df5eb fix typo causing wrong neighbor list copy selections 2017-01-19 20:47:10 -05:00
9a299875da simplified neighbor list copying to avoid possible same-timestep re-build issues 2017-01-19 17:01:15 -07:00
fc94f1bd18 Fixing GPU memory issues in Kokkos 2017-01-19 12:14:25 -07:00
5ce8e2fbae Fixing GPU memory issue in modify_kokkos, need to cherry pick back to Master 2017-01-19 12:13:48 -07:00
f6cd98636b USER-DPD: Also apply "check if a0 is zero" optimization to pair_dpd_fdt
This relates to commit 4eb08a5822 that was applied to pair_dpd_fdt_energy
2017-01-18 16:17:11 -05:00
05cafb716f USER-DPD: cleanup initialization of splitFDT_flag in pair_dpd_fdt.cpp 2017-01-18 15:51:50 -05:00
3af4b3c28c Merge pull request #337 from ohenrich/user-cgdna
Added source code and documentation for USER-CGDNA
2017-01-18 11:31:35 -07:00
7fc0970587 Merge pull request #344 from timattox/USER-DPD_zero_compute
USER-DPD: Skip a0*stuff computations, if a0 was set to zero in pair_coeff
2017-01-18 11:31:14 -07:00
93262b52b4 Merge pull request #343 from timattox/USER-DPD_bugfix_molecule
USER-DPD: bugfix for a segfault when using MOLECULE and DPD together.
2017-01-18 11:30:58 -07:00
4eb08a5822 USER-DPD: Skip a0*stuff computations, if a0 was set to zero in pair_coeff.
This saves around 10% of the runtime for many of our tests using SSA.
2017-01-17 15:55:39 -05:00
01609f55e2 USER-DPD: bugfix for a segfault when using MOLECULE and DPD together. 2017-01-17 12:47:59 -05:00
d2fc88a626 patch 17Jan17 2017-01-17 10:14:53 -07:00
c52a26382f Merge pull request #339 from akohlmey/fixes-for-srp-example
Fixes for srp example
2017-01-17 09:36:28 -07:00
ad4d299975 Merge pull request #335 from stanmoore1/neighbor_fixes
Neighbor fixes
2017-01-17 09:33:25 -07:00
83408b195f Merge pull request #342 from epfl-cosmo/ipi-multiinit-bug
Bugfix in the fix_ipi initialization - prevents multiple open_socket calls
2017-01-17 09:14:03 -07:00
cd7bdf9251 Merge pull request #341 from stanmoore1/qeq_kk_neighlist
Make fix_qeq_reax_kokkos request its own neighbor list
2017-01-17 09:13:47 -07:00
8c5b108900 Merge pull request #340 from stanmoore1/fix_rx_neighborlist
Make fix_rx request its own neighbor list
2017-01-17 09:13:27 -07:00
c19d2011bb Merge pull request #334 from sstrong99/flow_gauss_changeRef
Updated the reference for the flow/gauss method
2017-01-17 09:12:22 -07:00
973bef4d45 Merge pull request #332 from akohlmey/coord-atom-orientorder-atom-enhancements
Coord atom orientorder atom enhancements
2017-01-17 09:11:45 -07:00
1b9e50c8cb Merge pull request #331 from timattox/USER-DPD_fix_example_typo
USER-DPD: fix a typo in the DPD-H example input; update reference output.
2017-01-17 09:08:14 -07:00
252e07e083 Merge pull request #330 from akohlmey/collected-small-bugfixes
Collected small bugfixes
2017-01-17 09:08:00 -07:00
74a661ae26 Merge pull request #328 from akohlmey/print-last-command-on-error
print the last input line, when error->all() is called
2017-01-17 09:05:19 -07:00
d8bc590aaf Merge pull request #327 from stanmoore1/kokkos_lib_update
Updating Kokkos lib
2017-01-17 09:04:12 -07:00
c9bea60710 Merge pull request #326 from Pakketeretet2/github-tutorial-update
Updated images of succesful merge.
2017-01-17 09:03:46 -07:00
5cd856c97f fix spring doc page update 2017-01-17 09:02:56 -07:00
2f13365cf5 avoid spurious error message, when no storage fix is active/used 2017-01-16 17:08:00 -05:00
0a2b78acb8 rather than adjusting the communication cutoff, we just print out the minimum value needed and error out
i suspect, this communication cutoff adjustment was included into the code before it was possible to separately set it via comm_modify. stopping with an error message printing the needed/current value is cleaner, in keeping with other modules in LAMMPS and much less problematic.
2017-01-16 15:47:02 -05:00
3f46b6d782 fix bugs from incorrect code synchronization 2017-01-16 11:15:54 -05:00
5abd6e5122 reordering operations in Pair::init_style() to avoid segfaults w/o a kspace style 2017-01-16 11:08:48 -05:00
f3a82f454e Included a flag to prevent multiple open_socket calls if run is included multiple times in the LAMMPS input 2017-01-16 08:42:23 +01:00
473a3ebeef fix for bug with compute rdf with pair reax/c. we must not copy a neighbor list, if newton settings are not compatible
an alternate route to address this issue would be to allow an "ANY" setting for neighbor list requests and then query the neighbor list for newton setting instead of the force class.
2017-01-15 12:05:19 -05:00
b220850377 Removing neighbor list hack in fix_qeq_reax_kokkos 2017-01-14 16:16:02 -07:00
fa00e0593f Make fix_rx request its own neighbor list 2017-01-14 15:39:37 -07:00
4a09399dc6 during setup, checking timestep doesn't seem to be sufficient. comparing bins and stencil point, too.
in addition, relevant pointers were not properly initialized to NULL
2017-01-14 17:13:22 -05:00
5821fe8dd5 correct out-of-bounds accesses 2017-01-14 17:06:23 -05:00
8360e70f4e update USER-CGDNA examples to follow LAMMPS style 2017-01-13 18:56:45 -05:00
b988b29413 remove dead code 2017-01-13 18:43:35 -05:00
5d48bfdcab USER-CGDNA whitespace cleanup: expand tabs and remove trailing whitespace 2017-01-13 18:40:34 -05:00
fe8caa8a56 apply some LAMMPS formatting style conventions for include files 2017-01-13 18:33:32 -05:00
afaacc6173 add USER-CGDNA package with dependencies into the build system 2017-01-13 18:32:32 -05:00
98ceb6feb1 add missing html files to lammps.book 2017-01-13 18:11:23 -05:00
374abea0f0 some minor documentation integration tweaks for USER-CGDNA package 2017-01-13 18:09:45 -05:00
61cff85435 avoid not only division by zero, but also computing variance for short runs with insufficient resolution 2017-01-13 14:35:35 -05:00
aa0b327f7e Merge branch 'bugfix_dividebyzero' of https://github.com/timattox/lammps_USER-DPD into collected-small-bugfixes 2017-01-13 14:26:10 -05:00
04fe071968 Merge pull request #6 from ibaned/cuda-lj-ctor-warning
fix a CUDA constructor warning
2017-01-13 12:13:43 -07:00
78498715b4 Protect from divide by zero in mpi_timings() when printing results.
e.g. If neighbor list(s) are never rebuilt, the Neigh time will be zero.
2017-01-13 13:32:15 -05:00
96259ea2d2 Added source code and documentation for USER-CGDNA 2017-01-13 13:36:54 +00:00
b2f67fea30 Merge branch 'collected-small-bugfixes' of github.com:akohlmey/lammps into collected-small-bugfixes 2017-01-13 08:12:10 -05:00
c59bcf31d1 change $MKLROOT to $(MKLROOT) as reported by @WeiLiPenguin
This closes #336
2017-01-13 08:10:51 -05:00
2540fc281c Merge branch 'flow_gauss_changeRef' of github.com:sstrong99/lammps into pull-334 2017-01-12 23:54:52 -05:00
e8e03dd440 Updated the reference for the flow/gauss method, the new reference is much more comprehensive 2017-01-12 23:44:33 -05:00
daf766d4f8 Fixing Kokkos neighbor bug 2017-01-12 16:22:38 -07:00
630783c8e8 Fixing neighbor bug 2017-01-12 16:22:24 -07:00
c94030d966 put pair_lj_coul in kokkos_type.h
also rename pair_lj_coul_gromacs
so it doesn't conflict with the
one now in kokkos_type.h
2017-01-12 13:37:53 -07:00
1229f6f60b Updated the reference for the flow/gauss method, the new reference is much more comprehensive 2017-01-12 10:15:18 -07:00
0b081b0086 whitespace cleanup 2017-01-11 21:05:32 -05:00
8e1cf6643c apply bugfix to fix wall/gran by eric_lyster@agilent.com on lammps-users 2017-01-11 20:59:40 -05:00
6950a99162 Revert "remove obsolete warning about fix rigid image flag restrictions"
This reverts commit 51e52b477a.
2017-01-11 19:49:58 -05:00
9f4e5e0661 fix a CUDA constructor warning
The class params_lj_coul was copy-pasted
into many different pair styles, and only
one of them had the proper KOKKOS_INLINE_FUNCTION
annotations for CUDA.
created a header file for this class that
most of the pair styles now include.
One pair style did add extra members,
so it keeps a local copy of the class.
2017-01-11 09:11:35 -07:00
34cb4027df make formatting comment consistent 2017-01-11 07:46:07 -05:00
1d0e600ab7 formatting improvements and small corrections for timer settings and output discussions 2017-01-10 23:47:14 -05:00
7162cafdf5 Squelching output from Makefile 2017-01-10 14:46:30 -07:00
ee9e7cfbd5 Fixing Kokkos CUDA Makefile issue 2017-01-10 13:22:36 -07:00
7839c335da Fixing compile error with Kokkos CUDA Makefiles 2017-01-10 13:05:00 -07:00
622d926849 adapt example inputs for TAD and PRD to the change in compute coord/atom 2017-01-10 13:41:35 -05:00
92d15d4a89 replace string compare with enums, fix memory leak, formatting cleanup 2017-01-10 12:52:37 -05:00
95706ac846 import contributed code for computes coord/atom and orientorder/atom 2017-01-10 12:29:22 -05:00
d06688bb91 USER-DPD: fix a typo in the DPD-H example input; update reference output. 2017-01-10 12:11:20 -05:00
d014e00e53 ignore some newly added styles from packages. 2017-01-09 17:51:38 -05:00
0db2a07993 another workaround for duplicate labels (which sphinx does not like) 2017-01-09 17:51:19 -05:00
33412c76ed correct some formatting issues with USER-NC-DUMP 2017-01-09 17:50:49 -05:00
e5ac49d1de Merge branch 'master' into collected-small-bugfixes 2017-01-09 17:13:46 -05:00
1a81da0f73 print the last input line, when error->all() is called
this should help tracking down input file errors for many
common cases without having to repeat the run with -echo screen
and avoid having to explain how to use that feature all the time
2017-01-09 17:03:06 -05:00
c31f1e9f22 add fix mscg command, example, lib 2017-01-09 13:36:40 -07:00
ebd25cc078 Updating docs for Kokkos package 2017-01-09 12:40:33 -07:00
9250a55923 Adding enable_lambda to KOKKOS_CUDA_OPTIONS 2017-01-09 12:24:30 -07:00
a9f0b7d523 Updating Kokkos lib 2017-01-09 10:39:46 -07:00
20f8a8c219 Merge branch 'master' into github-tutorial-update 2017-01-09 14:38:09 +01:00
09af780aa8 remove misleading comments 2017-01-06 21:31:39 -05:00
51e52b477a remove obsolete warning about fix rigid image flag restrictions 2017-01-06 21:30:33 -05:00
20a4e365b7 reduce warning when processing manual with sphinx 2017-01-06 21:30:13 -05:00
51fa33a407 patch 6Jan17 2017-01-06 11:14:48 -07:00
ccd09e3967 Updated images of succesful merge. 2017-01-06 19:04:26 +01:00
142770cb2a enable pppm/tip4p to work with triclinic 2017-01-06 10:38:32 -07:00
63f202501b Merge pull request #324 from ibaned/pair-table-kokkos-inherit
get PairTableKokkos to inherit from PairTable (also fix GPU)
2017-01-06 10:10:59 -07:00
83da5d3b5d Merge pull request #323 from akohlmey/pppm-cg-triclinic
synchronize pppm/cg with changes in pppm and remove block on triclinic
2017-01-06 10:10:09 -07:00
ebbf60b112 Merge pull request #319 from andeplane/domain_bug
Fixed bug in lamda_box_corners function
2017-01-06 10:03:32 -07:00
12c4fa25e8 Merge pull request #318 from andeplane/initialize_pointers
Initializing pointers in neighbor.cpp
2017-01-06 10:03:05 -07:00
3ac58452de Merge pull request #310 from EfremBraun/master
Fix nvk implemented
2017-01-06 10:02:22 -07:00
9b348d567b Merge pull request #315 from Pakketeretet2/github-tutorial-update
GitHub tutorial update
2017-01-06 10:01:57 -07:00
467377094a Merge pull request #314 from stanmoore1/fix-momentum-kokkos
Fix momentum kokkos
2017-01-06 10:01:17 -07:00
5656e90b78 Merge pull request #313 from stanmoore1/kokkos_bugfixes
Kokkos bugfixes
2017-01-06 10:00:33 -07:00
41a6a3076e Merge pull request #309 from giacomofiorin/colvars-2016-12-22
Update Colvars library to version 2016-12-22
2017-01-06 09:58:20 -07:00
d4e8d47387 Merge pull request #306 from timattox/USER-DPD_updates
USER-DPD updates
2017-01-06 09:58:01 -07:00
f6a819580c pair TIP4P bug fix for cutoffs >> box size 2017-01-06 09:57:27 -07:00
6af56e686d polish the introduction, some more clarifications, corrections and formatting improvements 2017-01-06 08:31:02 -05:00
eb1c6a225c typo fixed 2017-01-06 11:54:30 +01:00
4d0a6d83bd Merged Axel's suggestions and updated text 2017-01-06 11:51:42 +01:00
958722573f Merge branch 'github-tutorial-update' of https://github.com/Pakketeretet2/lammps into github-tutorial-update 2017-01-06 11:44:16 +01:00
9d46670972 Updated text and images on reverse pull requests 2017-01-06 11:44:14 +01:00
1a9f2df3d0 Updated text and images on reverse pull requests 2017-01-06 11:44:00 +01:00
1310438c8b Merge pull request #1 from akohlmey/pull-315
some formatting updates and text rewrites for your pull request
2017-01-06 11:40:32 +01:00
9bf771207d make PairTable::allocate() virtual
forgot to extract this change when
separating the commits for PairTableRX
and PairTableKokkos.
2017-01-05 20:46:05 -07:00
b9144d6332 Revert "move enum to pair.h"
This reverts commit aebc8ea826.
2017-01-05 20:22:15 -07:00
267f05e5ca protect PairTable dtor with copymode 2017-01-05 15:38:45 -07:00
aebc8ea826 move enum to pair.h
to avoid having it be replicated
in several different locations
2017-01-05 15:38:45 -07:00
53a1de1d40 fix several GPU memory bugs in pair_table_kokkos 2017-01-05 15:38:45 -07:00
d059b5d334 fix crash in create_kokkos_tables
the code was crashing when trying to
deep_copy or assign views that had
not been allocated
2017-01-05 15:38:45 -07:00
7cff343680 fix allocation regressions in PairTableKokkos 2017-01-05 15:38:45 -07:00
a1ac861084 PairTableKokkos : public PairTable 2017-01-05 15:38:45 -07:00
17bdb57bb4 try PairTableKokkos : public PairTable
realize that there is a lot of copy-paste
in this codebase.
2017-01-05 15:38:45 -07:00
fe14158c10 some formatting updates and text rewrites in the "do not use git add -a" section 2017-01-04 13:13:56 -05:00
0bcbcca140 Highlighted the assignee, maintainer changes, and mentioned LAMMPS collaborator 2017-01-04 17:28:22 +01:00
4cfe122ac6 fix warning about enum comparisons 2017-01-04 08:10:08 -07:00
b46629ee39 Merge pull request #5 from ibaned/kokkos-fixes
prevent implicit dereference of s_CTEMP
2017-01-04 08:06:55 -07:00
42bbeb3f16 NULLing pointers after delete 2017-01-04 16:04:05 +01:00
933b288ce9 Added explaination for assignee, changes pushed by others and collaborator. 2017-01-04 14:31:23 +01:00
a7c5905ca4 prevent implicit dereference of s_CTEMP 2017-01-03 15:17:33 -07:00
37d5567f6d Fixed bug in lamda_box_corners function 2017-01-03 11:54:14 +01:00
b10d0c17ec Initializing pointers in neighbor.cpp 2017-01-03 11:24:48 +01:00
4f45d39ac7 Add warning formatting
Any paragraph starting with IMPORTANT NOTE: is transformed into a warning.
2017-01-03 02:34:11 +01:00
7d057d4c83 make it more explicit, that master needs to be updated and feature branches should be created from master 2017-01-02 13:02:48 -05:00
4f096dbad5 Updated some inconsistent text. 2017-01-02 18:53:28 +01:00
18b12efc9f Small changes to tutorial text. 2017-01-02 18:25:36 +01:00
2c7fea1e0d Second update round to text and images, a third will follow after succesful merge. 2017-01-02 18:15:08 +01:00
4d98bbdfa5 Almost done with the tutorial now 2017-01-02 18:08:14 +01:00
391ab761a4 Finally updated the github tutorial. 2017-01-02 17:55:02 +01:00
b0ebd3ef4e Merge pull request #1 from akohlmey/pull-310
add authorship attribution to lammps PR #310
2016-12-28 23:12:16 +01:00
94c4f8fe5f add authorship attribution 2016-12-28 17:03:37 -05:00
aa146e9b38 Moved fix_nvk to USER-MISC, updated documentation to reflect move 2016-12-28 19:06:35 +01:00
eca9539f84 Disallowing full neighborlist for pair_tersoff_kokkos styles until a bugfix is released 2016-12-28 10:59:53 -07:00
27172c4a55 Fixing Kokkos bug when many atom types 2016-12-28 10:59:42 -07:00
4f195254af Fixing bug with Kokkos and reading restart files 2016-12-28 10:59:30 -07:00
9a0007a13f rename region_block_kokkos inside()
this prevents compiler confusion with
the inside() function provided by
the normal region_block, as the two
should be completely separate.
2016-12-28 10:56:16 -07:00
994f36bc6f silence "implicit dereference" warning
see kokkos/kokkos#177 for detailed
discussion of the issue and fix
2016-12-28 10:56:06 -07:00
b3557bfbf5 add missing return in comm_tiled_kokkos 2016-12-28 10:55:51 -07:00
371df8ea72 repair sync bugs in fix_momentum_kokkos
Since the Group class is completely
unaware of Kokkos, the direct calls from
FixMomentumKokkos to Group methods
need to be preceded by atomKK->sync calls
for every atom variable that Group intends
to use.
fix_momentum_kokkos definitely does not
work on GPUs prior to this commit.
2016-12-28 10:51:59 -07:00
06ae2804f6 ensure velocity is marked as modified before syncing
it worked before, but this seems more reliable
2016-12-28 10:51:20 -07:00
68814d4fc8 Made documentation changes to fix nvk 2016-12-28 16:26:05 +01:00
616ca1de03 Fix nvk implemented. 2016-12-28 16:17:07 +01:00
b0263e87bb Fix missing force with extended-Lagrangian mass 2016-12-27 17:16:32 -05:00
925f42727f Fix typo 2016-12-27 14:26:43 -05:00
f553e230db Update Colvars library to version 2016-12-22
Significant code cleanup and several fixes (walls + extended Lagrangian)

New harmonicWalls bias to apply confining boundaries with time-dependent force
constant & integration
2016-12-27 13:17:34 -05:00
6ab716164b Fix seg fault for gyration collective variable 2016-12-27 13:17:02 -05:00
7a45c72b97 Allow extended Lagrangian on non-scalar collective variables 2016-12-27 12:35:30 -05:00
634eb357d2 synchronize pppm/cg with pppm and remove block on triclinic 2016-12-24 16:09:18 -05:00
a1036f2d74 USER-DPD: bugfix for new PairExp6rx::polynomialScaling() function. 2016-12-23 11:36:59 -05:00
c301d70333 USER-DPD: update example input and output (see commits 3faa57 and eff7238) 2016-12-22 17:32:41 -05:00
781daad2a0 USER-DPD: update documentation for changes in commit 3faa57 2016-12-22 17:31:17 -05:00
3faa57a413 USER-DPD: Several updates to *_rx files:
1) Added MY_EPSILON to handle machine precision checks
2) Removed error checks for DPD-RX; enabled use with DPD-E simulations
3) Expanded the EOS functional form to allow corrections
   in the thermo file or on the command line
4) Updated naming convention from fraction to mixWtSite*
5) Changed the name of getParams() method to getMixingWeights()
6) getMixingWeights() now handles fractional and molecular weighting
7) Added optional argument (fractional or molecular) to pair_style command
8) Added argument to specify the exp6 parameter scaling method
   NOTE: Requires additional arguments in the pair coefficients,
   thus command line areguments are NOT backward-compatible.
2016-12-22 17:15:09 -05:00
fa435fb514 USER-DPD: remove unused variable, and convert some constants to MY_EPSILON 2016-12-22 17:05:49 -05:00
ba96fcc15a USER-DPD: update reference output to reflect changes from commit eff7238 2016-12-22 16:21:05 -05:00
304f65b164 Merge pull request #2 from ibaned/fix-momentum-kokkos
Fix momentum kokkos from Dan Ibanez
2016-12-21 12:23:32 -07:00
4c33f31265 Merge branch 'debug-cuda' into fix-momentum-kokkos 2016-12-21 10:57:44 -07:00
ae8d882b03 need to sync new velocities back to host 2016-12-21 10:57:18 -07:00
7559bc9c5f workaround CUDA View::reference_type
it is not an lvalue reference in CUDA.
also, the previous code assumed contiguous
entries for one atom; now it should be
robust in the case of LayoutLeft.
2016-12-21 10:21:55 -07:00
62dea1bb63 21Dec16 patch 2016-12-21 09:53:32 -07:00
800ff43413 Merge pull request #304 from timattox/USER-DPD_whitespace
USER-DPD: Whitespace cleanup to pair_dpd_fdt_energy.cpp
2016-12-21 09:51:10 -07:00
9161bd98bf fixed bug with pair hybrid/overaly and manybody potentials finding the right skip neighbor method 2016-12-21 09:50:29 -07:00
f3327ca214 allow constructing Few from array on device 2016-12-21 09:21:11 -07:00
54963ba7da allow fix momentum angular with CUDA 2016-12-21 08:55:33 -07:00
ea76041803 CUDA-friendly fix_momentum_kokkos angular 2016-12-21 08:54:40 -07:00
7fb4faa439 draft CUDA-callable version of Domain::unmap 2016-12-21 08:53:57 -07:00
41c9357dde allow constructing Few from C array 2016-12-21 08:53:27 -07:00
d1a55ad2e0 add kokkos_few.h to .gitignore for /src 2016-12-21 08:07:19 -07:00
d9a0f575f6 get fix_momentum_kokkos to compile on White 2016-12-21 08:01:19 -07:00
01e3a31639 put Few in the global namespace... 2016-12-21 08:01:06 -07:00
992becc75f silence warning about partial x2lamda overload 2016-12-21 08:00:42 -07:00
8b5e15e979 add a Makefile for the White testbed 2016-12-20 16:30:50 -07:00
b2b33cca16 start working on fix_momentum Kokkos+CUDA
it doesn't compile anymore,
all in good time...
2016-12-20 16:30:21 -07:00
2ceee6b9be install kokkos_few, and remove Int 2016-12-20 16:19:17 -07:00
386c12c970 start porting my Few class into this code 2016-12-20 16:09:29 -07:00
590f317550 fix_momentum_kokkos: don't override init() 2016-12-20 11:03:16 -07:00
c4e02a5d2b USER-DPD: more whitespace fixes 2016-12-20 11:17:11 -05:00
c7ac9e79cb preemptive changes for Kokkos+CUDA
I haven't compiled in that mode yet
(don't know how), but these are some
changes I suspect the compiler
will require.
2016-12-19 13:17:22 -07:00
2ba424e1a3 USER-DPD: Whitespace cleanup to pair_dpd_fdt_energy.cpp 2016-12-19 15:11:52 -05:00
ca30c1ec88 got fix_momentum_kokkos to compile
there are likely still some compile
errors for Kokkos+CUDA...
2016-12-19 13:08:09 -07:00
a1b441a71f draft the parallel_* constructs based on lambdas
LAMMPS_LAMBDA was added to kokkos_type.h to
facilitate this.

some member variables will likely need local copies
in the fix_momentum code.
2016-12-19 12:02:12 -07:00
f6f2170369 first draft
copied fix_momentum, work on the Kokkos
View types for the arrays.
the next step is parallel_for and parallel_reduce
transformations.
2016-12-19 11:28:24 -07:00
81a2db8a0c 17Dec16 patch 2016-12-16 11:36:54 -07:00
0a176841e7 extra python_wrapper change needed for last patch 2016-12-16 11:35:42 -07:00
3027ac9250 patch 16Dec16 2016-12-16 10:30:57 -07:00
fc54ab5cea Merge pull request #301 from akohlmey/corrections-and-bugfixes
Collected corrections and bugfixes
2016-12-16 10:25:29 -07:00
e364b80724 added length keyword to python command 2016-12-16 10:24:25 -07:00
830c9e8661 Merge branch 'USER-DPD_internal_energy' of https://github.com/timattox/lammps_USER-DPD into corrections-and-bugfixes
This closes #303
2016-12-16 11:22:25 -05:00
4907b29ad2 Merge branch 'USER-DPD_bugfixes' of https://github.com/timattox/lammps_USER-DPD into corrections-and-bugfixes
This closes #302
2016-12-16 11:21:15 -05:00
eff7238ff2 USER-DPD: fix_eos*: partition all internal energy into the uMech term only
This makes our results more closely match a vetted serial implementation.
NOTE: This does make the output different from any previous versions.
Patch by Jim Larentzos.  Applied by Tim Mattox.
2016-12-16 10:25:12 -05:00
126fb22e93 USER-DPD: Fix #define typo in pair_multi_lucy.h and pair_multi_lucy_rx.h 2016-12-16 10:08:30 -05:00
0a90492c44 USER-DPD: Update the header files to properly document all error statements
Patch by Jim Larentzos.  Applied by Tim Mattox.
2016-12-15 17:39:15 -05:00
fed629c23e USER-DPD: Bugfix for fix_rx and fix_eos_table_rx to handle restart files.
Patch by Jim Larentzos.  Applied by Tim Mattox.
2016-12-15 17:10:13 -05:00
925481c3f4 USER-DPD: Fix hard-wall force interaction bug, and ensure fraction is >= 0
pair_exp6_rx.cpp patch by Jim Larentzos.  Applied by Tim Mattox.
2016-12-15 16:46:25 -05:00
da2ad5b6e0 update FixIntel code for new neighbor list code 2016-12-14 15:51:12 -05:00
bfcab72268 restore change to make -DLAMMPS_MEMALIGN=64 default when USER-INTEL package is installed (which requires it) 2016-12-14 15:24:55 -05:00
f509f133af patch 13Dec16: neighbor refactor, Stan pppm/disp bug fix, M Brown INTEL package updates 2016-12-13 17:14:28 -07:00
624c57e9da Merge pull request #185 from akohlmey/new-neighbor
New neighbor list code with updates for USER-OMP and USER-DPD
2016-12-13 16:24:41 -07:00
f3b355bcbe Merge pull request #298 from akohlmey/collected-small-fixes
Collected small fixes
2016-12-13 16:23:23 -07:00
ae5764beac added functionity to lib interface 2016-12-13 16:22:17 -07:00
fda43c00fd add deleted file in package to purge list 2016-12-12 13:22:54 -05:00
b34be30be6 Merge pull request #53 from stanmoore1/new-neighbor
New neighbor Kokkos
2016-12-12 13:18:03 -05:00
13b6196b82 Fixing Kokkos compile error 2016-12-12 10:47:39 -07:00
baf55c90f4 Whitespace change 2016-12-12 09:25:41 -07:00
770f5d0bf7 Whitespace change 2016-12-12 09:24:37 -07:00
a31b00965a Updating to master 2016-12-12 09:18:20 -07:00
a5e46e3e6a Merging 2016-12-09 16:20:42 -07:00
31be0da590 Merging pull request 2016-12-09 16:17:35 -07:00
0f3b2544a1 Merge pull request #1 from timattox/new-neighbor
USER-DPD workaround for neighbor list issues
2016-12-09 16:08:31 -07:00
586514e05c Merge branch 'new-neighbor' into new-neighbor 2016-12-09 16:08:08 -07:00
43c459ba56 More changes for Kokkos neighbor 2016-12-09 15:56:55 -07:00
b5c3d2f66c Merge pull request #52 from timattox/new-neighbor
USER-DPD workaround for neighbor list issues
2016-12-09 17:51:35 -05:00
5187cb97e5 USER-DPD: Make fix_shardlow request its own SSA-specific neighbor list,
instead of having pair_dpd_fdt* make the SSA-neighbor list request for it.
Forces an "extra" list to be built, but now skip lists work properly.
Maybe we can detect if skip lists won't be used, and squash the extra list.
2016-12-09 15:42:27 -06:00
eff503e56c Prevent neighbor list copies between SSA and non-SSA neighbor list requests. 2016-12-09 15:39:46 -06:00
cdcebab3bd make the output of the %CPU/OpenMP threads line consistent with compiling in OpenMP support, not having USER-OMP installed 2016-12-09 14:43:56 -05:00
ddf678da51 make fix gcmc command overview consistent
this closes #296
2016-12-09 14:30:27 -05:00
435421301b Small tweaks to Kokkos neighbor 2016-12-09 08:37:01 -07:00
9b48c49f83 Removing used Kokkos file 2016-12-08 09:18:55 -07:00
d3d5ac17bf Fixed small typos in doc 2016-12-07 19:37:51 -08:00
8318c67816 Kokkos neighbor refactor 2016-12-07 13:00:27 -07:00
7c61dbf5e2 Merge branch 'new-neighbor' of github.com:akohlmey/lammps into new-neighbor 2016-12-07 13:43:04 -05:00
39a12b15d7 Merge branch 'master' into new-neighbor
Resolved Conflicts:
	src/Purge.list
	src/neigh_derive.cpp
2016-12-07 13:40:14 -05:00
fb3f597f41 30Nov16 patch 2016-11-30 14:04:41 -07:00
d14814ae2e Merge pull request #289 from akohlmey/collected-updates-and-bugfixes
Collected updates and bugfixes
2016-11-30 14:02:41 -07:00
beb5a30f67 new compute global/atom command, also bug fix for descending dump sorts 2016-11-30 14:01:27 -07:00
7ddb6670c0 fix typo 2016-11-30 00:12:35 -05:00
789e62388f simplify code 2016-11-29 09:03:53 -05:00
7d098bff90 update format
(cherry picked from commit 2597185afb)
2016-11-29 09:01:36 -05:00
1d970d3cdf dihedral_nharmonic: added writing coefficient by write_data
(cherry picked from commit 618f5c6aa5)
2016-11-29 09:01:36 -05:00
42d430168b fix typo in compute cluster/atom docs
this closes #292
2016-11-29 07:24:09 -05:00
5ff5bc2a6c avoid issues detected by coverity scan 2016-11-28 21:34:35 -05:00
02ae2d218a correct broken link to USER-SMD docs PDF 2016-11-28 11:34:22 -05:00
470908fc93 explicitly disallow dynamic groups with compute rdf 2016-11-24 05:46:15 -05:00
6759630c16 bug fix for dump sort in descending order 2016-11-23 17:08:36 -07:00
87781771ba fix typo and USER-OMP support omission 2016-11-23 09:02:32 -05:00
df46b9aa38 rename compute pressure/grem to compute PRESSURE/GREM 2016-11-22 15:25:59 -05:00
647c6f00ce Merge branch 'grem-feature' of https://github.com/dstelter92/lammps into collected-updates-and-bugfixes 2016-11-22 14:51:19 -05:00
237307eda2 small typo and changes 2016-11-22 12:16:00 -05:00
d58dd4f159 bugfix when parsing mpirun 2016-11-22 12:13:20 -05:00
ae70f1090f added readme for grem examples 2016-11-22 12:05:14 -05:00
59d100ab57 final prep for 22Nov patch 2016-11-22 09:23:02 -07:00
61e71d23ed Merge pull request #288 from akohlmey/moltemplate-1.40
update bundled version of moltemplate to v1.40
2016-11-22 08:51:11 -07:00
b6f2f0e6e9 Merge pull request #287 from rbberger/pylammps/docs
Created PyLammps documentation
2016-11-22 08:50:29 -07:00
ff0441ac16 Merge pull request #286 from akohlmey/small-fixes-and-updates
Collected small fixes and updates
2016-11-22 08:49:46 -07:00
41907d3110 Merge pull request #285 from akohlmey/fix-ipi-update
update for fix ipi from michele ceriotti
2016-11-22 08:48:27 -07:00
b95f255af4 small changes to temper/grem commands 2016-11-22 08:47:44 -07:00
d7b542101a Merge pull request #283 from akohlmey/grem-feature
gREM generalized replica exchange feature for USER-MISC
2016-11-22 08:15:35 -07:00
0ffa50f8e8 tweaked author syntax 2016-11-22 08:15:13 -07:00
7893215964 small comment/whitespace tweak 2016-11-21 12:46:43 -05:00
3dff9f2018 removed extra file 2016-11-21 12:05:30 -05:00
dab232c542 modified temper_grem name to fit conventions, re-ran example to match 2016-11-21 12:02:17 -05:00
9e9d9d5aa5 update bundled version of moltemplate to v1.40 2016-11-21 11:34:42 -05:00
c982b174a2 Merge pull request #49 from epfl-cosmo/fix-ipi
i-PI interface fix
2016-11-19 19:36:13 -05:00
87a5a35bad A tiny bugfix for the reset flag, and a brief explanation of the changes 2016-11-20 00:44:23 +01:00
fd174ce2b1 Merge branch 'fix-ipi-update' of https://github.com/akohlmey/lammps into fix-ipi 2016-11-20 00:04:56 +01:00
b11f376a4f Merge branch 'master' of github.com:lammps/lammps 2016-11-19 23:25:51 +01:00
230b29eae6 correct accelerator flags for dpd styles in pair style overview 2016-11-19 11:47:12 -05:00
2383c31f15 Created PyLammps documentation
Based on material presented during MD Workshop at Temple University in
August 2016.
2016-11-18 23:58:57 -07:00
e175a18bdb be more thorough in initializing optional data in pair style dpd/fdt/energy 2016-11-18 16:18:47 -05:00
a5bde82e37 update .gitignore for recent addition 2016-11-18 15:38:11 -05:00
d787afcca9 also remove generated html files with 'make clean' in docs folder 2016-11-18 15:37:49 -05:00
176cde8ed3 minor cleanups 2016-11-18 15:36:38 -05:00
2862c20815 Merge branch 'master' into grem-feature 2016-11-18 14:51:46 -05:00
78e018829f Merge branch 'grem-feature' of https://github.com/dstelter92/lammps into grem-feature 2016-11-18 14:48:47 -05:00
c78914e7b3 update for fix ipi from michele ceriotti 2016-11-18 09:21:50 -05:00
635f3ce128 synchronize USER-SMD examples with code 2016-11-18 08:09:24 -05:00
81f68e06fd Merge branch 'master' into doc-updates 2016-11-17 20:44:07 -05:00
4b51719e67 new 17Nov16 patch and stable 2016-11-17 16:51:35 -07:00
25d7be5f3d compute pressure doc change 2016-11-17 16:11:30 -07:00
2a026c9ad8 revised temper_grem example, better file management 2016-11-17 12:53:25 -05:00
4a3091f844 modified temper_grem example with more exchanges 2016-11-17 11:24:29 -05:00
74c0e4dd5c Merge pull request #278 from akohlmey/pair-agni
Implementation of the AGNI manybody potential
2016-11-17 09:04:31 -07:00
073e8a0524 Merge pull request #276 from akohlmey/doc-updates
Small bugfixes and updates
2016-11-17 09:02:27 -07:00
5320bbf585 Merge pull request #275 from andeplane/IP_VORONOI
Initializing pointers in VORONOI
2016-11-17 09:01:46 -07:00
4448819824 Merge pull request #274 from andeplane/IP_POEMS
Initialize pointers in POEMS
2016-11-17 09:01:37 -07:00
300ac30332 Merge pull request #273 from akohlmey/auto-memalign
turn on -DLAMMPS_MEMALIGN=64 automatically when USER-INTEL is installed
2016-11-17 09:01:27 -07:00
2535e44991 Merge pull request #271 from akohlmey/tersoff-modc
pair style tersoff/mod/c
2016-11-17 09:00:52 -07:00
747c95c525 revised documentation, added temper_grem ref to fix_grem 2016-11-17 11:00:49 -05:00
cdae794383 Merge pull request #242 from andeplane/vashishta_kokkos
Added KOKKOS vashishta
2016-11-17 09:00:03 -07:00
8756a1017d Kokkos updates by Stan 2016-11-17 08:58:22 -07:00
5c64934bc8 added documention, re-ran temper_grem example 2016-11-17 10:40:10 -05:00
4e62e58d29 Merge pull request #47 from dstelter92/grem-feature
added internal tempering in grem with example
2016-11-17 10:04:43 -05:00
5ac2d9532e Re-run example with debug off 2016-11-17 09:43:44 -05:00
19ac9d2959 turned off dev mode by default in temper_grem 2016-11-17 09:31:07 -05:00
9f313aac75 shorter example 2016-11-16 20:43:41 -05:00
0102c5dadc file cleanup 2016-11-16 20:38:53 -05:00
07e46b797a added internal tempering in grem with example 2016-11-16 20:27:14 -05:00
b45d1e37ef integrate fix grem docs and update to match current conventions 2016-11-16 16:46:00 -05:00
2e7fd513d4 provide fix grem example input for nvt and npt 2016-11-16 16:42:01 -05:00
82364d10e3 Merge branch 'grem-feature' of https://github.com/dstelter92/lammps into grem-feature
Resolved merge conflicts and adapted logic to most recent changes in feature branch

Closes #46
2016-11-16 16:11:53 -05:00
16c8a307e5 removed leftover tex files 2016-11-16 15:39:02 -05:00
94f14ab051 spell check, minor typos 2016-11-16 15:34:32 -05:00
22d93fe8fb add restrict to CCFLAGS for makefiles intended for intel compilers 2016-11-16 14:31:10 -05:00
683f514fac simplify multi-replica run by passing per-replica parameters as variables on the command line 2016-11-16 14:22:20 -05:00
f617993944 need to apply fix_modify already in fix grem constructor 2016-11-16 13:52:27 -05:00
4641c9e568 Added basic documentation for grem fix 2016-11-16 13:36:13 -05:00
705f66aaee remove superfluous code 2016-11-16 13:24:41 -05:00
e57ae1ce3f compute scaled kinetic energy tensor without destroying the original data 2016-11-16 12:45:13 -05:00
950442b8b1 added check for nvt vs npt, enabled nvt simulation with fix_grem 2016-11-15 21:53:28 -05:00
1c68e42ecc fix_modify is not longer needed 2016-11-14 13:43:28 -05:00
5f94b31806 add multi-replica example for gREM 2016-11-14 10:12:48 -05:00
fdf5d68f9f allow to extract properties in NH integrator only when they are active 2016-11-14 09:27:33 -05:00
0c25f3b1d6 whitespace cleanup 2016-11-13 23:20:09 -05:00
14c7cf4197 retrieve target temperature and pressure from fix npt. add sanity checks. 2016-11-13 23:18:59 -05:00
26870f223d add example for gREM 2016-11-13 23:18:14 -05:00
09544d0698 bugfix for compute pressure/grem: must make a copy of argument strings 2016-11-13 19:19:52 -05:00
b5130a3b35 avoid NaN for variance from average output 2016-11-13 18:46:55 -05:00
20daf82463 initial import of adapted gREM code by David Stelter and Edyta Malolepsza
The following changes were made:
- the modifications to compute pressure were transferred to a derived class compute pressure/grem
- fix scaleforce was renamed to fix grem
- identifying the grem fix was simplified as fix grem passes an additional argument to compute pressure/grem
- dead code was removed in both files
- checking of arguments was tightened
2016-11-13 18:44:10 -05:00
57124b9b25 update documentation metadata files for recent changes 2016-11-12 09:18:21 -05:00
03b3834fe3 add documentation for pair style agni 2016-11-12 09:07:42 -05:00
d0124eac95 optimized data access and using approximate exponential for USER-OMP version 2016-11-12 08:36:27 -05:00
5685131fe2 add USER-OMP version of pair style agni 2016-11-11 19:08:01 -05:00
22fc92f9d8 use special ev_tally() function suitable for this kind of force compute 2016-11-11 18:32:55 -05:00
b9770766a8 add adatom and vacancy examples for AGNI pair style 2016-11-11 18:19:29 -05:00
9cc0c8badd error exit when requested element is not in potential file 2016-11-11 18:10:57 -05:00
6e1492a86c add potential file for pair style AGNI 2016-11-11 18:10:26 -05:00
9b0987d8c4 first complete implementation of AGNI pair style 2016-11-11 17:32:47 -05:00
e453adaf81 implemented parser for 1 element potential files 2016-11-11 15:53:37 -05:00
8e0fd88697 add example demonstrating the use of fix addtorque 2016-11-11 10:52:50 -05:00
fdcabd7d1d fix addtorque is compatible with dynamic groups 2016-11-11 09:01:18 -05:00
c5c8c50e97 initialize 'nper' 2016-11-11 07:47:42 -05:00
72b0841b28 Merge branch 'doc-updates' of github.com:akohlmey/lammps into doc-updates 2016-11-11 07:44:44 -05:00
801111a7ab dummy framework implementation for AGNI pair style 2016-11-10 15:00:36 -05:00
bfc478c320 simpler variant of the segfault workaround, that does not offend Clang c++. 2016-11-10 14:12:02 -05:00
2b75ee761d avoid segmentation fault, when creating a LAMMPS instance from the library interface. arg[] may be NULL. 2016-11-10 13:28:32 -05:00
352e177fcd Merge branch 'master' into small-fixes-and-updates 2016-11-10 13:26:00 -05:00
c20ee34c7b Initializing pointers in VORONOI 2016-11-10 09:30:07 +01:00
95a7f7160e Initialize pointers in POEMS 2016-11-10 09:26:52 +01:00
1f38e1a771 Merge branch 'master' into doc-updates 2016-11-09 18:18:05 -05:00
9806da69f3 Stan bug fixes for fix reaxc/bonds/kk 2016-11-09 15:47:50 -07:00
fec87c070d simplify compiling USER-INTEL package, by defaulting to -DLAMMPS_MEMALIGN=64 in case it is not set 2016-11-09 16:53:39 -05:00
3d3a99c082 added missing potential for tersoff/mod/c 2016-11-09 16:50:34 -05:00
3e36ec3754 remove unused class member 2016-11-09 16:17:46 -05:00
9ed5c4f0fa Merge branch 'master' into kokkos-vashishta 2016-11-09 15:15:10 -05:00
c55fd502e0 correct typo in formula 2016-11-09 15:04:24 -05:00
71ee2ecaa1 integrate pair style tersoff/mod/c contributed by Ganga P Purja Pun (GMU)
This includes docs, added testing and inclusion of USER-OMP support.
2016-11-09 14:52:39 -05:00
bfea3dce7d Merge pull request #268 from arielzn/born_dsf
pair styles born/coul/dsf and born/coul/dsf/cs added
2016-11-09 11:57:09 -07:00
eef862ee1c Merge pull request #267 from akohlmey/pager-help
use pager for help message, if connected to stdout
2016-11-09 11:53:43 -07:00
0cc2fbf1d6 Merge pull request #266 from andeplane/IP_USER_OMP
Initializing pointers in USER-OMP
2016-11-09 11:52:05 -07:00
ae00666994 Merge pull request #265 from andeplane/IP_DIFF_DPD
Initializing pointers in USER-DIFFRACTION and USER-DPD
2016-11-09 11:51:53 -07:00
51b3b5fb35 Merge pull request #264 from andeplane/IP_SNAP_SRD
Initialize pointers in SNAP and SRD
2016-11-09 11:51:44 -07:00
176f2c3aa1 Merge pull request #263 from andeplane/IP_RIGID_SHOCK
Initialize pointers in RIGID and SHOCK
2016-11-09 11:51:36 -07:00
3f71bfb185 Merge pull request #262 from andeplane/IP_PERI_QEQ_REPLICA
Initializing pointers in PERI, QEQ and REPLICA
2016-11-09 11:51:25 -07:00
cf3ab51679 Merge pull request #261 from andeplane/IP_MISC_MOLECULE
Initialized pointers in MISC and MOLECULE
2016-11-09 11:51:09 -07:00
59922f894b Merge pull request #260 from andeplane/IP_MANYBODY_MC
Initialize pointers in MANYBODY and MC
2016-11-09 11:51:01 -07:00
5e2b9d8bf3 Merge pull request #259 from andeplane/IP_KSPACE
Initialize pointers in KSPACE
2016-11-09 11:50:50 -07:00
2d132cad6b Merge pull request #258 from andeplane/IP_GRANULAR
Initialize pointers in GRANULAR
2016-11-09 11:50:41 -07:00
ef6801f8bf Merge pull request #257 from andeplane/IP_CORESHELL
Initialize pointers in CORESHELL
2016-11-09 11:50:31 -07:00
c81a723642 Merge pull request #256 from andeplane/IP_BODY
Initialized pointers in BODY
2016-11-09 11:50:23 -07:00
f9eb2a99ce Merge pull request #255 from andeplane/IP_ASPHERE
Initialize pointers in ASPHERE
2016-11-09 11:50:11 -07:00
16a02ef27d Merge pull request #254 from andeplane/IP_root
Initialized pointers in src folder
2016-11-09 11:47:21 -07:00
2c801320c2 fixed links in Section_intro.txt 2016-11-09 11:46:10 -07:00
d20b32092e Building correct shortlists and removed rsq test in force loops 2016-11-08 18:57:27 +01:00
9de1a2a08f added input using born/coul/dsf/cs to examples/coreshell 2016-11-08 18:27:44 +01:00
cdb5d47e9f add FLERR argument to force->bounds() in born/coul/dsf 2016-11-08 18:24:54 +01:00
a23b287a7a sync with SVN for creation of stable release 2016-11-08 09:05:50 -07:00
31204aab6a sync with SVN 2016-11-08 08:57:51 -07:00
25e7d074cf documentation added for born/coul/dsf and born/coul/dsf/cs styles 2016-11-08 16:51:54 +01:00
667f4dfe28 pair style born/coul/dsf added with its coreshell version 2016-11-08 11:32:38 +01:00
21694ca3a8 improve help and it through a pager, when screen == stdout 2016-11-07 17:10:12 -05:00
9b910d5511 make name of the actual executable (i.e. arg[0]) accessible 2016-11-07 17:07:40 -05:00
054ab6bff3 Initializing pointers in USER-OMP 2016-11-07 21:07:10 +01:00
616420cda8 Initializing pointers in USER-DIFFRACTION and USER-DPD 2016-11-07 20:51:36 +01:00
fb3ac9afba Initialize pointers in SNAP and SRD 2016-11-07 20:30:38 +01:00
7cd7cda2d4 Initialize pointers in RIGID and SHOCK 2016-11-07 20:22:04 +01:00
db0524278a Initializing pointers in PERI, QEQ and REPLICA 2016-11-07 19:58:27 +01:00
1ff75eaba2 Initialized pointers in MISC and MOLECULE 2016-11-07 17:15:48 +01:00
30dede867a Initialize pointers in MANYBODY and MC 2016-11-07 17:02:32 +01:00
a5c6104d64 Initialize pointers in KSPACE 2016-11-07 16:54:59 +01:00
c5869bdee2 Initialize pointers in GRANULAR 2016-11-07 16:33:50 +01:00
e7a2c6b5d1 Initialize pointers in CORESHELL 2016-11-07 16:26:16 +01:00
06959a9c59 Initialized pointers in BODY 2016-11-07 16:21:08 +01:00
cd65d44d95 Initialize pointers in ASPHERE 2016-11-07 16:15:39 +01:00
45f2e86dd6 NULLed ptrs in files 2016-11-07 16:07:37 +01:00
f8226e8ae5 NULL ptrs in dump_custom and dump_image 2016-11-07 15:56:47 +01:00
b221b15d24 NULLing ptrs in comm_brick and dump*.cpp 2016-11-07 15:50:18 +01:00
3a3d96b877 info styles also prints out pair styles 2016-11-04 18:18:40 -04:00
77bbf03f0f Merge pull request #252 from akohlmey/preinstalled-vs-scm
remove the misleading "(which it is by default)" from several doc files
2016-11-04 10:59:06 -06:00
7cff08ca0a Merge pull request #249 from lammps/unstable
Incorporate merge commits from "unstable" into "master"
2016-11-04 10:58:55 -06:00
f0131393e0 Merge pull request #248 from akohlmey/collected-small-fixes
collected small bugfixes and updates
2016-11-04 10:58:42 -06:00
32e0a58343 Merge pull request #247 from akohlmey/bounds-error-with-code-line
Propagate error error locations for a few more utility functions
2016-11-04 10:58:14 -06:00
60908eeab4 Merge pull request #246 from akohlmey/manybody-short-neighbor-list
Manybody short neighbor list
2016-11-04 10:57:43 -06:00
8214555b29 Merge pull request #244 from ketankhare/patch-2
Enable write_data for dihedral style fourier
2016-11-04 10:57:20 -06:00
f48b71f46b added examples/threebody, fix reaxc/speceies/kk 2016-11-04 10:56:04 -06:00
6cc4eb19af remove the misleading "(which it is by default)" from several doc files 2016-11-04 12:20:17 -04:00
7d23a0737e add thorough checking for valid arguments to -partition or -p 2016-11-04 00:42:23 -04:00
02510ec321 add temporary force accumulation to local variables for vashishta styles 2016-11-02 22:32:30 -04:00
33140e5004 accumulate forces in temporary local variables for tersoff 2016-11-02 22:16:53 -04:00
639fb6f444 use local variables for more efficient force accumulation 2016-11-02 17:20:56 -04:00
b156771721 build short neighbor list for sw on based on ij parameters only 2016-11-02 17:09:32 -04:00
5d787f7f16 avoid tiny memory leak, when the restart command is specified multiple times 2016-11-01 21:39:12 -04:00
c8f4b55588 avoid uninitialized data for using ewald/disp with lj only 2016-11-01 16:48:30 -04:00
e13e4031cf avoid memory leak in pppm/disp/omp 2016-11-01 16:48:00 -04:00
782a328080 avoid memory leaks when using kspace solvers for lennard-jones 2016-11-01 14:55:13 -04:00
e81ae21dbd do not access uninitialized data for ewald/disp and pppm/disp 2016-11-01 14:54:16 -04:00
7fdd6e2807 remove work repetitions for 'the' 2016-11-01 11:40:07 -04:00
2e0d304c7e remove word repetitions for 'a' 2016-11-01 11:36:11 -04:00
f333d659c2 Using short neighborlists in neigh full 2016-10-29 22:54:43 +02:00
51e2313fac Using short neighbor lists 2016-10-29 22:35:29 +02:00
e37d2b5c94 Calculating short neighbor lists 2016-10-29 22:20:37 +02:00
c4b86a25a7 Merge branch 'master' into manybody-short-neighbor-list 2016-10-28 11:12:21 -04:00
218e121b41 Merge branch 'master' into bounds-error-with-code-line 2016-10-28 11:11:28 -04:00
93d393aa69 permission cleanup in tools folder 2016-10-28 10:48:35 -04:00
4216be49f3 Merge branch 'master' into collected-small-fixes 2016-10-28 10:46:33 -04:00
3870780894 Merge branch 'master' into kokkos-vashishta 2016-10-28 10:43:05 -04:00
c3a1e72183 Version 27 Oct 2016 2016-10-27 11:40:36 -04:00
d9891abdf4 new library functions 2016-10-27 09:34:04 -06:00
f9a9e27f5a add error location propagation to atom->set_mass() and atom->check_mass() 2016-10-26 16:01:40 -04:00
35753b8f08 add error location propagation to force->bounds() and force->boundsbig() 2016-10-26 15:53:02 -04:00
f028a9a967 region cylinder is compatible with open_faces[2], so do not disallow it. 2016-10-26 15:04:18 -04:00
ef9f7c818e fix off-by-one bug in buffer re-allocator 2016-10-26 10:14:08 -04:00
8e61bed2d8 add USER-OMP variant of manybody short neighbor list 2016-10-26 09:51:52 -04:00
3267b34590 simplify short neighbor list implementation. remove unneeded class member 2016-10-26 09:29:27 -04:00
0a417b4016 add short neighbor list support to pair style tersoff 2016-10-26 07:06:38 -04:00
399c0af150 consistent short neighbor list for vashishta and vashishta/table 2016-10-25 23:46:25 -04:00
e8b3f79690 fully tested multi-element compatible short neighbor list for Stillinger-Weber 2016-10-25 23:18:14 -04:00
21619f6a2f Recommitting reverted change
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15794 f3b2605a-c512-4ea7-a41b-209d697bcdaa
(cherry picked from commit c0b98f5299)
2016-10-25 15:25:39 -04:00
039bda9b61 Added updated vashishta for KOKKOS support
(cherry picked from commit 96089a42547f625e70aa2ac3933d248d2731b731)
2016-10-25 15:07:10 -04:00
6929603eef Added KOKKOS vashishta
(cherry picked from commit 5edc474bf0be574ddba96d00bb63894edf400ddb)
2016-10-25 15:07:10 -04:00
7f3f5e8c38 Clean whitespace 2016-10-25 14:46:44 -04:00
f350500e69 Enable write_data 2016-10-25 14:43:12 -04:00
d7c77a419d Enable write_data for dihedral_fourier 2016-10-25 14:36:18 -04:00
efaa8feab5 Merge pull request #239 from akohlmey/static-analysis-fixes
Static analysis fixes
2016-10-25 10:32:55 -06:00
ad5f7c4581 Merge pull request #238 from giacomofiorin/colvars-2016-10-24
Colvars fixes and small changes
2016-10-25 10:32:41 -06:00
6b33499135 Merge pull request #231 from akohlmey/collected-doc-fixes
Collected doc fixes
2016-10-25 10:30:34 -06:00
63eada2425 fix issue with docs for orientorder/atom compute reported by @andeplane
this closes #243
2016-10-25 12:12:48 -04:00
1a436bd7a9 Merge branch 'collected-doc-fixes' of github.com:akohlmey/lammps into collected-doc-fixes 2016-10-25 11:58:42 -04:00
52dd9aee5f Merge branch 'master' into collected-doc-fixes 2016-10-25 11:55:09 -04:00
eca96e21ef Merge branch 'doc' 2016-10-25 09:46:07 -06:00
9c81ad1ab6 doc page changes 2016-10-25 09:45:55 -06:00
f8367e3d0f update documentation pdf for updated colvars lib 2016-10-24 17:49:53 -04:00
ba6d1528bb Merge branch 'colvars-2016-10-24' of https://github.com/giacomofiorin/lammps into colvars-update 2016-10-24 17:34:28 -04:00
182141b850 Make SMP parallelism for Colvars optional 2016-10-24 17:13:34 -04:00
512c413b7e whitespace cleanup 2016-10-24 17:13:21 -04:00
7b89e47a38 apply corrections to issues reported by static code analysis 2016-10-24 17:12:28 -04:00
e02505c8cc Add ensemble-biased metadynamics (Fabrizio Marinelli, NIH) 2016-10-24 17:11:09 -04:00
be2d155cef Minor changes and fixes not relevant to LAMMPS 2016-10-24 17:10:52 -04:00
c243093980 Fix wall forces and subtractAppliedForce for extended-Lagrangian ABF 2016-10-24 17:05:47 -04:00
ad57a17f48 Add C-linkage wrapper for colvarscript (useful with ctypes) 2016-10-24 16:48:20 -04:00
477ddaf112 Merge pull request #232 from akohlmey/small-bugfixes
Small bugfixes
2016-10-24 08:15:08 -06:00
4f69d91a99 Merge pull request #230 from akohlmey/manual-in-ebook-format
generate LAMMPS manual in ebook format
2016-10-24 08:12:08 -06:00
bc44988003 correct typo in write_dump docs
this closes #233
2016-10-23 15:18:25 -04:00
db36c8bcc3 stop with error, if molecule command requires special bond auto-generation before box is defined 2016-10-21 14:51:09 -04:00
991034b632 have bond style table exit when bond length is outside table range 2016-10-21 14:01:06 -04:00
607246f923 ignore mobi file as well 2016-10-21 13:25:53 -04:00
6742fb634a remove mobi file format creation from makefile and explain it in README instead 2016-10-21 12:05:21 -04:00
ed3f02f249 ignore generated PDF and ePUB files 2016-10-21 12:04:48 -04:00
a2e34aab0a make certain, that atom->maxspecial is incremented with extra special space 2016-10-21 11:55:36 -04:00
6cd6c106ef Merge branch 'collected-small-changes' into collected-doc-fixes 2016-10-20 19:27:18 -04:00
a9572275ee Revert "support generation of manual in ePUB format"
This reverts commit 8c3f5cb307.
2016-10-20 16:27:00 -04:00
2cf77ff778 Add support for ebook generation in ePUB and mobi format 2016-10-20 16:16:17 -04:00
f022f6d88a fix various formatting and broken link issues identified by ebook-convert 2016-10-20 14:40:18 -04:00
8c3f5cb307 support generation of manual in ePUB format 2016-10-20 09:27:26 -04:00
e8359923f1 update packages section in manual with information about USER-NC-DUMP 2016-10-19 15:58:50 -04:00
d2da0fabb4 Version 20 Oct 2016 2016-10-19 15:29:13 -04:00
9954d5d346 forgot pair table change 2016-10-19 10:47:07 -06:00
3d254780de Merge branch 'master' of github.com:lammps/lammps 2016-10-19 08:58:22 -06:00
b0cf1ded38 Merge pull request #229 from akohlmey/small-corrections
collected various small corrections and updates
2016-10-19 08:57:54 -06:00
0891ed83a5 Merge pull request #228 from akohlmey/correct-prd-for-bigbig
make PRD code compatible with -DLAMMPS_BIGBIG
2016-10-19 08:56:19 -06:00
ffb8eb36da Revert "recognize any word starting with FP as FPRIME style table"
This reverts commit 86f5b51133.
2016-10-19 10:44:38 -04:00
1a10857244 make PRD code compatible with -DLAMMPS_BIGBIG 2016-10-19 10:43:25 -04:00
2634468676 dead code removal 2016-10-19 10:42:02 -04:00
58141e0559 text edit 2016-10-19 08:41:44 -06:00
393337e7cf Merge pull request #226 from akohlmey/pair-gauss-mixing
add mixing support for pair styles gauss and gauss/cut
2016-10-19 08:37:32 -06:00
e0ed218cc4 Merge pull request #224 from akohlmey/get-vars
provide an accessor for names of LAMMPS variables
2016-10-19 08:36:52 -06:00
efc7b23bd8 Merge pull request #216 from akohlmey/user-nc-dump
USER-NC-DUMP package
2016-10-19 08:33:59 -06:00
566effc9c9 account for new fix halt properly in PDF and online docs 2016-10-19 09:08:20 -04:00
86f5b51133 recognize any word starting with FP as FPRIME style table 2016-10-19 09:05:25 -04:00
ccca642b3a fix typo 2016-10-19 08:08:52 -04:00
019bc0ba0b fix typos in Makefile.lammps for NetCDF support 2016-10-19 07:39:03 -04:00
7b7cb297e6 add mixing for pair styles gauss and gauss/cut contributed by andrew jewett. also add support for write_data. 2016-10-18 22:26:47 -04:00
13ce1037f2 Version 18 Oct 2016 2016-10-18 15:46:56 -04:00
5a6dea7a22 Merge branch 'master' into user-nc-dump 2016-10-18 15:36:18 -04:00
27796b431e avoid distracting error output 2016-10-18 15:32:20 -04:00
2106dce2b3 new fix halt command, other sundry small bug fixes 2016-10-18 13:11:40 -06:00
6e54443d8c make plain nc dump style a compile time option as well
according to the package author, lars pastewka, some machines
may have only parallel netcdf and not the serial netcdf installed.
hence both netcdf dump styles neet to be optional depending on
the compile time setting in lib/netcdf/Makefile.lammps
The makefile has been set up to auto-detect the necessary flags
for most regular and correct installations.
2016-10-18 15:11:22 -04:00
2b47fa6653 update Makefile.lammps and add README according to suggestions by lars pastewka 2016-10-18 15:05:30 -04:00
713b2af067 Merge pull request #221 from akohlmey/collected-bugfixes
Collected bugfixes and small changes
2016-10-18 12:58:25 -06:00
ae77664bdd forgot to include USER-NC-DUMP in PACKUSER variable 2016-10-18 14:45:25 -04:00
4502d3276b updated Makefile.lammps for NetCDF support based on suggestions from lars pastewka 2016-10-18 14:45:06 -04:00
a752966eef Merge branch 'collected-bugfixes' of github.com:akohlmey/lammps into collected-bugfixes 2016-10-18 14:07:05 -04:00
1f7693faf2 fix typo 2016-10-18 14:06:43 -04:00
2c5ea9fc61 reapply changes to the timer class that got lost somehow 2016-10-18 14:05:08 -04:00
3e88fb5355 Merge branch 'master' into collected-bugfixes 2016-10-18 13:54:15 -04:00
6eadd45c45 Merge branch 'halt2' 2016-10-18 11:16:44 -06:00
003581c6a8 final changes to fix halt 2016-10-18 11:16:28 -06:00
1f1c87235a add support for "error continue" option, which resets the timer timeout setting after a soft exit 2016-10-18 12:21:27 -04:00
394c3bb504 add Timer::reset_timeout() API, that allows restoring the previous timeout setting after a forced timeout 2016-10-18 12:20:49 -04:00
954d536826 added bondmax method to fix halt 2016-10-18 09:27:01 -06:00
c5513c4f75 provide an accessor for names of LAMMPS variables 2016-10-17 19:56:18 -04:00
e4ff8128f1 fix typo
(cherry picked from commit c65fb0e311)
2016-10-16 12:29:53 -04:00
e7825ba21a import fix halt prototype code with corrections for soft exit 2016-10-15 07:30:07 -04:00
e77e1f6b8e replace complex solution to implement a soft exit with simpler one 2016-10-14 19:40:51 -04:00
909ec2c096 remove unused class members 2016-10-14 12:04:32 -04:00
f67975fd8a apply proper initialization and remove redundant variable declaration 2016-10-14 07:37:06 -04:00
deceb9d5c6 remove assignment without effect 2016-10-14 07:31:52 -04:00
c9c66ca0bd replace unsafe code 2016-10-14 07:28:25 -04:00
d07703efff re-apply bugfix from two years ago 2016-10-14 07:27:40 -04:00
411ecca8df plug memory leak 2016-10-14 07:27:14 -04:00
fa984b2c3b Version 13 Oct 2016 2016-10-13 19:56:33 -04:00
d11363c7eb Merge pull request #220 from rbberger/fix-doc-makefile
Allow building non-html doc targets without Python3 and virtualenv
2016-10-13 17:00:23 -06:00
5aefb2a882 Merge pull request #219 from akohlmey/python-no-double-load
do not require the LAMMPS shared library when loading the python wrapper from inside LAMMPS
2016-10-13 16:58:35 -06:00
40f2310a2a Merge pull request #218 from timattox/USER-DPD_fix_rx_init_bugfix
USER-DPD fix_rx initialization bugfix
2016-10-13 16:56:19 -06:00
2c8a7a318a bug fix for fix GCMC w/ fix shake, enhance of fix wall/gran/region with restarting 2016-10-13 16:55:53 -06:00
95cca1bd9f Allow building other targets without Python3 and virtualenv 2016-10-13 11:40:44 -04:00
0b426dadc1 do not require the LAMMPS shared library when loading the python wrapper from inside LAMMPS
Thanks to Giacomo Fiorin for figuring this out with NAMD/Colvars.
This requires linking with -Xlinker -export-dynamic or equivalent,
which is the default when using python-config to provide linker flags.
We will fall back to loading the DSO in case the initial load fails.
2016-10-12 18:36:38 -04:00
fcb5271026 USER-DPD: Initialize the dpdThetaLocal array consistently in fix_rx 2016-10-12 15:56:45 -04:00
4958e114ba USER-DPD bugfix: Properly initialize the local temperature averaging array. 2016-10-12 15:46:46 -04:00
63e71cd45b patch to add DPD-VV 2016-10-12 07:35:47 -06:00
4a5d9eaae2 Merge pull request #217 from akohlmey/small-fixes
Collected small changes and bugfixes
2016-10-12 07:32:08 -06:00
4e3a55047f Merge pull request #215 from timattox/USER-DPD_bugfix_for_dtsqrt
USER-DPD Bugfix: reset_dt() is not called when I thought it should be called.
2016-10-12 07:30:10 -06:00
f8a26dd158 update Timer::force_timeout() to trigger at next loop iteration 2016-10-12 07:26:03 -04:00
2e8edbd2b9 USER-SMD was missing from PACKLIB variable 2016-10-12 06:53:37 -04:00
da66c1e649 update #include directives to match current LAMMPS coding conventions 2016-10-12 00:07:52 -04:00
c24bf512f3 update #include statements for system includes 2016-10-12 00:00:53 -04:00
6b4ab0a390 update .gitignore 2016-10-12 00:00:21 -04:00
adc98e07df whitespace cleanup in USER-DPD 2016-10-11 23:58:36 -04:00
39a22039e9 correct broken link 2016-10-11 23:57:40 -04:00
e10ea91c5f add doc file to toctree 2016-10-11 23:51:42 -04:00
b75860048b updates for recent changes to the manual 2016-10-11 23:50:45 -04:00
69cb831705 import dump nc and dump nc/mpiio from lammps-netcdf as USER-NC-DUMP package by lars pastewka 2016-10-11 23:44:34 -04:00
ecb03dd2df import lammps-netcdf code as USER-NC-DUMP package 2016-10-11 23:03:18 -04:00
0eb7fbf34d tweaks to new USER-DPD docs 2016-10-11 15:43:59 -06:00
8540a9f038 Version 11 Oct 2016 2016-10-11 17:10:24 -04:00
2f07a627a2 Forgot to remove my call to reset_dt() 2016-10-11 16:30:41 -04:00
559637f4bc USER-DPD Bugfix: reset_dt() is not called when I thought it should be called.
Move the calculation of dtsqrt inside FixShardlow::initial_integrate()
2016-10-11 16:11:29 -04:00
fbf7df14b5 Merge pull request #212 from timattox/USER-DPD_fix_eos_atom_style_checks
USER-DPD: Add atom_style compatibility checks in fix_eos_*.cpp files.
2016-10-11 13:40:00 -06:00
6f1162927a Merge pull request #207 from timattox/USER-DPD_new_VV_for_DPD
USER-DPD: add support for using VV with DPD
2016-10-11 13:39:25 -06:00
803dc57bfa Merge pull request #214 from akohlmey/make-no-lib-no-mpiio
make no-lib should also remove MPIIO and USER-LB packages
2016-10-11 12:42:53 -06:00
3e8e2911cc Merge pull request #213 from akohlmey/improper-virial-bugfixes
Improper virial bugfixes
2016-10-11 12:42:08 -06:00
04f5eadcf1 added LAST option to dump_modify thresh, more restart info printed out to screen 2016-10-11 12:39:52 -06:00
b00b40bccd make no-lib should also remove MPIIO and USER-LB packages 2016-10-11 08:03:59 -04:00
ef079ae4eb bugfix for AngleAngle term in CLASS2 impropers by Ivan A. Strelnikov, ICP RAS
this closes #56
2016-10-10 23:56:36 -04:00
bb0bfd508b Merge branch 'master' into improper-virial-bugfixes 2016-10-10 23:55:36 -04:00
e70d530c46 Merge pull request #203 from rbberger/txt2rst-external-link-fix
txt2rst external link fix
2016-10-10 13:59:27 -06:00
ed8cc82713 Merge pull request #211 from akohlmey/add-respa-to-fix-flow-gauss
Add respa support to fix flow/gauss
2016-10-10 13:59:01 -06:00
27dac02466 Merge pull request #209 from akohlmey/static-double-deallocation-workaround
workaround for double free issue when using USER-COLVARS with with lammps python wrapper and python package
2016-10-10 13:58:16 -06:00
467bcad0a0 Merge pull request #204 from rbberger/fix-user-omp
Migrate changes from GRANULAR to USER-OMP
2016-10-10 13:57:37 -06:00
a2b0840064 USER-DPD: Add atom_style compatibility checks in fix_eos_*.cpp files. 2016-10-10 13:40:33 -04:00
144e6a8091 whitespace cleanup 2016-10-10 09:40:09 -04:00
72ac073412 edited documentation
(cherry picked from commit eff14c74b0)
2016-10-10 09:38:54 -04:00
49c45ab03b edited documentation
(cherry picked from commit fd560889c3)
2016-10-10 09:38:53 -04:00
c2cd439944 first draft of documentation for respa
(cherry picked from commit d7dcbcfbd9)
2016-10-10 09:38:53 -04:00
e96ebb29bc adjusted default respa level to be outermost
(cherry picked from commit 7fc4d46a41)
2016-10-10 09:38:53 -04:00
3ce178d43f now understand how respa works in lammps
(cherry picked from commit c829027e83)
2016-10-10 09:38:52 -04:00
23781d6ec9 added respa to fix_flow_gauss, not fully understood yet
(cherry picked from commit 8d9737b04d)
2016-10-10 09:38:52 -04:00
fca6d721c0 completed synchronization with non-threaded version 2016-10-10 09:16:21 -04:00
dd192ca7ea whitespace cleanup 2016-10-10 09:15:42 -04:00
683689c808 revert to previous style conventions for size_t constants 2016-10-08 11:00:23 -04:00
e01e90eb96 workaround for double free issue when using USER-COLVARS with lammps code loaded as shared library into a standalone executable 2016-10-08 10:45:22 -04:00
9507a786f0 USER-DPD: whitespace and indentation fixes 2016-10-07 15:59:47 -04:00
9789f047d7 USER-DPD: update the USER/dpd examples and their reference outputs 2016-10-07 15:55:35 -04:00
e27ed6c94a USER-DPD: Added support to use VV integrator with USER-DPD if desired.
Includes documentation and examples.
NOTE: VV requires very small timesteps under isoenergetic conditions.
Consider using fix_shardlow instead, since this VV support is
primarily for comparison purposes.
2016-10-07 15:03:30 -04:00
615a2da044 Migrate changes from GRANULAR to USER-OMP 2016-10-06 21:48:06 -04:00
7f3a7c5cbe Fix broken link 2016-10-06 20:33:24 -04:00
e78b4267b7 Fix issue with external links containing anchors 2016-10-06 20:29:07 -04:00
13b6eb1bae Version 6 Oct 2016 2016-10-06 19:12:58 -04:00
e9fed80928 Merge pull request #202 from akohlmey/doc-formatting-fixes
collected documentation updates and corrections from LAMMPS-ICMS
2016-10-06 15:49:44 -06:00
54fc194e5b Merge pull request #199 from akohlmey/small-changes
Collected small changes and bugfixes
2016-10-06 15:49:24 -06:00
b3d2fb91bb new fix wall/gran/region command, REBO bug fix, new example log files 2016-10-06 15:47:41 -06:00
19984c9bd1 Revert "bugfix for AngleAngle term in CLASS2 impropers by Ivan A. Strelnikov, ICP RAS"
This reverts commit 83bcdb6a50.
2016-10-06 17:23:10 -04:00
f92618a33b Revert "bugfix for virial tally for improper style umbrella from Steven Vandenbrande (U Gent)"
This reverts commit 4921dc18a0.
2016-10-06 17:21:38 -04:00
887981cfaa bugfix for virial tally for improper style umbrella from Steven Vandenbrande (U Gent)
this closes #182

(cherry picked from commit 4921dc18a0)
2016-10-06 17:20:22 -04:00
0b5d71537a collected documentation updates and corrections from LAMMPS-ICMS
fixes formatting issues due to tabs, permission issues and
a few typos and badly worded text.
2016-10-06 15:48:18 -04:00
c213457550 Merge pull request #197 from giacomofiorin/colvars_2016-10-05
Colvars 2016-10-05
2016-10-06 13:02:52 -06:00
0f45cd61a5 Merge pull request #196 from akohlmey/charmm-cmap-updates
Some more cmap-related updates for ch2lmp
2016-10-06 13:02:27 -06:00
493873fb93 clean up doc src 2016-10-06 13:00:46 -06:00
60a031ebac Merge branch 'USER-DPD_pair_exp6_rx_mathfix' of https://github.com/timattox/lammps_USER-DPD into small-changes
This closes #201
2016-10-06 14:28:08 -04:00
27e76a70b9 Merge branch 'USER-DPD_hybrid_atom_bugfix' of https://github.com/timattox/lammps_USER-DPD into small-changes
This closes #200
2016-10-06 14:27:27 -04:00
e1e9a5c126 USER-DPD: math corrections in pair_exp6_rx.cpp (by Jim Larentzos) 2016-10-06 13:49:47 -04:00
d31121b18c USER-DPD: bugfix in unpack_comm_hybrid(); now works with hybrid atom style 2016-10-06 13:21:27 -04:00
0853cdbe6f update reference data files for updated/corrected clayff parameters 2016-10-06 11:47:08 -04:00
83bcdb6a50 bugfix for AngleAngle term in CLASS2 impropers by Ivan A. Strelnikov, ICP RAS
this closes #56
2016-10-06 11:27:18 -04:00
22ce671804 improved whitespace handling in msi2lmp for force fields and topologies 2016-10-06 11:16:59 -04:00
4921dc18a0 bugfix for virial tally for improper style umbrella from Steven Vandenbrande (U Gent)
this closes #182
2016-10-06 10:47:08 -04:00
d133167bf6 Merge branch 'master' of https://github.com/albapa/lammps into small-changes
USER-QUIP related improvements from github user albapa. This closes #198
2016-10-06 09:32:50 -04:00
8ea063378e add NETCDF libs (as defined in QUIP) to the linking line if QUIP was built with NETCDF support 2016-10-06 12:16:25 +01:00
fd16118cbb removed dump_modify command 2016-10-06 12:02:41 +01:00
f9f955d5b5 update include statement format 2016-10-05 22:34:44 -04:00
d80a9def17 Version 5 Oct 2016 2016-10-05 18:49:08 -04:00
d7d321a512 some more updates to the README file to reflect the inclusion of the CMAP example and renamed file names 2016-10-05 18:41:45 -04:00
8809a603fb Colvars update: issue a warning that cannot be ignored regarding total forces 2016-10-05 18:26:21 -04:00
969d3cf4b0 Colvars update: make ABF check that the colvar isn't using already subtractAppliedForce 2016-10-05 18:25:40 -04:00
326fdf2cf1 added 1GB1 example from Robert Latour and update 1AC7 example files 2016-10-05 18:20:09 -04:00
f32819dd10 added tweak to write out the command line used for the conversion to the beginning of the LAMMPS input 2016-10-05 18:13:46 -04:00
c07a01c661 import updated README file for charmm2lammps.pl with CMAP support 2016-10-05 18:11:52 -04:00
02bfa898ee adjustments to balancing weights and factors, also XOR op for formulas, if, dump_modify thresh 2016-10-05 15:46:20 -06:00
030df745bc Merge pull request #193 from akohlmey/eam-bugfix
bugfix for eam/alloy/omp and eam/fs/omp
2016-10-05 10:54:36 -06:00
6a97211932 Merge pull request #192 from rbberger/python-interface-bugfix
Revert type checking commit from July
2016-10-05 10:54:08 -06:00
c46be7db62 changes to imbalance weight factors 2016-10-05 10:33:39 -06:00
4381db846b correct the bug discovered by stan due to uninitialized scale factors for eam/alloy/omp and eam/fs/omp 2016-10-04 14:33:26 -04:00
e2caf5c105 Fix code path which allows passing a C++ ptr to PyLammps 2016-10-04 13:57:21 -04:00
11c2892e54 Merge branch 'restrict-weights-and-weight-factors' of https://github.com/akohlmey/lammps 2016-10-04 09:49:09 -06:00
91be47a0d0 Revert type checking commit from July
0aebb2eabe
2016-10-04 11:43:12 -04:00
ab92529b19 Merge pull request #191 from akohlmey/updated-charmm2lammps
Updated charmm2lammps
2016-10-03 17:59:21 -06:00
e079362776 Merge pull request #190 from akohlmey/small-bufixes-and-enhancements
Small bufixes and enhancements
2016-10-03 17:58:36 -06:00
c3ff8812b3 added XOR operator to variable command 2016-10-03 17:57:33 -06:00
03766dbda7 apply bugfix for MEAM provided by Wolfgang Verestek on lammps-users
this closes lammps/#188
2016-10-03 16:28:59 -04:00
6e719f2d94 remove trailing whitespace 2016-10-03 07:07:28 -04:00
45d2cc2895 permission update for ch2lmp tool folder 2016-10-03 07:03:42 -04:00
690f91300b rebuild charmm2lammps example output files with updated tools 2016-10-03 06:58:51 -04:00
3b94627dfe properly handle -nohints flag, make -cmap flag take version as option. step version number 2016-10-03 06:52:30 -04:00
c2e11dffa2 import updated charmm2lammps.pl script from Rober Latour 2016-10-02 20:33:20 -04:00
114926a488 Merge branch 'master' into new-neighbor 2016-10-02 00:26:56 -04:00
1985db4fb1 correct designation of meam supporting USER-OMP and meam/spline not 2016-10-01 23:05:05 -04:00
a3e05a2bac permission cleanup 2016-10-01 06:34:45 -04:00
035279de87 correct logic bug in bufix for fix tmd
(cherry picked from commit 267c1ec957)
2016-10-01 06:26:52 -04:00
be4734bdce Version 30 Sep 2016 2016-09-30 11:57:15 -04:00
e2c7acabac Merge pull request #187 from akohlmey/colvars-update-2016-09-30
update colvars library to version 2016-09-30
2016-09-30 09:21:00 -06:00
91edee2530 Merge pull request #186 from akohlmey/small-bugfixes
Collected small bugfixes and enhancements
2016-09-30 09:20:25 -06:00
b9d0f96a19 change purge target in Makefile, also fixed one issue with Make.py 2016-09-30 09:17:55 -06:00
d45e333f7c restrict choice of weight factors and guarantee that weights are >= 0.001 2016-09-30 11:11:32 -04:00
5bb85b482d remove unused variable 2016-09-30 09:38:50 -04:00
d4b074d85b enable dynamic groups for fix dt/reset 2016-09-30 09:09:44 -04:00
6d200061ca update colvars library to version 2016-09-30 2016-09-30 08:15:44 -04:00
cb7bd2799e flag header as C++ to emacs 2016-09-30 07:39:45 -04:00
4337f2c240 include charmm22 and charmm36 cmap files and include date added signature 2016-09-30 07:39:12 -04:00
0eeb240730 whitespace cleanup, fix bug in looking for empty strings, improve read performance and handling of comments 2016-09-30 07:22:47 -04:00
5eb9dd0c5d Merge branch 'master' into new-neighbor 2016-09-29 23:14:28 -04:00
c88acc9613 make reader for target geometry file more resilient 2016-09-29 22:59:46 -04:00
f7b5afee82 Merge pull request #184 from akohlmey/dynamic-groups-for-respa
Dynamic groups for respa
2016-09-29 15:51:34 -06:00
a315dcda9b remove dead code
(cherry picked from commit 7f0994aac0)
2016-09-29 15:13:46 -04:00
f6c77c3aba support dynamic groups with run style respa
(cherry picked from commit b7baa1680d)
2016-09-29 15:13:46 -04:00
2551619b07 Version 29 Sep 2016 2016-09-29 10:55:26 -04:00
d8bf149edc Version 28 Sep 2016 2016-09-29 10:55:18 -04:00
473b12ded4 Version 26 Sep 2016 2016-09-29 10:55:10 -04:00
27c3149590 Version 21 Sep 2016 2016-09-29 10:54:59 -04:00
3b408d71fe Version 20 Sep 2016 2016-09-29 10:53:40 -04:00
5b2becd09b Merge branch 'integration' into new-master 2016-09-29 10:37:09 -04:00
78a22be93f sync Make.py and fix addforce change with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15675 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-28 22:36:54 +00:00
596b260f5d Merge pull request #45 from akohlmey/small-bugfixes
Small bugfixes
2016-09-28 16:36:04 -06:00
189825489c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15673 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 22:32:14 +00:00
bdd0f665ca git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15672 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 22:32:12 +00:00
6897cc803f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15671 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 22:29:06 +00:00
f511c177c6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15670 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 14:37:45 +00:00
1ec3987b31 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15669 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 14:36:30 +00:00
8c1d0031c9 correct typo in Make.py 2016-09-27 18:20:06 -04:00
45e50b46c3 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15668 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-27 21:37:17 +00:00
1adf3858a9 correct bug and synchronize fix addforce respa level init with other fixes 2016-09-27 17:36:02 -04:00
f82e0c53b6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15666 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:31:04 +00:00
1fbddc97d1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15665 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:31:02 +00:00
1cfa49f03d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15664 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:28:06 +00:00
3486b7d503 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15663 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:24:10 +00:00
6fedf8d899 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15662 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:18:32 +00:00
56b0856e2f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15661 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:16:33 +00:00
f9c2049724 need to ignore new fix cmap sources 2016-09-27 17:12:17 -04:00
e1c6b6b7d1 correctly handle exceptions raised from subprocess module 2016-09-27 17:01:45 -04:00
3333e4b475 Put snap before zbl to get more helpful error message
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15660 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-27 17:21:42 +00:00
2ae966c26f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15657 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:49:51 +00:00
d1b8ffd924 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15656 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:49:48 +00:00
b66039b8bb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15653 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:43:18 +00:00
995ecea5ed git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15652 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:02:08 +00:00
43633180eb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15651 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:08:34 +00:00
b68e954761 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15650 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:06:58 +00:00
2b88050a1f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15649 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:06:14 +00:00
063307c71c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15648 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:05:29 +00:00
f280bd32a6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15647 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 23:34:26 +00:00
53eac4431d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15646 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 23:32:16 +00:00
fb64ae612f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15645 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 16:23:53 +00:00
5769c10189 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15643 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 14:39:43 +00:00
7453a4f55f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15642 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 14:39:40 +00:00
50d59454d2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15640 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 23:06:49 +00:00
24ff008a0f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15639 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 23:06:44 +00:00
da480bd4d4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15638 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 23:00:00 +00:00
8a6e5ed3ce git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15637 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 22:59:43 +00:00
756cac0f60 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15636 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 22:59:35 +00:00
8662662afe fix ti/spring
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15635 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-23 21:14:00 +00:00
f718c54430 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15634 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-23 21:04:56 +00:00
2a30b76277 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15633 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 16:49:40 +00:00
31e41707e0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15632 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 15:46:03 +00:00
32cec47ffb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15631 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 15:45:27 +00:00
c22df8db57 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15630 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 14:05:57 +00:00
d0bbf3fb97 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15629 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 02:22:08 +00:00
32872a7b35 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15628 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 02:22:05 +00:00
6dd4480482 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15626 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:31:49 +00:00
26e16ed968 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15625 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:31:45 +00:00
ca5ad04b01 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15624 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:15:17 +00:00
0329aaaf72 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15623 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:14:06 +00:00
fc434b36b3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15622 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:29:19 +00:00
a1364adce1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15621 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:26:00 +00:00
c382759406 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15620 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:25:55 +00:00
e7fb82a645 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15619 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:22:57 +00:00
03c5ce601b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15618 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:22:32 +00:00
d7c6f57fe4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15617 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 20:50:23 +00:00
0bcd90195d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15616 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 20:38:57 +00:00
72c5792230 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15615 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 15:40:42 +00:00
71f7dde12a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15614 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 15:26:31 +00:00
f8c8434c44 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15613 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 22:39:20 +00:00
3eee584956 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15612 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 18:08:38 +00:00
26b9b955a9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15611 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 18:04:18 +00:00
fe73c3e4e3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15610 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 17:25:49 +00:00
8944d48bd1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15608 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:36:15 +00:00
f86bd1fceb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15607 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:35:30 +00:00
f1d3637b03 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15605 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:26:57 +00:00
ce3676677e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15604 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:21:39 +00:00
f81f0da734 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15603 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:20:45 +00:00
ed9f13663b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15602 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:20:28 +00:00
4f941abdfd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15601 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:19:25 +00:00
af4a42345f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15600 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:14:15 +00:00
df0ed58bbd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15599 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:12:56 +00:00
8b80d0cf9a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15598 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:09:43 +00:00
558303072d sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15597 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-20 14:52:43 +00:00
900c83960e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15595 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-18 00:06:34 +00:00
484122b8b6 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15592 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-16 19:21:34 +00:00
ed532358ad git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15591 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:29:55 +00:00
5336ec0735 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15590 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:26:52 +00:00
7d77aea42d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15589 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:24:05 +00:00
6fd60f50ad git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15588 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:20:06 +00:00
54b2f3c970 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15583 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 21:02:02 +00:00
e14eab610e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15582 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 21:01:16 +00:00
2049fa7380 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15581 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 17:18:05 +00:00
cf33c0e7fb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15580 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 16:59:28 +00:00
b23e9f0d54 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15579 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-14 19:29:22 +00:00
b29782d5ab git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15577 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-14 15:33:37 +00:00
0f6d21acda sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15576 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-14 15:27:51 +00:00
206f4e18a6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15573 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 23:06:23 +00:00
b3fa20718f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15572 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 23:05:03 +00:00
9d0e853925 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15571 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 22:58:33 +00:00
babaa839b0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15570 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 22:55:40 +00:00
9f3118341a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15569 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 21:00:30 +00:00
342421babb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15568 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 20:43:30 +00:00
423052134b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15567 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 20:43:17 +00:00
fd5363fb6e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15566 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 20:42:47 +00:00
d913f5e094 Fixing Kokkos bugs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15565 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-12 21:09:35 +00:00
a8d7ca367d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15564 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-10 20:19:52 +00:00
99d5bf89bc git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15563 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-10 19:48:18 +00:00
ebabc8f0bc Merge remote-tracking branch 'lammps-rw/integration' into update-neighbor 2016-09-09 15:46:20 -04:00
232abf8534 restore locale and enforce grep option squashing 2016-09-09 15:42:14 -04:00
d22caf2658 Merge pull request #29 from timattox/new-neighbor
USER-DPD: remove several files from src that came from src/USER-DPD/
2016-09-09 15:28:56 -04:00
3842aa6095 forward skip lists /omp neighbor list builds to non-omp implementations 2016-09-09 15:23:40 -04:00
32c240978a USER-DPD: remove several files from src that came from src/USER-DPD/
These were accidentally added to git in c9c2ae6.
2016-09-09 15:17:42 -04:00
212c2617f6 delete a couple more files, that don't belong into src/ 2016-09-09 14:56:23 -04:00
40f85c93ba corrected mismatched free() vs. delete[] 2016-09-09 14:10:42 -04:00
2f02d98469 remove USER-DPD files that should not be where they are 2016-09-09 13:53:07 -04:00
4553881fc2 Merge pull request #28 from timattox/new-neighbor
New neighbor, USER-DPD updates
2016-09-09 13:11:55 -04:00
81fcbcd99c USER-DPD: move nstencil_ssa out of core LAMMPS into USER-DPD 2016-09-09 12:19:54 -04:00
82c6eb4675 USER-DPD: Set missing NP_HALF flag in npair_half_bin_newton_ssa.h 2016-09-09 12:19:36 -04:00
8ed3f4226e USER-DPD: move custom binning stuff to a NBinSSA child class.
Removes most SSA specific fields from class NeighList.
2016-09-09 12:19:06 -04:00
9b7a0d7e1c Update gitignore for the new USER-DPD source files. 2016-09-09 12:18:51 -04:00
1dd7a13d82 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15562 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-08 20:37:31 +00:00
b190abea39 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15561 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-08 20:20:32 +00:00
c9c2ae6c61 new neighbor list changes 2016-09-07 13:42:58 -06:00
06b7d56e16 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15560 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-07 17:17:53 +00:00
ee4a1f0452 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15559 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-07 16:12:51 +00:00
d3694613fd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15558 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-07 15:49:34 +00:00
bf0c18a0f2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15557 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 23:19:15 +00:00
39be4185c4 Updating Kokkos lib
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15556 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 23:06:32 +00:00
1ad033ec0c Updating Kokkos lib
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15555 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 23:02:50 +00:00
f67a9722ea git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15554 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 23:01:25 +00:00
06bac161ae git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15553 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 22:58:43 +00:00
5277242cfe GH changes to doc pages
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15552 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 22:56:36 +00:00
83f139642e Reverting optimizations that hurt performance on some compilers
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15551 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 22:09:41 +00:00
5568320bd6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15549 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 22:05:53 +00:00
74d0bc4df6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15548 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 22:05:14 +00:00
56945a56aa git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15547 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 21:55:39 +00:00
f9c106897f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15545 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:53:15 +00:00
626ae8d85c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15544 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:52:36 +00:00
4282107e5d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15543 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:39:57 +00:00
1e11d2d923 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15541 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:38:58 +00:00
c21cf0364f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15540 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:33:48 +00:00
688b1f1efc Fixing bug in Kokkos ReaxFF
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15539 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 14:06:59 +00:00
fc80281fd9 Fixing bugs in per-atom
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15538 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-02 22:45:29 +00:00
519a3ee242 Adding Kokkos version of PPPM
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15537 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 21:45:00 +00:00
a4914bc9d8 Adding Kokkos version of PPPM
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15536 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 21:01:23 +00:00
b4785cd038 Adding Kokkos version of PPPM
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15535 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 20:53:40 +00:00
3769f9077f chunk doc pages
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15534 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 01:58:35 +00:00
159d722cc2 removing searchindex.js
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15533 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 01:55:31 +00:00
f94bbc0de0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15532 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 22:21:11 +00:00
fab2f01a58 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15531 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 22:20:28 +00:00
ae458497bf git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15530 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 21:11:34 +00:00
bcb2e6dd38 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15529 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 21:10:51 +00:00
93c6c26b83 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15528 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-31 21:08:32 +00:00
083ff54c0c small bug fixes
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15527 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-31 20:26:15 +00:00
e3d0a32272 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15526 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 20:10:32 +00:00
8f6439843d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15525 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 19:25:40 +00:00
9d8027c900 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15524 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 19:25:08 +00:00
76acb8caf1 Fixing Kokkos memory issue
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15523 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-30 23:18:07 +00:00
ba444a4c6b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15522 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-30 19:33:56 +00:00
dbaaf4dbbd Removing aggressive_vectorization flag due to safety issue
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15521 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-30 17:52:49 +00:00
958e3e6a80 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15520 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-29 23:49:20 +00:00
2993aec312 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15519 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-29 22:52:03 +00:00
236241b100 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15518 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-27 23:09:15 +00:00
a62bae7d33 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15517 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 23:07:38 +00:00
57b24b5668 updated USER-MANIFOLD doc pages
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15516 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-27 23:07:03 +00:00
fc4e63130c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15514 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:41:46 +00:00
0ec104088f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15513 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:41:05 +00:00
4f49acf903 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15511 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:40:37 +00:00
5714890627 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15510 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:40:11 +00:00
18d05e04a2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15509 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:37:35 +00:00
90e6032f97 new fix flow/gauss command
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15508 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-27 22:18:45 +00:00
646d5bb1b9 Added check for undefined hbonds
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15507 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 20:03:55 +00:00
5348c1c70f Adding Kokkos warning
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15506 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 18:37:44 +00:00
56628fe2b6 Adding Kokkos warning
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15505 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 18:17:16 +00:00
8a7fecbd91 Cleaning up code
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15504 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 16:32:11 +00:00
cc4b2dd6ed Changing default
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15503 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 15:50:25 +00:00
3366136493 Fixing Kokkos memory issue
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15502 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 15:43:13 +00:00
b2470fd80d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15501 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 17:19:46 +00:00
484e726c78 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15500 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 17:15:22 +00:00
67958a8bfa git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15499 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 17:03:56 +00:00
bfb01b84e6 Fixing compiler warning
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15498 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-25 16:59:45 +00:00
e96ac8eb59 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15497 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 16:55:30 +00:00
29d04c1fbb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15496 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-24 20:31:41 +00:00
a411023a75 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15495 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-24 20:25:54 +00:00
647ffab74f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15493 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:45:54 +00:00
662335db13 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15492 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:44:48 +00:00
1e1f68c30d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15491 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:41:41 +00:00
7646321bfb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15490 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:21:04 +00:00
7bf1d9b40f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15489 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:17:44 +00:00
d007faca51 Fixing Kokkos output for number of OpenMP threads
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15488 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-23 16:07:26 +00:00
89fc866ba7 Fixing bug on Macs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15487 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-23 15:45:00 +00:00
0229556b03 Merge branch 'master' of github.com:lammps/lammps 2015-07-03 15:43:29 +02:00
357d4517e8 Merge branch 'master' of github.com:lammps/lammps 2015-04-08 10:46:50 +02:00
a4a97de84f A few GLE fixes 2015-04-08 10:45:49 +02:00
2966 changed files with 397047 additions and 225257 deletions

View File

@ -14,7 +14,7 @@ lmp_linux_mixed
lmp_linux_double
The precision (single, mixed, double) refers to the GPU and USER-CUDA
pacakge precision. See the README files in the lib/gpu and lib/cuda
package precision. See the README files in the lib/gpu and lib/cuda
directories for instructions on how to build the packages with
different precisions. The GPU and USER-CUDA sub-sections of the
doc/Section_accelerate.html file also describes this process.

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# FENE beadspring benchmark
units lj
@ -43,25 +43,25 @@ Neighbor list info ...
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 45 45 45
Memory usage per processor = 11.5189 Mbytes
Memory usage per processor = 12.0423 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97029772 0.44484087 20.494523 22.394765 4.6721833
100 0.9729966 0.4361122 20.507698 22.40326 4.6548819
Loop time of 0.978585 on 1 procs for 100 steps with 32000 atoms
Loop time of 0.977647 on 1 procs for 100 steps with 32000 atoms
Performance: 105948.895 tau/day, 102.188 timesteps/s
100.0% CPU use with 1 MPI tasks x no OpenMP threads
Performance: 106050.541 tau/day, 102.286 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.19562 | 0.19562 | 0.19562 | 0.0 | 19.99
Bond | 0.087475 | 0.087475 | 0.087475 | 0.0 | 8.94
Neigh | 0.44861 | 0.44861 | 0.44861 | 0.0 | 45.84
Comm | 0.032932 | 0.032932 | 0.032932 | 0.0 | 3.37
Output | 0.00010395 | 0.00010395 | 0.00010395 | 0.0 | 0.01
Modify | 0.19413 | 0.19413 | 0.19413 | 0.0 | 19.84
Other | | 0.01972 | | | 2.02
Pair | 0.19421 | 0.19421 | 0.19421 | 0.0 | 19.86
Bond | 0.08741 | 0.08741 | 0.08741 | 0.0 | 8.94
Neigh | 0.45791 | 0.45791 | 0.45791 | 0.0 | 46.84
Comm | 0.032649 | 0.032649 | 0.032649 | 0.0 | 3.34
Output | 0.00012207 | 0.00012207 | 0.00012207 | 0.0 | 0.01
Modify | 0.18071 | 0.18071 | 0.18071 | 0.0 | 18.48
Other | | 0.02464 | | | 2.52
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# FENE beadspring benchmark
units lj
@ -43,25 +43,25 @@ Neighbor list info ...
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 45 45 45
Memory usage per processor = 3.91518 Mbytes
Memory usage per processor = 4.14663 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97029772 0.44484087 20.494523 22.394765 4.6721833
100 0.97145835 0.43803883 20.502691 22.397872 4.626988
Loop time of 0.271187 on 4 procs for 100 steps with 32000 atoms
Loop time of 0.269205 on 4 procs for 100 steps with 32000 atoms
Performance: 382319.453 tau/day, 368.749 timesteps/s
99.6% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 385133.446 tau/day, 371.464 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.048621 | 0.050076 | 0.051229 | 0.4 | 18.47
Bond | 0.022254 | 0.022942 | 0.023567 | 0.3 | 8.46
Neigh | 0.11873 | 0.11881 | 0.11887 | 0.0 | 43.81
Comm | 0.019066 | 0.021357 | 0.024297 | 1.3 | 7.88
Output | 5.0068e-05 | 5.5015e-05 | 6.1035e-05 | 0.1 | 0.02
Modify | 0.048737 | 0.050198 | 0.051231 | 0.4 | 18.51
Other | | 0.007751 | | | 2.86
Pair | 0.049383 | 0.049756 | 0.049988 | 0.1 | 18.48
Bond | 0.022701 | 0.022813 | 0.022872 | 0.0 | 8.47
Neigh | 0.11982 | 0.12002 | 0.12018 | 0.0 | 44.58
Comm | 0.020274 | 0.021077 | 0.022348 | 0.5 | 7.83
Output | 5.3167e-05 | 5.6148e-05 | 6.3181e-05 | 0.1 | 0.02
Modify | 0.046276 | 0.046809 | 0.047016 | 0.1 | 17.39
Other | | 0.008669 | | | 3.22
Nlocal: 8000 ave 8030 max 7974 min
Histogram: 1 0 0 1 0 1 0 0 0 1

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# FENE beadspring benchmark
variable x index 1
@ -59,25 +59,25 @@ Neighbor list info ...
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 89 89 45
Memory usage per processor = 12.8735 Mbytes
Memory usage per processor = 13.2993 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97027498 0.44484087 20.494523 22.394765 4.6721833
100 0.97682955 0.44239968 20.500229 22.407862 4.6527025
Loop time of 1.20889 on 4 procs for 100 steps with 128000 atoms
Loop time of 1.14845 on 4 procs for 100 steps with 128000 atoms
Performance: 85764.410 tau/day, 82.720 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 90277.919 tau/day, 87.074 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.21738 | 0.23306 | 0.23926 | 1.9 | 19.28
Bond | 0.094536 | 0.10196 | 0.10534 | 1.4 | 8.43
Neigh | 0.52311 | 0.52392 | 0.52519 | 0.1 | 43.34
Comm | 0.090161 | 0.10022 | 0.12557 | 4.7 | 8.29
Output | 0.00012207 | 0.00017327 | 0.00019598 | 0.2 | 0.01
Modify | 0.19662 | 0.20262 | 0.20672 | 0.8 | 16.76
Other | | 0.04694 | | | 3.88
Pair | 0.2203 | 0.22207 | 0.22386 | 0.3 | 19.34
Bond | 0.094861 | 0.095302 | 0.095988 | 0.1 | 8.30
Neigh | 0.52127 | 0.5216 | 0.52189 | 0.0 | 45.42
Comm | 0.079585 | 0.082159 | 0.084366 | 0.7 | 7.15
Output | 0.00013304 | 0.00015306 | 0.00018501 | 0.2 | 0.01
Modify | 0.18351 | 0.18419 | 0.1856 | 0.2 | 16.04
Other | | 0.04298 | | | 3.74
Nlocal: 32000 ave 32015 max 31983 min
Histogram: 1 0 1 0 0 0 0 0 1 1

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
@ -47,24 +47,24 @@ Neighbor list info ...
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 73 37 68
Memory usage per processor = 15.567 Mbytes
Step Atoms KinEng 1 Volume
Memory usage per processor = 16.0904 Mbytes
Step Atoms KinEng c_1 Volume
0 32000 784139.13 1601.1263 29833.783
100 32000 784292.08 1571.0968 29834.707
Loop time of 0.550482 on 1 procs for 100 steps with 32000 atoms
Loop time of 0.534174 on 1 procs for 100 steps with 32000 atoms
Performance: 1569.534 tau/day, 181.659 timesteps/s
100.1% CPU use with 1 MPI tasks x no OpenMP threads
Performance: 1617.451 tau/day, 187.205 timesteps/s
99.8% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.33849 | 0.33849 | 0.33849 | 0.0 | 61.49
Neigh | 0.040353 | 0.040353 | 0.040353 | 0.0 | 7.33
Comm | 0.018023 | 0.018023 | 0.018023 | 0.0 | 3.27
Output | 0.00020385 | 0.00020385 | 0.00020385 | 0.0 | 0.04
Modify | 0.13155 | 0.13155 | 0.13155 | 0.0 | 23.90
Other | | 0.02186 | | | 3.97
Pair | 0.33346 | 0.33346 | 0.33346 | 0.0 | 62.43
Neigh | 0.043902 | 0.043902 | 0.043902 | 0.0 | 8.22
Comm | 0.018391 | 0.018391 | 0.018391 | 0.0 | 3.44
Output | 0.00022411 | 0.00022411 | 0.00022411 | 0.0 | 0.04
Modify | 0.11666 | 0.11666 | 0.11666 | 0.0 | 21.84
Other | | 0.02153 | | | 4.03
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
@ -47,24 +47,24 @@ Neighbor list info ...
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 73 37 68
Memory usage per processor = 6.81783 Mbytes
Step Atoms KinEng 1 Volume
Memory usage per processor = 7.04927 Mbytes
Step Atoms KinEng c_1 Volume
0 32000 784139.13 1601.1263 29833.783
100 32000 784292.08 1571.0968 29834.707
Loop time of 0.13141 on 4 procs for 100 steps with 32000 atoms
Loop time of 0.171815 on 4 procs for 100 steps with 32000 atoms
Performance: 6574.833 tau/day, 760.976 timesteps/s
99.3% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 5028.653 tau/day, 582.020 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.062505 | 0.067 | 0.07152 | 1.5 | 50.99
Neigh | 0.010041 | 0.0101 | 0.010178 | 0.1 | 7.69
Comm | 0.012347 | 0.012895 | 0.013444 | 0.5 | 9.81
Output | 6.3896e-05 | 0.00010294 | 0.00014091 | 0.3 | 0.08
Modify | 0.031802 | 0.032348 | 0.032897 | 0.3 | 24.62
Other | | 0.008965 | | | 6.82
Pair | 0.093691 | 0.096898 | 0.10005 | 0.8 | 56.40
Neigh | 0.011976 | 0.012059 | 0.012146 | 0.1 | 7.02
Comm | 0.016384 | 0.017418 | 0.018465 | 0.8 | 10.14
Output | 7.7963e-05 | 0.00010747 | 0.00013304 | 0.2 | 0.06
Modify | 0.031744 | 0.031943 | 0.032167 | 0.1 | 18.59
Other | | 0.01339 | | | 7.79
Nlocal: 8000 ave 8008 max 7992 min
Histogram: 2 0 0 0 0 0 0 0 0 2

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
@ -57,24 +57,24 @@ Neighbor list info ...
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 146 73 68
Memory usage per processor = 15.7007 Mbytes
Step Atoms KinEng 1 Volume
Memory usage per processor = 16.1265 Mbytes
Step Atoms KinEng c_1 Volume
0 128000 3136556.5 6404.5051 119335.13
100 128000 3137168.3 6284.3873 119338.83
Loop time of 0.906913 on 4 procs for 100 steps with 128000 atoms
Loop time of 0.832365 on 4 procs for 100 steps with 128000 atoms
Performance: 952.683 tau/day, 110.264 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 1038.006 tau/day, 120.140 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.51454 | 0.53094 | 0.55381 | 2.0 | 58.54
Neigh | 0.042597 | 0.043726 | 0.045801 | 0.6 | 4.82
Comm | 0.063027 | 0.064657 | 0.067367 | 0.7 | 7.13
Output | 0.00024891 | 0.00059718 | 0.00086498 | 1.0 | 0.07
Modify | 0.16508 | 0.17656 | 0.1925 | 2.6 | 19.47
Other | | 0.09043 | | | 9.97
Pair | 0.5178 | 0.52208 | 0.52793 | 0.5 | 62.72
Neigh | 0.047003 | 0.047113 | 0.047224 | 0.0 | 5.66
Comm | 0.05233 | 0.052988 | 0.053722 | 0.2 | 6.37
Output | 0.00024986 | 0.00032717 | 0.00036693 | 0.3 | 0.04
Modify | 0.15517 | 0.15627 | 0.15808 | 0.3 | 18.77
Other | | 0.0536 | | | 6.44
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
@ -87,4 +87,4 @@ Total # of neighbors = 460532
Ave neighs/atom = 3.59791
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:01
Total wall time: 0:00:00

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# bulk Cu lattice
variable x index 1
@ -49,25 +49,25 @@ Neighbor list info ...
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 25 25 25
Memory usage per processor = 10.2238 Mbytes
Memory usage per processor = 11.2238 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -113280 0 -106662.09 18703.573
50 781.69049 -109873.35 0 -106640.13 52273.088
100 801.832 -109957.3 0 -106640.77 51322.821
Loop time of 5.90097 on 1 procs for 100 steps with 32000 atoms
Loop time of 5.96529 on 1 procs for 100 steps with 32000 atoms
Performance: 7.321 ns/day, 3.278 hours/ns, 16.946 timesteps/s
Performance: 7.242 ns/day, 3.314 hours/ns, 16.764 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.2121 | 5.2121 | 5.2121 | 0.0 | 88.33
Neigh | 0.58212 | 0.58212 | 0.58212 | 0.0 | 9.86
Comm | 0.030392 | 0.030392 | 0.030392 | 0.0 | 0.52
Output | 0.00023389 | 0.00023389 | 0.00023389 | 0.0 | 0.00
Modify | 0.060871 | 0.060871 | 0.060871 | 0.0 | 1.03
Other | | 0.01527 | | | 0.26
Pair | 5.2743 | 5.2743 | 5.2743 | 0.0 | 88.42
Neigh | 0.59212 | 0.59212 | 0.59212 | 0.0 | 9.93
Comm | 0.030399 | 0.030399 | 0.030399 | 0.0 | 0.51
Output | 0.00026202 | 0.00026202 | 0.00026202 | 0.0 | 0.00
Modify | 0.050487 | 0.050487 | 0.050487 | 0.0 | 0.85
Other | | 0.01776 | | | 0.30
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# bulk Cu lattice
variable x index 1
@ -49,25 +49,25 @@ Neighbor list info ...
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 25 25 25
Memory usage per processor = 5.09629 Mbytes
Memory usage per processor = 5.59629 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -113280 0 -106662.09 18703.573
50 781.69049 -109873.35 0 -106640.13 52273.088
100 801.832 -109957.3 0 -106640.77 51322.821
Loop time of 1.58019 on 4 procs for 100 steps with 32000 atoms
Loop time of 1.64562 on 4 procs for 100 steps with 32000 atoms
Performance: 27.338 ns/day, 0.878 hours/ns, 63.284 timesteps/s
Performance: 26.252 ns/day, 0.914 hours/ns, 60.767 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.3617 | 1.366 | 1.3723 | 0.4 | 86.45
Neigh | 0.15123 | 0.15232 | 0.15374 | 0.2 | 9.64
Comm | 0.033429 | 0.041275 | 0.047066 | 2.7 | 2.61
Output | 0.00011301 | 0.0001573 | 0.000211 | 0.3 | 0.01
Modify | 0.014694 | 0.015085 | 0.015421 | 0.2 | 0.95
Other | | 0.005342 | | | 0.34
Pair | 1.408 | 1.4175 | 1.4341 | 0.9 | 86.14
Neigh | 0.15512 | 0.15722 | 0.16112 | 0.6 | 9.55
Comm | 0.029105 | 0.049986 | 0.061822 | 5.8 | 3.04
Output | 0.00010991 | 0.00011539 | 0.00012302 | 0.0 | 0.01
Modify | 0.013383 | 0.013573 | 0.013883 | 0.2 | 0.82
Other | | 0.007264 | | | 0.44
Nlocal: 8000 ave 8008 max 7993 min
Histogram: 2 0 0 0 0 0 0 0 1 1

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# bulk Cu lattice
variable x index 1
@ -49,25 +49,25 @@ Neighbor list info ...
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 49 49 25
Memory usage per processor = 10.1402 Mbytes
Memory usage per processor = 11.1402 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -453120 0 -426647.73 18704.012
50 779.50001 -439457.02 0 -426560.06 52355.276
100 797.97828 -439764.76 0 -426562.07 51474.74
Loop time of 6.46849 on 4 procs for 100 steps with 128000 atoms
Loop time of 6.60121 on 4 procs for 100 steps with 128000 atoms
Performance: 6.679 ns/day, 3.594 hours/ns, 15.460 timesteps/s
Performance: 6.544 ns/day, 3.667 hours/ns, 15.149 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.581 | 5.5997 | 5.6265 | 0.8 | 86.57
Neigh | 0.65287 | 0.658 | 0.66374 | 0.5 | 10.17
Comm | 0.075706 | 0.11015 | 0.13655 | 7.2 | 1.70
Output | 0.00026488 | 0.00028312 | 0.00029302 | 0.1 | 0.00
Modify | 0.069607 | 0.072407 | 0.074555 | 0.7 | 1.12
Other | | 0.02794 | | | 0.43
Pair | 5.6676 | 5.7011 | 5.7469 | 1.3 | 86.36
Neigh | 0.66423 | 0.67119 | 0.68082 | 0.7 | 10.17
Comm | 0.079367 | 0.13668 | 0.1791 | 10.5 | 2.07
Output | 0.00026989 | 0.00028622 | 0.00031209 | 0.1 | 0.00
Modify | 0.060046 | 0.062203 | 0.065009 | 0.9 | 0.94
Other | | 0.02974 | | | 0.45
Nlocal: 32000 ave 32092 max 31914 min
Histogram: 1 0 0 1 0 1 0 0 0 1

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# 3d Lennard-Jones melt
variable x index 1
@ -50,20 +50,20 @@ Memory usage per processor = 8.21387 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6134356 -5.0197073
100 0.7574531 -5.7585055 0 -4.6223613 0.20726105
Loop time of 2.26309 on 1 procs for 100 steps with 32000 atoms
Loop time of 2.26185 on 1 procs for 100 steps with 32000 atoms
Performance: 19088.920 tau/day, 44.187 timesteps/s
Performance: 19099.377 tau/day, 44.212 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.9341 | 1.9341 | 1.9341 | 0.0 | 85.46
Neigh | 0.2442 | 0.2442 | 0.2442 | 0.0 | 10.79
Comm | 0.024158 | 0.024158 | 0.024158 | 0.0 | 1.07
Output | 0.00011611 | 0.00011611 | 0.00011611 | 0.0 | 0.01
Modify | 0.053222 | 0.053222 | 0.053222 | 0.0 | 2.35
Other | | 0.007258 | | | 0.32
Pair | 1.9328 | 1.9328 | 1.9328 | 0.0 | 85.45
Neigh | 0.2558 | 0.2558 | 0.2558 | 0.0 | 11.31
Comm | 0.024061 | 0.024061 | 0.024061 | 0.0 | 1.06
Output | 0.00012612 | 0.00012612 | 0.00012612 | 0.0 | 0.01
Modify | 0.040887 | 0.040887 | 0.040887 | 0.0 | 1.81
Other | | 0.008214 | | | 0.36
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# 3d Lennard-Jones melt
variable x index 1
@ -50,20 +50,20 @@ Memory usage per processor = 4.09506 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6134356 -5.0197073
100 0.7574531 -5.7585055 0 -4.6223613 0.20726105
Loop time of 0.640733 on 4 procs for 100 steps with 32000 atoms
Loop time of 0.635957 on 4 procs for 100 steps with 32000 atoms
Performance: 67422.779 tau/day, 156.071 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 67929.172 tau/day, 157.243 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.49487 | 0.51733 | 0.5322 | 1.9 | 80.74
Neigh | 0.061131 | 0.063685 | 0.065433 | 0.6 | 9.94
Comm | 0.02457 | 0.042349 | 0.069598 | 8.1 | 6.61
Output | 5.9843e-05 | 6.3181e-05 | 6.6996e-05 | 0.0 | 0.01
Modify | 0.012961 | 0.013863 | 0.014491 | 0.5 | 2.16
Other | | 0.003448 | | | 0.54
Pair | 0.51335 | 0.51822 | 0.52569 | 0.7 | 81.49
Neigh | 0.063695 | 0.064309 | 0.065397 | 0.3 | 10.11
Comm | 0.027525 | 0.03629 | 0.041959 | 3.1 | 5.71
Output | 6.3896e-05 | 6.6698e-05 | 7.081e-05 | 0.0 | 0.01
Modify | 0.012472 | 0.01254 | 0.012618 | 0.1 | 1.97
Other | | 0.004529 | | | 0.71
Nlocal: 8000 ave 8037 max 7964 min
Histogram: 2 0 0 0 0 0 0 0 1 1

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# 3d Lennard-Jones melt
variable x index 1
@ -50,20 +50,20 @@ Memory usage per processor = 8.13678 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6133849 -5.0196788
100 0.75841891 -5.759957 0 -4.6223375 0.20008866
Loop time of 2.57914 on 4 procs for 100 steps with 128000 atoms
Loop time of 2.55762 on 4 procs for 100 steps with 128000 atoms
Performance: 16749.768 tau/day, 38.773 timesteps/s
Performance: 16890.677 tau/day, 39.099 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.042 | 2.1092 | 2.1668 | 3.1 | 81.78
Neigh | 0.23982 | 0.24551 | 0.25233 | 1.0 | 9.52
Comm | 0.067088 | 0.13887 | 0.22681 | 15.7 | 5.38
Output | 0.00013185 | 0.00021666 | 0.00027108 | 0.4 | 0.01
Modify | 0.060348 | 0.071269 | 0.077063 | 2.5 | 2.76
Other | | 0.01403 | | | 0.54
Pair | 2.0583 | 2.0988 | 2.1594 | 2.6 | 82.06
Neigh | 0.24411 | 0.24838 | 0.25585 | 0.9 | 9.71
Comm | 0.066397 | 0.13872 | 0.1863 | 11.9 | 5.42
Output | 0.00012994 | 0.00021023 | 0.00025702 | 0.3 | 0.01
Modify | 0.055533 | 0.058343 | 0.061791 | 1.2 | 2.28
Other | | 0.0132 | | | 0.52
Nlocal: 32000 ave 32060 max 31939 min
Histogram: 1 0 1 0 0 0 0 1 0 1

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# Rhodopsin model
units real
@ -56,6 +56,7 @@ timestep 2.0
run 100
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:316)
G vector (1/distance) = 0.248835
grid = 25 32 32
stencil order = 5
@ -70,41 +71,41 @@ Neighbor list info ...
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 10 13 13
Memory usage per processor = 91.7487 Mbytes
Memory usage per processor = 93.2721 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -25356.2064 KinEng = 21444.8313 Temp = 299.0397
PotEng = -46801.0377 E_bond = 2537.9940 E_angle = 10921.3742
E_dihed = 5211.7865 E_impro = 213.5116 E_vdwl = -2307.8634
E_coul = 207025.8927 E_long = -270403.7333 Press = -142.6035
E_coul = 207025.8927 E_long = -270403.7333 Press = -149.3301
Volume = 307995.0335
---------------- Step 50 ----- CPU = 17.6362 (sec) ----------------
TotEng = -25330.0828 KinEng = 21501.0029 Temp = 299.8230
PotEng = -46831.0857 E_bond = 2471.7004 E_angle = 10836.4975
E_dihed = 5239.6299 E_impro = 227.1218 E_vdwl = -1993.2754
E_coul = 206797.6331 E_long = -270410.3930 Press = 237.6701
Volume = 308031.5639
---------------- Step 100 ----- CPU = 35.9089 (sec) ----------------
TotEng = -25290.7593 KinEng = 21592.0117 Temp = 301.0920
PotEng = -46882.7709 E_bond = 2567.9807 E_angle = 10781.9408
E_dihed = 5198.7432 E_impro = 216.7834 E_vdwl = -1902.4783
E_coul = 206659.2326 E_long = -270404.9733 Press = 6.9960
Volume = 308133.9888
Loop time of 35.9089 on 1 procs for 100 steps with 32000 atoms
---------------- Step 50 ----- CPU = 17.2007 (sec) ----------------
TotEng = -25330.0321 KinEng = 21501.0036 Temp = 299.8230
PotEng = -46831.0357 E_bond = 2471.7033 E_angle = 10836.5108
E_dihed = 5239.6316 E_impro = 227.1219 E_vdwl = -1993.2763
E_coul = 206797.6655 E_long = -270410.3927 Press = 237.6866
Volume = 308031.5640
---------------- Step 100 ----- CPU = 35.0315 (sec) ----------------
TotEng = -25290.7387 KinEng = 21591.9096 Temp = 301.0906
PotEng = -46882.6484 E_bond = 2567.9789 E_angle = 10781.9556
E_dihed = 5198.7493 E_impro = 216.7863 E_vdwl = -1902.6458
E_coul = 206659.5006 E_long = -270404.9733 Press = 6.7898
Volume = 308133.9933
Loop time of 35.0316 on 1 procs for 100 steps with 32000 atoms
Performance: 0.481 ns/day, 49.874 hours/ns, 2.785 timesteps/s
Performance: 0.493 ns/day, 48.655 hours/ns, 2.855 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 25.731 | 25.731 | 25.731 | 0.0 | 71.66
Bond | 1.2771 | 1.2771 | 1.2771 | 0.0 | 3.56
Kspace | 3.2094 | 3.2094 | 3.2094 | 0.0 | 8.94
Neigh | 4.4538 | 4.4538 | 4.4538 | 0.0 | 12.40
Comm | 0.068507 | 0.068507 | 0.068507 | 0.0 | 0.19
Output | 0.00025916 | 0.00025916 | 0.00025916 | 0.0 | 0.00
Modify | 1.1417 | 1.1417 | 1.1417 | 0.0 | 3.18
Other | | 0.027 | | | 0.08
Pair | 25.021 | 25.021 | 25.021 | 0.0 | 71.42
Bond | 1.2834 | 1.2834 | 1.2834 | 0.0 | 3.66
Kspace | 3.2116 | 3.2116 | 3.2116 | 0.0 | 9.17
Neigh | 4.2767 | 4.2767 | 4.2767 | 0.0 | 12.21
Comm | 0.069283 | 0.069283 | 0.069283 | 0.0 | 0.20
Output | 0.00028205 | 0.00028205 | 0.00028205 | 0.0 | 0.00
Modify | 1.14 | 1.14 | 1.14 | 0.0 | 3.25
Other | | 0.02938 | | | 0.08
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
@ -113,9 +114,9 @@ Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20281e+07 ave 1.20281e+07 max 1.20281e+07 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 12028107
Total # of neighbors = 12028098
Ave neighs/atom = 375.878
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:37
Total wall time: 0:00:36

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# Rhodopsin model
units real
@ -56,6 +56,7 @@ timestep 2.0
run 100
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:316)
G vector (1/distance) = 0.248835
grid = 25 32 32
stencil order = 5
@ -70,52 +71,52 @@ Neighbor list info ...
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 10 13 13
Memory usage per processor = 36.629 Mbytes
Memory usage per processor = 37.3604 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -25356.2064 KinEng = 21444.8313 Temp = 299.0397
PotEng = -46801.0377 E_bond = 2537.9940 E_angle = 10921.3742
E_dihed = 5211.7865 E_impro = 213.5116 E_vdwl = -2307.8634
E_coul = 207025.8927 E_long = -270403.7333 Press = -142.6035
E_coul = 207025.8927 E_long = -270403.7333 Press = -149.3301
Volume = 307995.0335
---------------- Step 50 ----- CPU = 4.7461 (sec) ----------------
TotEng = -25330.0828 KinEng = 21501.0029 Temp = 299.8230
PotEng = -46831.0857 E_bond = 2471.7004 E_angle = 10836.4975
E_dihed = 5239.6299 E_impro = 227.1218 E_vdwl = -1993.2754
E_coul = 206797.6331 E_long = -270410.3930 Press = 237.6701
Volume = 308031.5639
---------------- Step 100 ----- CPU = 9.6332 (sec) ----------------
TotEng = -25290.7591 KinEng = 21592.0117 Temp = 301.0920
PotEng = -46882.7708 E_bond = 2567.9807 E_angle = 10781.9408
E_dihed = 5198.7432 E_impro = 216.7834 E_vdwl = -1902.4783
E_coul = 206659.2327 E_long = -270404.9733 Press = 6.9960
Volume = 308133.9888
Loop time of 9.63322 on 4 procs for 100 steps with 32000 atoms
---------------- Step 50 ----- CPU = 4.6056 (sec) ----------------
TotEng = -25330.0321 KinEng = 21501.0036 Temp = 299.8230
PotEng = -46831.0357 E_bond = 2471.7033 E_angle = 10836.5108
E_dihed = 5239.6316 E_impro = 227.1219 E_vdwl = -1993.2763
E_coul = 206797.6655 E_long = -270410.3927 Press = 237.6866
Volume = 308031.5640
---------------- Step 100 ----- CPU = 9.3910 (sec) ----------------
TotEng = -25290.7386 KinEng = 21591.9096 Temp = 301.0906
PotEng = -46882.6482 E_bond = 2567.9789 E_angle = 10781.9556
E_dihed = 5198.7493 E_impro = 216.7863 E_vdwl = -1902.6458
E_coul = 206659.5007 E_long = -270404.9733 Press = 6.7898
Volume = 308133.9933
Loop time of 9.39107 on 4 procs for 100 steps with 32000 atoms
Performance: 1.794 ns/day, 13.379 hours/ns, 10.381 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 1.840 ns/day, 13.043 hours/ns, 10.648 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 6.4364 | 6.5993 | 6.7208 | 4.7 | 68.51
Bond | 0.30755 | 0.32435 | 0.35704 | 3.4 | 3.37
Kspace | 0.92248 | 1.0782 | 1.2597 | 13.0 | 11.19
Neigh | 1.1669 | 1.1672 | 1.1675 | 0.0 | 12.12
Comm | 0.094674 | 0.098065 | 0.10543 | 1.4 | 1.02
Output | 0.00015521 | 0.00016224 | 0.00018215 | 0.1 | 0.00
Modify | 0.32982 | 0.34654 | 0.35365 | 1.6 | 3.60
Other | | 0.01943 | | | 0.20
Pair | 6.2189 | 6.3266 | 6.6072 | 6.5 | 67.37
Bond | 0.30793 | 0.32122 | 0.3414 | 2.4 | 3.42
Kspace | 0.87994 | 1.1644 | 1.2855 | 15.3 | 12.40
Neigh | 1.1358 | 1.136 | 1.1362 | 0.0 | 12.10
Comm | 0.08292 | 0.084935 | 0.087077 | 0.5 | 0.90
Output | 0.00015712 | 0.00016558 | 0.00018501 | 0.1 | 0.00
Modify | 0.33717 | 0.34246 | 0.34794 | 0.7 | 3.65
Other | | 0.01526 | | | 0.16
Nlocal: 8000 ave 8143 max 7933 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Nghost: 22733.5 ave 22769 max 22693 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Neighs: 3.00703e+06 ave 3.0975e+06 max 2.96493e+06 min
Neighs: 3.00702e+06 ave 3.0975e+06 max 2.96492e+06 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Total # of neighbors = 12028107
Total # of neighbors = 12028098
Ave neighs/atom = 375.878
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:10
Total wall time: 0:00:09

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (6 Oct 2016)
# Rhodopsin model
variable x index 1
@ -77,6 +77,7 @@ timestep 2.0
run 100
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:316)
G vector (1/distance) = 0.248593
grid = 48 60 36
stencil order = 5
@ -91,52 +92,52 @@ Neighbor list info ...
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 19 26 13
Memory usage per processor = 95.5339 Mbytes
Memory usage per processor = 96.9597 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -101425.4887 KinEng = 85779.3251 Temp = 299.0304
PotEng = -187204.8138 E_bond = 10151.9760 E_angle = 43685.4968
E_dihed = 20847.1460 E_impro = 854.0463 E_vdwl = -9231.4537
E_coul = 827053.5824 E_long = -1080565.6077 Press = -142.3092
E_coul = 827053.5824 E_long = -1080565.6077 Press = -149.0358
Volume = 1231980.1340
---------------- Step 50 ----- CPU = 18.7806 (sec) ----------------
TotEng = -101320.2677 KinEng = 86003.4837 Temp = 299.8118
PotEng = -187323.7514 E_bond = 9887.1072 E_angle = 43346.7922
E_dihed = 20958.7032 E_impro = 908.4715 E_vdwl = -7973.4457
E_coul = 826141.3831 E_long = -1080592.7629 Press = 238.0161
Volume = 1232126.1855
---------------- Step 100 ----- CPU = 38.3684 (sec) ----------------
TotEng = -101158.1849 KinEng = 86355.6149 Temp = 301.0393
PotEng = -187513.7998 E_bond = 10272.0693 E_angle = 43128.6454
E_dihed = 20793.9759 E_impro = 867.0826 E_vdwl = -7586.7186
E_coul = 825583.7122 E_long = -1080572.5667 Press = 15.2151
Volume = 1232535.8423
Loop time of 38.3684 on 4 procs for 100 steps with 128000 atoms
---------------- Step 50 ----- CPU = 18.1689 (sec) ----------------
TotEng = -101320.0211 KinEng = 86003.4933 Temp = 299.8118
PotEng = -187323.5144 E_bond = 9887.1189 E_angle = 43346.8448
E_dihed = 20958.7108 E_impro = 908.4721 E_vdwl = -7973.4486
E_coul = 826141.5493 E_long = -1080592.7617 Press = 238.0404
Volume = 1232126.1814
---------------- Step 100 ----- CPU = 37.2027 (sec) ----------------
TotEng = -101157.9546 KinEng = 86355.7413 Temp = 301.0398
PotEng = -187513.6959 E_bond = 10272.0456 E_angle = 43128.7018
E_dihed = 20794.0107 E_impro = 867.0928 E_vdwl = -7587.2409
E_coul = 825584.2416 E_long = -1080572.5474 Press = 15.1729
Volume = 1232535.8440
Loop time of 37.2028 on 4 procs for 100 steps with 128000 atoms
Performance: 0.450 ns/day, 53.289 hours/ns, 2.606 timesteps/s
Performance: 0.464 ns/day, 51.671 hours/ns, 2.688 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 26.205 | 26.538 | 26.911 | 5.0 | 69.17
Bond | 1.298 | 1.3125 | 1.3277 | 1.0 | 3.42
Kspace | 3.7099 | 4.0992 | 4.4422 | 13.3 | 10.68
Neigh | 4.6137 | 4.6144 | 4.615 | 0.0 | 12.03
Comm | 0.21398 | 0.21992 | 0.22886 | 1.2 | 0.57
Output | 0.00030518 | 0.00031543 | 0.00033307 | 0.1 | 0.00
Modify | 1.5066 | 1.5232 | 1.5388 | 1.0 | 3.97
Other | | 0.06051 | | | 0.16
Pair | 25.431 | 25.738 | 25.984 | 4.0 | 69.18
Bond | 1.2966 | 1.3131 | 1.3226 | 0.9 | 3.53
Kspace | 3.7563 | 4.0123 | 4.3127 | 10.0 | 10.79
Neigh | 4.3778 | 4.378 | 4.3782 | 0.0 | 11.77
Comm | 0.1903 | 0.19549 | 0.20485 | 1.3 | 0.53
Output | 0.00031805 | 0.00037521 | 0.00039601 | 0.2 | 0.00
Modify | 1.4861 | 1.5051 | 1.5122 | 0.9 | 4.05
Other | | 0.05992 | | | 0.16
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 47957 ave 47957 max 47957 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 1.20281e+07 ave 1.20572e+07 max 1.1999e+07 min
Neighs: 1.20281e+07 ave 1.20572e+07 max 1.19991e+07 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 48112472
Total # of neighbors = 48112540
Ave neighs/atom = 375.879
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:39
Total wall time: 0:00:38

5
doc/.gitignore vendored
View File

@ -1 +1,6 @@
/html
/spelling
/LAMMPS.epub
/LAMMPS.mobi
/Manual.pdf
/Developer.pdf

View File

@ -8,19 +8,21 @@ VENV = $(BUILDDIR)/docenv
TXT2RST = $(VENV)/bin/txt2rst
PYTHON = $(shell which python3)
HAS_PYTHON3 = NO
HAS_VIRTUALENV = NO
ifeq ($(shell which python3 >/dev/null 2>&1; echo $$?), 1)
$(error Python3 was not found! Please check README.md for further instructions)
ifeq ($(shell which python3 >/dev/null 2>&1; echo $$?), 0)
HAS_PYTHON3 = YES
endif
ifeq ($(shell which virtualenv >/dev/null 2>&1; echo $$?), 1)
$(error virtualenv was not found! Please check README.md for further instructions)
ifeq ($(shell which virtualenv >/dev/null 2>&1; echo $$?), 0)
HAS_VIRTUALENV = YES
endif
SOURCES=$(wildcard src/*.txt)
OBJECTS=$(SOURCES:src/%.txt=$(RSTDIR)/%.rst)
.PHONY: help clean-all clean html pdf old venv
.PHONY: help clean-all clean epub html pdf old venv spelling
# ------------------------------------------
@ -30,6 +32,7 @@ help:
@echo " pdf create Manual.pdf and Developer.pdf in this dir"
@echo " old create old-style HTML doc pages in old dir"
@echo " fetch fetch HTML and PDF files from LAMMPS web site"
@echo " epub create ePUB format manual for e-book readers"
@echo " clean remove all intermediate RST files"
@echo " clean-all reset the entire build environment"
@echo " txt2html build txt2html tool"
@ -40,7 +43,11 @@ clean-all:
rm -rf $(BUILDDIR)/* utils/txt2html/txt2html.exe
clean:
rm -rf $(RSTDIR)
rm -rf $(RSTDIR) html
rm -rf spelling
clean-spelling:
rm -rf spelling
html: $(OBJECTS)
@(\
@ -61,6 +68,31 @@ html: $(OBJECTS)
@rm -rf html/USER/*/*.[sg]*
@echo "Build finished. The HTML pages are in doc/html."
spelling: $(OBJECTS) utils/sphinx-config/false_positives.txt
@(\
. $(VENV)/bin/activate ;\
pip install sphinxcontrib-spelling ;\
cp -r src/* $(RSTDIR)/ ;\
cp utils/sphinx-config/false_positives.txt $(RSTDIR)/ ;\
sphinx-build -b spelling -c utils/sphinx-config -d $(BUILDDIR)/doctrees $(RSTDIR) spelling ;\
deactivate ;\
)
@echo "Spell check finished."
epub: $(OBJECTS)
@mkdir -p epub
@rm -f LAMMPS.epub
@cp src/JPG/lammps-logo.png epub/
@(\
. $(VENV)/bin/activate ;\
cp -r src/* $(RSTDIR)/ ;\
sphinx-build -j 8 -b epub -c utils/sphinx-config -d $(BUILDDIR)/doctrees $(RSTDIR) epub ;\
deactivate ;\
)
@mv epub/LAMMPS.epub .
@rm -rf epub
@echo "Build finished. The ePUB manual file is created."
pdf: utils/txt2html/txt2html.exe
@(\
cd src; \
@ -109,6 +141,8 @@ $(RSTDIR)/%.rst : src/%.txt $(TXT2RST)
)
$(VENV):
@if [ "$(HAS_PYTHON3)" == "NO" ] ; then echo "Python3 was not found! Please check README.md for further instructions" 1>&2; exit 1; fi
@if [ "$(HAS_VIRTUALENV)" == "NO" ] ; then echo "virtualenv was not found! Please check README.md for further instructions" 1>&2; exit 1; fi
@( \
virtualenv -p $(PYTHON) $(VENV); \
. $(VENV)/bin/activate; \

View File

@ -1,13 +1,14 @@
LAMMPS Documentation
Depending on how you obtained LAMMPS, this directory has 2 or 3
sub-directories and optionally 2 PDF files:
sub-directories and optionally 2 PDF files and an ePUB file:
src content files for LAMMPS documentation
html HTML version of the LAMMPS manual (see html/Manual.html)
tools tools and settings for building the documentation
Manual.pdf large PDF version of entire manual
Developer.pdf small PDF with info about how LAMMPS is structured
LAMMPS.epub Manual in ePUB format
If you downloaded LAMMPS as a tarball from the web site, all these
directories and files should be included.
@ -49,6 +50,7 @@ make pdf # generate 2 PDF files (Manual.pdf,Developer.pdf)
make old # generate old-style HTML pages in old dir via txt2html
make fetch # fetch HTML doc pages and 2 PDF files from web site
# as a tarball and unpack into html dir and 2 PDFs
make epub # generate LAMMPS.epub in ePUB format using Sphinx
make clean # remove intermediate RST files created by HTML build
make clean-all # remove entire build folder and any cached data
@ -92,5 +94,22 @@ This will install virtualenv from the Python Package Index.
Installing prerequisites for PDF build
[TBA]
----------------
Installing prerequisites for epub build
## ePUB
Same as for HTML. This uses the same tools and configuration
files as the HTML tree.
For converting the generated ePUB file to a mobi format file
(for e-book readers like Kindle, that cannot read ePUB), you
also need to have the 'ebook-convert' tool from the "calibre"
software installed. http://calibre-ebook.com/
You first create the ePUB file with 'make epub' and then do:
ebook-convert LAMMPS.epub LAMMPS.mobi

View File

@ -464,7 +464,7 @@ the angletype option can only be assigned to a "fix style" of "shake",
entirely rigid (e.g. water)
the angletype option enables an additional check when SHAKE constraints
are computed: if a cluster is of size 3 and both bonds in
the cluster are of a bondtype specified by the 2nd paramter of
the cluster are of a bondtype specified by the 2nd parameter of
angletype, then the cluster is SHAKEn with an additional angle
constraint that makes it rigid, using the equilibrium angle appropriate
to the specified angletype
@ -476,7 +476,7 @@ IMPORTANT NOTE: the angletype option has one additional affect, namely
since they will not be SHAKEn but neither will the angle force by computed
for style region, a coeff of INF means + or - infinity (all the way
to the boundary)
an atom can be assigned to multiple constraints, the contraints will be
an atom can be assigned to multiple constraints, the constraints will be
applied in the reverse order they are assigned to that atom
(e.g. each timestep, the last fix assigned to an atom will be applied
to it first, then the next-to-last applied second, etc)
@ -689,7 +689,7 @@ coeffs: types
remainder
no other parameters required
used with "create temp" commmand to initialize velocities of atoms
used with "create temp" command to initialize velocities of atoms
by default, the "create temp" command initializes the velocities of all atoms,
this command limits the initialization to a group of atoms
this command is only in force for the next "create temp" command, any
@ -1263,7 +1263,7 @@ when using constraints with the minimizer, fixes are
applied when atoms move except for the following
fixes associated with temperature control are not allowed
(rescale, hoover/drag, langevin)
the minimizer does not invoke the "fix style shake" contraints on
the minimizer does not invoke the "fix style shake" constraints on
bond lengths
the minimizer does not invoke pressure control or volume control settings
for good convergence, should specify use of smooth nonbond force fields
@ -1566,7 +1566,7 @@ mesh dimensions that are power-of-two are fastest for FFTs, but any sizes
can be used that are supported by native machine libraries
this command is optional - if not used, a default
mesh size will be chosen to satisfy accuracy criterion - if used, the
specifed mesh size will override the default
specified mesh size will override the default
</PRE>
<HR>
<H3>
@ -1788,7 +1788,7 @@ if the style is 2, restart information will be written alternately to files
when the minimizer is invoked this command means create a restart file
at the end of the minimization with the filename filename.timestep.min
a restart file stores atom and force-field information in binary form
allows program to restart from where it left off (see &quot;read restart&quot; commmand)
allows program to restart from where it left off (see &quot;read restart&quot; command)
Default = 0
</PRE>

View File

@ -167,7 +167,7 @@ tool on the small-system data file.</P>
<P>
(6) flow</P>
<P>
2-d flow of Lennard-Jones atoms in a channel using various contraint
2-d flow of Lennard-Jones atoms in a channel using various constraint
options.</P>
<P>
(7) polymer</P>
@ -201,7 +201,7 @@ The tools directory also has a F77 program called setup_chain.f
(compile and link with print.c) which can be used to generate random
initial polymer configurations for bead-spring models like those used
in examples/polymer. It uses an input polymer definition file (see
examples/polymer for two sample def files) that specfies how many
examples/polymer for two sample def files) that specifies how many
chains of what length, a random number seed, etc.</P>
</BODY>
</HTML>

View File

@ -40,7 +40,7 @@ Note: this file is somewhat out-of-date for LAMMPS 99.</P>
<LI>
maxtype = max # of atom types
<LI>
maxbond = max # of bonds to compute on one procesor
maxbond = max # of bonds to compute on one processor
<LI>
maxangle = max # of angles to compute on one processor
<LI>

View File

@ -294,7 +294,7 @@ assign a group of atoms to a particular constraint
use appropriate number of coeffs for a particular style
the constraint itself is defined by the &quot;fix style&quot; command
multiple groups of atoms can be assigned to the same constraint
an atom can be assigned to multiple constraints, the contraints will be
an atom can be assigned to multiple constraints, the constraints will be
applied in the reverse order they are assigned to that atom
(e.g. each timestep, the last fix assigned to an atom will be applied
to it first, then the next-to-last applied second, etc)
@ -477,7 +477,7 @@ coeffs: types
remainder
no other parameters required
used with &quot;create temp&quot; commmand to initialize velocities of atoms
used with &quot;create temp&quot; command to initialize velocities of atoms
by default, the &quot;create temp&quot; command initializes the velocities of all atoms,
this command limits the initialization to a group of atoms
this command is only in force for the next &quot;create temp&quot; command, any
@ -1124,7 +1124,7 @@ mesh dimensions that are power-of-two are fastest for FFTs, but any size
can be used that are supported by native machine libraries
this command is optional - if not used, a default
mesh size will be chosen to satisfy accuracy criterion - if used, the
specifed mesh size will override the default
specified mesh size will override the default
Default = none
</PRE>
@ -1343,7 +1343,7 @@ value of 0 means never create one
program will toggle between 2 filenames as the run progresses
so always have at least one good file even if the program dies in mid-write
restart file stores atom positions and velocities in binary form
allows program to restart from where it left off (see &quot;read restart&quot; commmand)
allows program to restart from where it left off (see &quot;read restart&quot; command)
Default = 0
</PRE>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

View File

@ -0,0 +1,10 @@
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{document}
$$
E = - \frac{\epsilon}{2} \ln \left[ 1 - \left(\frac{r-r0}{\Delta}\right)^2\right]
$$
\end{document}

BIN
doc/src/Eqs/fix_grem.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

9
doc/src/Eqs/fix_grem.tex Normal file
View File

@ -0,0 +1,9 @@
\documentclass[12pt]{article}
\begin{document}
$$
T_{eff} = \lambda + \eta (H - H_0)
$$
\end{document}

BIN
doc/src/Eqs/pair_agni.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{document}
$$
F^C = A \omega_{ij} \qquad \qquad r_{ij} < r_c
$$
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -0,0 +1,12 @@
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
du_{i}^{cond} & = & \kappa_{ij}(\frac{1}{\theta_{i}}-\frac{1}{\theta_{j}})\omega_{ij}^{2} + \alpha_{ij}\omega_{ij}\zeta_{ij}^{q}(\Delta{t})^{-1/2} \\
du_{i}^{mech} & = & -\frac{1}{2}\gamma_{ij}\omega_{ij}^{2}(\frac{\vec{r_{ij}}}{r_{ij}}\bullet\vec{v_{ij}})^{2} -
\frac{\sigma^{2}_{ij}}{4}(\frac{1}{m_{i}}+\frac{1}{m_{j}})\omega_{ij}^{2} -
\frac{1}{2}\sigma_{ij}\omega_{ij}(\frac{\vec{r_{ij}}}{r_{ij}}\bullet\vec{v_{ij}})\zeta_{ij}(\Delta{t})^{-1/2} \\
\end{eqnarray*}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

View File

@ -0,0 +1,11 @@
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
\alpha_{ij}^{2} & = & 2k_{B}\kappa_{ij} \\
\sigma^{2}_{ij} & = & 2\gamma_{ij}k_{B}\Theta_{ij} \\
\Theta_{ij}^{-1} & = & \frac{1}{2}(\frac{1}{\theta_{i}}+\frac{1}{\theta_{j}}) \\
\end{eqnarray*}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -0,0 +1,13 @@
\documentclass[12pt]{article}
\thispagestyle{empty}
\begin{document}
\begin{eqnarray*}
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
V_{ij} & = & e^{-\lambda(r_{ij} -z_0}) \left[ C + f(\rho_{ij}) + f(\rho_{ji}) \right] - A \left( \frac{r_{ij}}{z_0}\right)^{-6} + A \left( \frac{\textrm{cutoff}}{z_0}\right)^{-6} \\
\rho_{ij}^2 = \rho_{ji}^2 & = & x_{ij}^2 + y_{ij}^2 ~\hspace{2cm} (\mathbf{n_i}\equiv\hat \mathbf{z})\\
f(\rho) & = & e^{-(\rho/\delta)^2} \sum_{n=0}^2 C_{2n} \left( \rho/\delta \right) ^{2n}
\end{eqnarray*}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

View File

@ -0,0 +1,10 @@
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
V_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) + c_0 \right]
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

After

Width:  |  Height:  |  Size: 4.2 KiB

View File

@ -3,7 +3,7 @@
\begin{document}
$$
P = \frac{N k_B T}{V} + \frac{\sum_{i}^{N} r_i \bullet f_i}{dV}
P = \frac{N k_B T}{V} + \frac{\sum_{i}^{N'} r_i \bullet f_i}{dV}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

After

Width:  |  Height:  |  Size: 5.3 KiB

View File

@ -4,7 +4,7 @@
$$
P_{IJ} = \frac{\sum_{k}^{N} m_k v_{k_I} v_{k_J}}{V} +
\frac{\sum_{k}^{N} r_{k_I} f_{k_J}}{V}
\frac{\sum_{k}^{N'} r_{k_I} f_{k_J}}{V}
$$
\end{document}

BIN
doc/src/JPG/gran_funnel.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

BIN
doc/src/JPG/gran_mixer.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

BIN
doc/src/JPG/lammps-logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="29 Sep 2016 version">
<META NAME="docnumber" CONTENT="10 Mar 2017 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
<H1></H1>
LAMMPS Documentation :c,h3
29 Sep 2016 version :c,h4
10 Mar 2017 version :c,h4
Version info: :h4
@ -109,7 +109,7 @@ it gives quick access to documentation for all LAMMPS commands.
:caption: User Documentation
:name: userdoc
:includehidden:
Section_intro
Section_start
Section_commands
@ -144,7 +144,7 @@ Indices and tables
* :ref:`genindex`
* :ref:`search`
END_RST -->
<!-- HTML_ONLY -->

Binary file not shown.

View File

@ -117,7 +117,7 @@ PPPM. However, 2-FFT PPPM also requires a slightly larger mesh size to
achieve the same accuracy as 4-FFT PPPM. For problems where the FFT
cost is the performance bottleneck (typically large problems running
on many processors), 2-FFT PPPM may be faster than 4-FFT PPPM.
Staggered PPPM performs calculations using two different meshes, one
shifted slightly with respect to the other. This can reduce force
aliasing errors and increase the accuracy of the method, but also

View File

@ -37,14 +37,14 @@ simulation with all the settings. Rather, the input script is read
one line at a time and each command takes effect when it is read.
Thus this sequence of commands:
timestep 0.5
run 100
timestep 0.5
run 100
run 100 :pre
does something different than this sequence:
run 100
timestep 0.5
run 100
timestep 0.5
run 100 :pre
In the first case, the specified timestep (0.5 fmsec) is used for two
@ -97,7 +97,7 @@ single leading "#" will comment out the entire command.
(3) The line is searched repeatedly for $ characters, which indicate
variables that are replaced with a text string. See an exception in
(6).
(6).
If the $ is followed by curly brackets, then the variable name is the
text inside the curly brackets. If no curly brackets follow the $,
@ -106,7 +106,7 @@ the $. Thus $\{myTemp\} and $x refer to variable names "myTemp" and
"x".
How the variable is converted to a text string depends on what style
of variable it is; see the "variable"_variable doc page for details.
of variable it is; see the "variable"_variable.html doc page for details.
It can be a variable that stores multiple text strings, and return one
of them. The returned text string can be multiple "words" (space
separated) which will then be interpreted as multiple arguments in the
@ -123,7 +123,7 @@ variable X equal (xlo+xhi)/2+sqrt(v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete :pre
can be replaced by
can be replaced by
region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE :pre
@ -281,79 +281,136 @@ the "minimize"_minimize.html command. A parallel tempering
3.4 Commands listed by category :link(cmd_4),h4
This section lists all LAMMPS commands, grouped by category. The
"next section"_#cmd_5 lists the same commands alphabetically. Note
that some style options for some commands are part of specific LAMMPS
packages, which means they cannot be used unless the package was
included when LAMMPS was built. Not all packages are included in a
default LAMMPS build. These dependencies are listed as Restrictions
in the command's documentation.
This section lists core LAMMPS commands, grouped by category.
The "next section"_#cmd_5 lists all commands alphabetically. The
next section also includes (long) lists of style options for entries
that appear in the following categories as a single command (fix,
compute, pair, etc). Commands that are added by user packages are not
included in the categories here, but they are in the next section.
Initialization:
"atom_modify"_atom_modify.html, "atom_style"_atom_style.html,
"boundary"_boundary.html, "dimension"_dimension.html,
"newton"_newton.html, "processors"_processors.html, "units"_units.html
"newton"_newton.html,
"package"_package.html,
"processors"_processors.html,
"suffix"_suffix.html,
"units"_units.html
Atom definition:
Setup simulation box:
"create_atoms"_create_atoms.html, "create_box"_create_box.html,
"lattice"_lattice.html, "read_data"_read_data.html,
"read_dump"_read_dump.html, "read_restart"_read_restart.html,
"region"_region.html, "replicate"_replicate.html
"boundary"_boundary.html,
"box"_box.html,
"change_box"_change_box.html,
"create_box"_create_box.html,
"dimension"_dimension.html,
"lattice"_lattice.html,
"region"_region.html
Setup atoms:
"atom_modify"_atom_modify.html,
"atom_style"_atom_style.html,
"balance"_balance.html,
"create_atoms"_create_atoms.html,
"create_bonds"_create_bonds.html,
"delete_atoms"_delete_atoms.html,
"delete_bonds"_delete_bonds.html,
"displace_atoms"_displace_atoms.html,
"group"_group.html,
"mass"_mass.html,
"molecule"_molecule.html,
"read_data"_read_data.html,
"read_dump"_read_dump.html,
"read_restart"_read_restart.html,
"replicate"_replicate.html,
"set"_set.html,
"velocity"_velocity.html
Force fields:
"angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html,
"bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html,
"dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html,
"angle_coeff"_angle_coeff.html,
"angle_style"_angle_style.html,
"bond_coeff"_bond_coeff.html,
"bond_style"_bond_style.html,
"bond_write"_bond_write.html,
"dielectric"_dielectric.html,
"dihedral_coeff"_dihedral_coeff.html,
"dihedral_style"_dihedral_style.html,
"improper_coeff"_improper_coeff.html,
"improper_style"_improper_style.html,
"kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html,
"pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html,
"pair_style"_pair_style.html, "pair_write"_pair_write.html,
"kspace_modify"_kspace_modify.html,
"kspace_style"_kspace_style.html,
"pair_coeff"_pair_coeff.html,
"pair_modify"_pair_modify.html,
"pair_style"_pair_style.html,
"pair_write"_pair_write.html,
"special_bonds"_special_bonds.html
Settings:
"comm_style"_comm_style.html, "group"_group.html, "mass"_mass.html,
"min_modify"_min_modify.html, "min_style"_min_style.html,
"neigh_modify"_neigh_modify.html, "neighbor"_neighbor.html,
"reset_timestep"_reset_timestep.html, "run_style"_run_style.html,
"set"_set.html, "timestep"_timestep.html, "velocity"_velocity.html
"comm_modify"_comm_modify.html,
"comm_style"_comm_style.html,
"info"_info.html,
"min_modify"_min_modify.html,
"min_style"_min_style.html,
"neigh_modify"_neigh_modify.html,
"neighbor"_neighbor.html,
"partition"_partition.html,
"reset_timestep"_reset_timestep.html,
"run_style"_run_style.html,
"timer"_timer.html,
"timestep"_timestep.html
Fixes:
Operations within timestepping (fixes) and diagnostics (computes):
"fix"_fix.html, "fix_modify"_fix_modify.html, "unfix"_unfix.html
Computes:
"compute"_compute.html, "compute_modify"_compute_modify.html,
"uncompute"_uncompute.html
"compute"_compute.html,
"compute_modify"_compute_modify.html,
"fix"_fix.html,
"fix_modify"_fix_modify.html,
"uncompute"_uncompute.html,
"unfix"_unfix.html
Output:
"dump"_dump.html, "dump image"_dump_image.html,
"dump_modify"_dump_modify.html, "dump movie"_dump_image.html,
"restart"_restart.html, "thermo"_thermo.html,
"thermo_modify"_thermo_modify.html, "thermo_style"_thermo_style.html,
"undump"_undump.html, "write_data"_write_data.html,
"write_dump"_write_dump.html, "write_restart"_write_restart.html
"dump image"_dump_image.html,
"dump movie"_dump_image.html,
"dump"_dump.html,
"dump_modify"_dump_modify.html,
"restart"_restart.html,
"thermo"_thermo.html,
"thermo_modify"_thermo_modify.html,
"thermo_style"_thermo_style.html,
"undump"_undump.html,
"write_coeff"_write_coeff.html,
"write_data"_write_data.html,
"write_dump"_write_dump.html,
"write_restart"_write_restart.html
Actions:
"delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html,
"displace_atoms"_displace_atoms.html, "change_box"_change_box.html,
"minimize"_minimize.html, "neb"_neb.html "prd"_prd.html,
"rerun"_rerun.html, "run"_run.html, "temper"_temper.html
"minimize"_minimize.html,
"neb"_neb.html,
"prd"_prd.html,
"rerun"_rerun.html,
"run"_run.html,
"tad"_tad.html,
"temper"_temper.html
Miscellaneous:
Input script control:
"clear"_clear.html, "echo"_echo.html, "if"_if.html,
"include"_include.html, "jump"_jump.html, "label"_label.html,
"log"_log.html, "next"_next.html, "print"_print.html,
"shell"_shell.html, "variable"_variable.html
"clear"_clear.html,
"echo"_echo.html,
"if"_if.html,
"include"_include.html,
"jump"_jump.html,
"label"_label.html,
"log"_log.html,
"next"_next.html,
"print"_print.html,
"python"_python.html,
"quit"_quit.html,
"shell"_shell.html,
"variable"_variable.html
:line
@ -471,8 +528,11 @@ These are additional commands in USER packages, which can be used if
package"_Section_start.html#start_3.
"dump custom/vtk"_dump_custom_vtk.html,
"dump nc"_dump_nc.html,
"dump nc/mpiio"_dump_nc.html,
"group2ndx"_group2ndx.html,
"ndx2group"_group2ndx.html :tb(c=3,ea=c)
"ndx2group"_group2ndx.html,
"temper/grem"_temper_grem.html :tb(c=3,ea=c)
:line
@ -516,12 +576,14 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
"gcmc"_fix_gcmc.html,
"gld"_fix_gld.html,
"gravity (o)"_fix_gravity.html,
"halt"_fix_halt.html,
"heat"_fix_heat.html,
"indent"_fix_indent.html,
"langevin (k)"_fix_langevin.html,
"lineforce"_fix_lineforce.html,
"momentum"_fix_momentum.html,
"momentum (k)"_fix_momentum.html,
"move"_fix_move.html,
"mscg"_fix_mscg.html,
"msst"_fix_msst.html,
"neb"_fix_neb.html,
"nph (ko)"_fix_nh.html,
@ -572,10 +634,10 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
"rigid/nve (o)"_fix_rigid.html,
"rigid/nvt (o)"_fix_rigid.html,
"rigid/small (o)"_fix_rigid.html,
"rigid/small/nph"_fix_rigid.html,
"rigid/small/npt"_fix_rigid.html,
"rigid/small/nve"_fix_rigid.html,
"rigid/small/nvt"_fix_rigid.html,
"rigid/small/nph (o)"_fix_rigid.html,
"rigid/small/npt (o)"_fix_rigid.html,
"rigid/small/nve (o)"_fix_rigid.html,
"rigid/small/nvt (o)"_fix_rigid.html,
"setforce (k)"_fix_setforce.html,
"shake"_fix_shake.html,
"spring"_fix_spring.html,
@ -599,6 +661,7 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
"viscous"_fix_viscous.html,
"wall/colloid"_fix_wall.html,
"wall/gran"_fix_wall_gran.html,
"wall/gran/region"_fix_wall_gran_region.html,
"wall/harmonic"_fix_wall.html,
"wall/lj1043"_fix_wall.html,
"wall/lj126"_fix_wall.html,
@ -617,6 +680,7 @@ package"_Section_start.html#start_3.
"atc"_fix_atc.html,
"ave/correlate/long"_fix_ave_correlate_long.html,
"colvars"_fix_colvars.html,
"dpd/energy"_fix_dpd_energy.html,
"drude"_fix_drude.html,
"drude/transform/direct"_fix_drude_transform.html,
"drude/transform/reverse"_fix_drude_transform.html,
@ -625,6 +689,7 @@ package"_Section_start.html#start_3.
"eos/table/rx"_fix_eos_table_rx.html,
"flow/gauss"_fix_flow_gauss.html,
"gle"_fix_gle.html,
"grem"_fix_grem.html,
"imd"_fix_imd.html,
"ipi"_fix_ipi.html,
"langevin/drude"_fix_langevin_drude.html,
@ -637,7 +702,10 @@ package"_Section_start.html#start_3.
"meso"_fix_meso.html,
"manifoldforce"_fix_manifoldforce.html,
"meso/stationary"_fix_meso_stationary.html,
"nve/dot"_fix_nve_dot.html,
"nve/dotc/langevin"_fix_nve_dotc_langevin.html,
"nve/manifold/rattle"_fix_nve_manifold_rattle.html,
"nvk"_fix_nvk.html,
"nvt/manifold/rattle"_fix_nvt_manifold_rattle.html,
"nph/eff"_fix_nh_eff.html,
"npt/eff"_fix_nh_eff.html,
@ -703,6 +771,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"erotate/sphere"_compute_erotate_sphere.html,
"erotate/sphere/atom"_compute_erotate_sphere_atom.html,
"event/displace"_compute_event_displace.html,
"global/atom"_compute_global_atom.html,
"group/group"_compute_group_group.html,
"gyration"_compute_gyration.html,
"gyration/chunk"_compute_gyration_chunk.html,
@ -824,6 +893,8 @@ KOKKOS, o = USER-OMP, t = OPT.
"body"_pair_body.html,
"bop"_pair_bop.html,
"born (go)"_pair_born.html,
"born/coul/dsf"_pair_born.html,
"born/coul/dsf/cs"_pair_born.html,
"born/coul/long (go)"_pair_born.html,
"born/coul/long/cs"_pair_born.html,
"born/coul/msm (o)"_pair_born.html,
@ -847,10 +918,10 @@ KOKKOS, o = USER-OMP, t = OPT.
"coul/msm"_pair_coul.html,
"coul/streitz"_pair_coul.html,
"coul/wolf (ko)"_pair_coul.html,
"dpd (o)"_pair_dpd.html,
"dpd/tstat (o)"_pair_dpd.html,
"dpd (go)"_pair_dpd.html,
"dpd/tstat (go)"_pair_dpd.html,
"dsmc"_pair_dsmc.html,
"eam (gkot)"_pair_eam.html,
"eam (gkiot)"_pair_eam.html,
"eam/alloy (gkot)"_pair_eam.html,
"eam/fs (gkot)"_pair_eam.html,
"eim (o)"_pair_eim.html,
@ -896,9 +967,9 @@ KOKKOS, o = USER-OMP, t = OPT.
"lubricate/poly (o)"_pair_lubricate.html,
"lubricateU"_pair_lubricateU.html,
"lubricateU/poly"_pair_lubricateU.html,
"meam (o)"_pair_meam.html,
"meam"_pair_meam.html,
"mie/cut (o)"_pair_mie.html,
"morse (got)"_pair_morse.html,
"morse (gkot)"_pair_morse.html,
"nb3b/harmonic (o)"_pair_nb3b_harmonic.html,
"nm/cut (o)"_pair_nm.html,
"nm/cut/coul/cut (o)"_pair_nm.html,
@ -917,11 +988,13 @@ KOKKOS, o = USER-OMP, t = OPT.
"table (gko)"_pair_table.html,
"tersoff (gkio)"_pair_tersoff.html,
"tersoff/mod (gko)"_pair_tersoff_mod.html,
"tersoff/mod/c (o)"_pair_tersoff_mod.html,
"tersoff/zbl (gko)"_pair_tersoff_zbl.html,
"tip4p/cut (o)"_pair_coul.html,
"tip4p/long (o)"_pair_coul.html,
"tri/lj"_pair_tri_lj.html,
"vashishta (o)"_pair_vashishta.html,
"vashishta (ko)"_pair_vashishta.html,
"vashishta/table (o)"_pair_vashishta.html,
"yukawa (go)"_pair_yukawa.html,
"yukawa/colloid (go)"_pair_yukawa_colloid.html,
"zbl (go)"_pair_zbl.html :tb(c=4,ea=c)
@ -930,6 +1003,7 @@ These are additional pair styles in USER packages, which can be used
if "LAMMPS is built with the appropriate
package"_Section_start.html#start_3.
"agni (o)"_pair_agni.html,
"awpmd/cut"_pair_awpmd.html,
"buck/mdf"_pair_mdf.html,
"coul/cut/soft (o)"_pair_lj_soft.html,
@ -942,6 +1016,7 @@ package"_Section_start.html#start_3.
"eff/cut"_pair_eff.html,
"exp6/rx"_pair_exp6_rx.html,
"gauss/cut"_pair_gauss.html,
"kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html,
"lennard/mdf"_pair_mdf.html,
"list"_pair_list.html,
"lj/charmm/coul/long/soft (o)"_pair_charmm.html,
@ -956,13 +1031,18 @@ package"_Section_start.html#start_3.
"lj/sdk/coul/long (go)"_pair_sdk.html,
"lj/sdk/coul/msm (o)"_pair_sdk.html,
"lj/sf (o)"_pair_lj_sf.html,
"meam/spline"_pair_meam_spline.html,
"meam/spline (o)"_pair_meam_spline.html,
"meam/sw/spline"_pair_meam_sw_spline.html,
"mgpt"_pair_mgpt.html,
"morse/smooth/linear"_pair_morse.html,
"morse/soft"_pair_morse.html,
"multi/lucy"_pair_multi_lucy.html,
"multi/lucy/rx"_pair_multi_lucy_rx.html,
"oxdna/coaxstk"_pair_oxdna.html,
"oxdna/excv"_pair_oxdna.html,
"oxdna/hbond"_pair_oxdna.html,
"oxdna/stk"_pair_oxdna.html,
"oxdna/xstk"_pair_oxdna.html,
"quip"_pair_quip.html,
"reax/c (k)"_pair_reax_c.html,
"smd/hertz"_pair_smd_hertz.html,
@ -997,7 +1077,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"none"_bond_none.html,
"zero"_bond_zero.html,
"hybrid"_bond_hybrid.html,
"class2 (o)"_bond_class2.html,
"class2 (ko)"_bond_class2.html,
"fene (iko)"_bond_fene.html,
"fene/expand (o)"_bond_fene_expand.html,
"harmonic (ko)"_bond_harmonic.html,
@ -1011,7 +1091,8 @@ if "LAMMPS is built with the appropriate
package"_Section_start.html#start_3.
"harmonic/shift (o)"_bond_harmonic_shift.html,
"harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html :tb(c=4,ea=c)
"harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html,
"oxdna/fene"_bond_oxdna.html :tb(c=4,ea=c)
:line
@ -1029,7 +1110,7 @@ USER-OMP, t = OPT.
"zero"_angle_zero.html,
"hybrid"_angle_hybrid.html,
"charmm (ko)"_angle_charmm.html,
"class2 (o)"_angle_class2.html,
"class2 (ko)"_angle_class2.html,
"cosine (o)"_angle_cosine.html,
"cosine/delta (o)"_angle_cosine_delta.html,
"cosine/periodic (o)"_angle_cosine_periodic.html,
@ -1065,7 +1146,7 @@ USER-OMP, t = OPT.
"zero"_dihedral_zero.html,
"hybrid"_dihedral_hybrid.html,
"charmm (ko)"_dihedral_charmm.html,
"class2 (o)"_dihedral_class2.html,
"class2 (ko)"_dihedral_class2.html,
"harmonic (io)"_dihedral_harmonic.html,
"helix (o)"_dihedral_helix.html,
"multi/harmonic (o)"_dihedral_multi_harmonic.html,
@ -1097,7 +1178,7 @@ USER-OMP, t = OPT.
"none"_improper_none.html,
"zero"_improper_zero.html,
"hybrid"_improper_hybrid.html,
"class2 (o)"_improper_class2.html,
"class2 (ko)"_improper_class2.html,
"cvff (io)"_improper_cvff.html,
"harmonic (ko)"_improper_harmonic.html,
"umbrella (o)"_improper_umbrella.html :tb(c=4,ea=c)

View File

@ -22,7 +22,7 @@ either conceptually, or as printed out by the program.
12.1 Common problems :link(err_1),h4
If two LAMMPS runs do not produce the same answer on different
If two LAMMPS runs do not produce the exact same answer on different
machines or different numbers of processors, this is typically not a
bug. In theory you should get identical answers on any number of
processors and on any machine. In practice, numerical round-off can
@ -55,12 +55,13 @@ LAMMPS errors are detected at setup time; others like a bond
stretching too far may not occur until the middle of a run.
LAMMPS tries to flag errors and print informative error messages so
you can fix the problem. Of course, LAMMPS cannot figure out your
physics or numerical mistakes, like choosing too big a timestep,
specifying erroneous force field coefficients, or putting 2 atoms on
top of each other! If you run into errors that LAMMPS doesn't catch
that you think it should flag, please send an email to the
"developers"_http://lammps.sandia.gov/authors.html.
you can fix the problem. For most errors it will also print the last
input script command that it was processing. Of course, LAMMPS cannot
figure out your physics or numerical mistakes, like choosing too big a
timestep, specifying erroneous force field coefficients, or putting 2
atoms on top of each other! If you run into errors that LAMMPS
doesn't catch that you think it should flag, please send an email to
the "developers"_http://lammps.sandia.gov/authors.html.
If you get an error message about an invalid command in your input
script, you can determine what command is causing the problem by
@ -79,12 +80,24 @@ order. If you mess this up, LAMMPS will often flag the error, but it
may also simply read a bogus argument and assign a value that is
valid, but not what you wanted. E.g. trying to read the string "abc"
as an integer value of 0. Careful reading of the associated doc page
for the command should allow you to fix these problems. Note that
some commands allow for variables to be specified in place of numeric
constants so that the value can be evaluated and change over the
course of a run. This is typically done with the syntax {v_name} for
a parameter, where name is the name of the variable. This is only
allowed if the command documentation says it is.
for the command should allow you to fix these problems. In most cases,
where LAMMPS expects to read a number, either integer or floating point,
it performs a stringent test on whether the provided input actually
is an integer or floating-point number, respectively, and reject the
input with an error message (for instance, when an integer is required,
but a floating-point number 1.0 is provided):
ERROR: Expected integer parameter in input script or data file :pre
Some commands allow for using variable references in place of numeric
constants so that the value can be evaluated and may change over the
course of a run. This is typically done with the syntax {v_name} for a
parameter, where name is the name of the variable. On the other hand,
immediate variable expansion with the syntax ${name} is performed while
reading the input and before parsing commands,
NOTE: Using a variable reference (i.e. {v_name}) is only allowed if
the documentation of the corresponding command explicitly says it is.
Generally, LAMMPS will print a message to the screen and logfile and
exit gracefully when it encounters a fatal error. Sometimes it will
@ -159,7 +172,7 @@ As a last resort, you can send an email directly to the
These are two alphabetic lists of the "ERROR"_#error and
"WARNING"_#warn messages LAMMPS prints out and the reason why. If the
explanation here is not sufficient, the documentation for the
offending command may help.
offending command may help.
Error and warning messages also list the source file and line number
where the error was generated. For example, this message
@ -561,11 +574,11 @@ group of atoms correctly. :dd
{Bad quadratic solve for particle/line collision} :dt
This is an internal error. It should nornally not occur. :dd
This is an internal error. It should normally not occur. :dd
{Bad quadratic solve for particle/tri collision} :dt
This is an internal error. It should nornally not occur. :dd
This is an internal error. It should normally not occur. :dd
{Bad real space Coulomb cutoff in fix tune/kspace} :dt
@ -899,7 +912,7 @@ Atoms can not be added afterwards to this fix option. :dd
{Cannot append atoms to a triclinic box} :dt
The simulation box must be defined with edges alligned with the
The simulation box must be defined with edges aligned with the
Cartesian axes. :dd
{Cannot balance in z dimension for 2d simulation} :dt
@ -979,7 +992,7 @@ file. :dd
LAMMPS failed to compute an initial guess for the PPPM_disp g_ewald_6
factor that partitions the computation between real space and k-space
for Disptersion interactions. :dd
for Dispersion interactions. :dd
{Cannot create an atom map unless atoms have IDs} :dt
@ -1314,7 +1327,7 @@ Self-explanatory. :dd
This file is created when you use some LAMMPS features, to indicate
what paper you should cite on behalf of those who implemented
the feature. Check that you have write priveleges into the directory
the feature. Check that you have write privileges into the directory
you are running in. :dd
{Cannot open log.lammps for writing} :dt
@ -1992,7 +2005,7 @@ Self-explanatory. :dd
{Cannot use fix reax/bonds without pair_style reax} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Cannot use fix rigid npt/nph and fix deform on same component of stress tensor} :dt
@ -2075,7 +2088,7 @@ Self-explanatory. :dd
{Cannot use lines with fix srd unless overlap is set} :dt
This is because line segements are connected to each other. :dd
This is because line segments are connected to each other. :dd
{Cannot use multiple fix wall commands with pair brownian} :dt
@ -2118,7 +2131,7 @@ Self-explanatory. :dd
{Cannot use newton pair with born/gpu pair style} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Cannot use newton pair with buck/coul/cut/gpu pair style} :dt
@ -2278,7 +2291,7 @@ Self-explanatory. :dd
{Cannot use newton pair with zbl/gpu pair style} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Cannot use non-zero forces in an energy minimization} :dt
@ -2628,11 +2641,11 @@ uses a pairwise neighbor list. :dd
{Compute chunk/atom bin/cylinder radius is too large for periodic box} :dt
Radius cannot be bigger than 1/2 of a non-axis periodic dimention. :dd
Radius cannot be bigger than 1/2 of a non-axis periodic dimension. :dd
{Compute chunk/atom bin/sphere radius is too large for periodic box} :dt
Radius cannot be bigger than 1/2 of any periodic dimention. :dd
Radius cannot be bigger than 1/2 of any periodic dimension. :dd
{Compute chunk/atom compute array is accessed out-of-range} :dt
@ -2693,15 +2706,15 @@ It will only store IDs if its compress option is enabled. :dd
{Compute chunk/atom stores no coord1 for compute property/chunk} :dt
Only certain binning options for comptue chunk/atom store coordinates. :dd
Only certain binning options for compute chunk/atom store coordinates. :dd
{Compute chunk/atom stores no coord2 for compute property/chunk} :dt
Only certain binning options for comptue chunk/atom store coordinates. :dd
Only certain binning options for compute chunk/atom store coordinates. :dd
{Compute chunk/atom stores no coord3 for compute property/chunk} :dt
Only certain binning options for comptue chunk/atom store coordinates. :dd
Only certain binning options for compute chunk/atom store coordinates. :dd
{Compute chunk/atom variable is not atom-style variable} :dt
@ -2722,11 +2735,11 @@ is used to find clusters. :dd
{Compute cna/atom cutoff is longer than pairwise cutoff} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Compute cna/atom requires a pair style be defined} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Compute com/chunk does not use chunk/atom compute} :dt
@ -2734,7 +2747,7 @@ The style of the specified compute is not chunk/atom. :dd
{Compute contact/atom requires a pair style be defined} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Compute contact/atom requires atom style sphere} :dt
@ -2747,7 +2760,7 @@ since those atoms are not in the neighbor list. :dd
{Compute coord/atom requires a pair style be defined} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Compute damage/atom requires peridynamic potential} :dt
@ -2777,7 +2790,7 @@ Self-explanatory. :dd
{Compute erotate/asphere requires extended particles} :dt
This compute cannot be used with point paritlces. :dd
This compute cannot be used with point particles. :dd
{Compute erotate/rigid with non-rigid fix-ID} :dt
@ -2822,7 +2835,7 @@ Cannot compute order parameter beyond cutoff. :dd
{Compute hexorder/atom requires a pair style be defined} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Compute improper/local used when impropers are not allowed} :dt
@ -2868,11 +2881,11 @@ Cannot compute order parameter beyond cutoff. :dd
{Compute orientorder/atom requires a pair style be defined} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Compute pair must use group all} :dt
Pair styles accumlate energy on all atoms. :dd
Pair styles accumulate energy on all atoms. :dd
{Compute pe must use group all} :dt
@ -2922,7 +2935,7 @@ The style of the specified compute is not chunk/atom. :dd
{Compute property/local cannot use these inputs together} :dt
Only inputs that generate the same number of datums can be used
togther. E.g. bond and angle quantities cannot be mixed. :dd
together. E.g. bond and angle quantities cannot be mixed. :dd
{Compute property/local does not (yet) work with atom_style template} :dt
@ -3066,7 +3079,7 @@ Self-explanatory. :dd
{Compute temp/asphere requires extended particles} :dt
This compute cannot be used with point paritlces. :dd
This compute cannot be used with point particles. :dd
{Compute temp/body requires atom style body} :dt
@ -3511,12 +3524,12 @@ path and name are correct. :dd
{Could not process Python file} :dt
The Python code in the specified file was not run sucessfully by
The Python code in the specified file was not run successfully by
Python, probably due to errors in the Python code. :dd
{Could not process Python string} :dt
The Python code in the here string was not run sucessfully by Python,
The Python code in the here string was not run successfully by Python,
probably due to errors in the Python code. :dd
{Coulomb PPPMDisp order has been reduced below minorder} :dt
@ -3625,7 +3638,7 @@ Self-explanatory. :dd
{Cutoffs missing in pair_style buck/long/coul/long} :dt
Self-exlanatory. :dd
Self-explanatory. :dd
{Cutoffs missing in pair_style lj/long/coul/long} :dt
@ -4372,7 +4385,7 @@ Self-explanatory. :dd
{Fix ave/chunk does not use chunk/atom compute} :dt
The specified conpute is not for a compute chunk/atom command. :dd
The specified compute is not for a compute chunk/atom command. :dd
{Fix ave/chunk fix does not calculate a per-atom array} :dt
@ -4604,11 +4617,11 @@ An index for the array is out of bounds. :dd
{Fix ave/time compute does not calculate a scalar} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Fix ave/time compute does not calculate a vector} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Fix ave/time compute does not calculate an array} :dt
@ -4957,7 +4970,7 @@ Self-explanatory. :dd
{Fix langevin angmom requires extended particles} :dt
This fix option cannot be used with point paritlces. :dd
This fix option cannot be used with point particles. :dd
{Fix langevin omega is not yet implemented with kokkos} :dt
@ -6158,7 +6171,7 @@ map command will force an atom map to be created. :dd
{Initial temperatures not all set in fix ttm} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Input line quote not followed by whitespace} :dt
@ -6186,7 +6199,7 @@ Eigensolve for rigid body was not sufficiently accurate. :dd
{Insufficient Jacobi rotations for triangle} :dt
The calculation of the intertia tensor of the triangle failed. This
The calculation of the inertia tensor of the triangle failed. This
should not happen if it is a reasonably shaped triangle. :dd
{Insufficient memory on accelerator} :dt
@ -6450,15 +6463,15 @@ Self-explanatory. :dd
{Invalid attribute in dump custom command} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Invalid attribute in dump local command} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Invalid attribute in dump modify command} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Invalid basis setting in create_atoms command} :dt
@ -6724,7 +6737,7 @@ or cause multiple files to be written. :dd
Filenames used with the dump xyz style cannot be binary or cause files
to be written by each processor. :dd
{Invalid dump_modify threshhold operator} :dt
{Invalid dump_modify threshold operator} :dt
Operator keyword used for threshold specification in not recognized. :dd
@ -6738,7 +6751,7 @@ The fix is not recognized. :dd
{Invalid fix ave/time off column} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Invalid fix box/relax command for a 2d simulation} :dt
@ -7300,7 +7313,7 @@ Self-explanatory. Check the input script or data file. :dd
{LJ6 off not supported in pair_style buck/long/coul/long} :dt
Self-exlanatory. :dd
Self-explanatory. :dd
{Label wasn't found in input script} :dt
@ -7348,7 +7361,7 @@ This should not occur. Report the problem to the developers. :dd
Lost atoms are checked for each time thermo output is done. See the
thermo_modify lost command for options. Lost atoms usually indicate
bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before
box, or moved further than one processor's sub-domain away before
reneighboring. :dd
{MEAM library error %d} :dt
@ -7513,7 +7526,7 @@ Self-explanatory. :dd
{Molecule template ID for create_atoms does not exist} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Molecule template ID for fix deposit does not exist} :dt
@ -7539,7 +7552,7 @@ Self-explanatory. :dd
Self-explanatory. :dd
{Molecule toplogy/atom exceeds system topology/atom} :dt
{Molecule topology/atom exceeds system topology/atom} :dt
The number of bonds, angles, etc per-atom in the molecule exceeds the
system setting. See the create_box command for how to specify these
@ -7779,7 +7792,7 @@ Self-explanatory. :dd
{Must use variable energy with fix addforce} :dt
Must define an energy vartiable when applyting a dynamic
Must define an energy variable when applying a dynamic
force during minimization. :dd
{Must use variable energy with fix efield} :dt
@ -8029,7 +8042,7 @@ Self-explanatory. :dd
{Non digit character between brackets in variable} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Non integer # of swaps in temper command} :dt
@ -8116,11 +8129,11 @@ boundary of a processor's sub-domain has moved more than 1/2 the
rebuilt and atoms being migrated to new processors. This also means
you may be missing pairwise interactions that need to be computed.
The solution is to change the re-neighboring criteria via the
"neigh_modify"_neigh_modify command. The safest settings are "delay 0
every 1 check yes". Second, it may mean that an atom has moved far
outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too
large a timestep, etc. :dd
"neigh_modify"_neigh_modify.html command. The safest settings are
"delay 0 every 1 check yes". Second, it may mean that an atom has
moved far outside a processor's sub-domain or even the entire
simulation box. This indicates bad physics, e.g. due to highly
overlapping atoms, too large a timestep, etc. :dd
{Out of range atoms - cannot compute PPPM} :dt
@ -8132,11 +8145,11 @@ boundary of a processor's sub-domain has moved more than 1/2 the
rebuilt and atoms being migrated to new processors. This also means
you may be missing pairwise interactions that need to be computed.
The solution is to change the re-neighboring criteria via the
"neigh_modify"_neigh_modify command. The safest settings are "delay 0
every 1 check yes". Second, it may mean that an atom has moved far
outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too
large a timestep, etc. :dd
"neigh_modify"_neigh_modify.html command. The safest settings are
"delay 0 every 1 check yes". Second, it may mean that an atom has
moved far outside a processor's sub-domain or even the entire
simulation box. This indicates bad physics, e.g. due to highly
overlapping atoms, too large a timestep, etc. :dd
{Out of range atoms - cannot compute PPPMDisp} :dt
@ -8148,11 +8161,11 @@ boundary of a processor's sub-domain has moved more than 1/2 the
rebuilt and atoms being migrated to new processors. This also means
you may be missing pairwise interactions that need to be computed.
The solution is to change the re-neighboring criteria via the
"neigh_modify"_neigh_modify command. The safest settings are "delay 0
every 1 check yes". Second, it may mean that an atom has moved far
outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too
large a timestep, etc. :dd
"neigh_modify"_neigh_modify.html command. The safest settings are
"delay 0 every 1 check yes". Second, it may mean that an atom has
moved far outside a processor's sub-domain or even the entire
simulation box. This indicates bad physics, e.g. due to highly
overlapping atoms, too large a timestep, etc. :dd
{Overflow of allocated fix vector storage} :dt
@ -8650,7 +8663,7 @@ not be invoked by bond_style quartic. :dd
{Pair style does not support compute group/group} :dt
The pair_style does not have a single() function, so it cannot be
invokded by the compute group/group command. :dd
invoked by the compute group/group command. :dd
{Pair style does not support compute pair/local} :dt
@ -8935,11 +8948,11 @@ Self-explanatory. :dd
{Pair yukawa/colloid requires atom style sphere} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Pair yukawa/colloid requires atoms with same type have same radius} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Pair yukawa/colloid/gpu requires atom style sphere} :dt
@ -9153,7 +9166,7 @@ Self-explanatory. :dd
{Python function evaluation failed} :dt
The Python function did not run succesfully and/or did not return a
The Python function did not run successfully and/or did not return a
value (if it is supposed to return a value). This is probably due to
some error condition in the function. :dd
@ -10012,7 +10025,7 @@ make sense in between runs. :dd
{Threshhold for an atom property that isn't allocated} :dt
A dump threshhold has been requested on a quantity that is
A dump threshold has been requested on a quantity that is
not defined by the atom style used in this simulation. :dd
{Timestep must be >= 0} :dt
@ -10074,7 +10087,7 @@ to a large size. :dd
{Too many atom triplets for pair bop} :dt
The number of three atom groups for angle determinations exceeds the
expected number. Check your atomic structrure to ensure that it is
expected number. Check your atomic structure to ensure that it is
realistic. :dd
{Too many atoms for dump dcd} :dt
@ -10142,7 +10155,7 @@ to a large size. :dd
{Too many timesteps} :dt
The cummulative timesteps must fit in a 64-bit integer. :dd
The cumulative timesteps must fit in a 64-bit integer. :dd
{Too many timesteps for NEB} :dt
@ -10641,7 +10654,7 @@ Only atom-style variables can be used. :dd
{Variable for region cylinder is invalid style} :dt
Only equal-style varaibles are allowed. :dd
Only equal-style variables are allowed. :dd
{Variable for region is invalid style} :dt
@ -10653,7 +10666,7 @@ Self-explanatory. :dd
{Variable for region sphere is invalid style} :dt
Only equal-style varaibles are allowed. :dd
Only equal-style variables are allowed. :dd
{Variable for restart is invalid style} :dt
@ -10694,7 +10707,7 @@ Self-explanatory. :dd
{Variable has circular dependency} :dt
A circular dependency is when variable "a" in used by variable "b" and
variable "b" is also used by varaible "a". Circular dependencies with
variable "b" is also used by variable "a". Circular dependencies with
longer chains of dependence are also not allowed. :dd
{Variable name between brackets must be alphanumeric or underscore characters} :dt
@ -10783,7 +10796,7 @@ Self-explanatory. :dd
{Variable name for fix deform does not exist} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Variable name for fix efield does not exist} :dt
@ -11070,7 +11083,7 @@ for a dihedral) and adding a small amount of stretch. :dd
{Both groups in compute group/group have a net charge; the Kspace boundary correction to energy will be non-zero} :dt
Self-explantory. :dd
Self-explanatory. :dd
{Calling write_dump before a full system init.} :dt
@ -11401,7 +11414,7 @@ The command options you have used caused atoms to be lost. :dd
Lost atoms are checked for each time thermo output is done. See the
thermo_modify lost command for options. Lost atoms usually indicate
bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before
box, or moved further than one processor's sub-domain away before
reneighboring. :dd
{MSM mesh too small, increasing to 2 points in each direction} :dt
@ -11439,7 +11452,7 @@ i.e. the first molecule in the template. :dd
{Molecule template for fix shake has multiple molecules} :dt
The fix shake command will only recoginze molecules of a single
The fix shake command will only recognize molecules of a single
type, i.e. the first molecule in the template. :dd
{More than one compute centro/atom} :dt
@ -11524,7 +11537,7 @@ neigh_modify exclude command. :dd
If a thermo_style command is used after a thermo_modify command, the
settings changed by the thermo_modify command will be reset to their
default values. This is because the thermo_modify commmand acts on
default values. This is because the thermo_modify command acts on
the currently defined thermo style, and a thermo_style command creates
a new style. :dd
@ -11576,7 +11589,7 @@ This may not be what you intended. :dd
{One or more dynamic groups may not be updated at correct point in timestep} :dt
If there are other fixes that act immediately after the intitial stage
If there are other fixes that act immediately after the initial stage
of time integration within a timestep (i.e. after atoms move), then
the command that sets up the dynamic group should appear after those
fixes. This will insure that dynamic group assignments are made
@ -11873,7 +11886,7 @@ Self-explanatory. :dd
{Using largest cutoff for buck/long/coul/long} :dt
Self-exlanatory. :dd
Self-explanatory. :dd
{Using largest cutoff for lj/long/coul/long} :dt

View File

@ -54,30 +54,30 @@ accelerate: run with various acceleration options (OpenMP, GPU, Phi)
balance: dynamic load balancing, 2d system
body: body particles, 2d system
colloid: big colloid particles in a small particle solvent, 2d system
comb: models using the COMB potential
comb: models using the COMB potential
coreshell: core/shell model using CORESHELL package
crack: crack propagation in a 2d solid
crack: crack propagation in a 2d solid
deposit: deposit atoms and molecules on a surface
dipole: point dipolar particles, 2d system
dreiding: methanol via Dreiding FF
eim: NaCl using the EIM potential
ellipse: ellipsoidal particles in spherical solvent, 2d system
flow: Couette and Poiseuille flow in a 2d channel
flow: Couette and Poiseuille flow in a 2d channel
friction: frictional contact of spherical asperities between 2d surfaces
hugoniostat: Hugoniostat shock dynamics
indent: spherical indenter into a 2d solid
indent: spherical indenter into a 2d solid
kim: use of potentials in Knowledge Base for Interatomic Models (KIM)
meam: MEAM test for SiC and shear (same as shear examples)
melt: rapid melt of 3d LJ system
meam: MEAM test for SiC and shear (same as shear examples)
melt: rapid melt of 3d LJ system
micelle: self-assembly of small lipid-like molecules into 2d bilayers
min: energy minimization of 2d LJ melt
msst: MSST shock dynamics
min: energy minimization of 2d LJ melt
msst: MSST shock dynamics
nb3b: use of nonbonded 3-body harmonic pair style
neb: nudged elastic band (NEB) calculation for barrier finding
nemd: non-equilibrium MD of 2d sheared system
neb: nudged elastic band (NEB) calculation for barrier finding
nemd: non-equilibrium MD of 2d sheared system
obstacle: flow around two voids in a 2d channel
peptide: dynamics of a small solvated peptide chain (5-mer)
peri: Peridynamic model of cylinder impacted by indenter
peri: Peridynamic model of cylinder impacted by indenter
pour: pouring of granular particles into a 3d box, then chute flow
prd: parallel replica dynamics of vacancy diffusion in bulk Si
python: using embedded Python in a LAMMPS input script
@ -120,7 +120,7 @@ browser.
Uppercase directories :h4
ASPHERE: various aspherical particle models, using ellipsoids, rigid bodies, line/triangle particles, etc
COUPLE: examples of how to use LAMMPS as a library
COUPLE: examples of how to use LAMMPS as a library
DIFFUSE: compute diffusion coefficients via several methods
ELASTIC: compute elastic constants at zero temperature
ELASTIC_T: compute elastic constants at finite temperature

View File

@ -37,7 +37,7 @@ pitfalls or alternatives.
Please see some of the closed issues for examples of how to
suggest code enhancements, submit proposed changes, or report
elated issues and how they are resoved.
possible bugs and how they are resolved.
As an alternative to using GitHub, you may e-mail the
"core developers"_http://lammps.sandia.gov/authors.html or send
@ -71,7 +71,7 @@ a parallel framework similar to LAMMPS. Most notably, these have
included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF -
and the associated charge-equilibration routines needed for ReaxFF.
The "History link"_http://lammps.sandia.gov/history.html on the
The "History link"_http://lammps.sandia.gov/history.html on the
LAMMPS WWW page gives a timeline of features added to the
C++ open-source version of LAMMPS over the last several years.
@ -80,7 +80,7 @@ site"_lws, except for Warp & GranFlow which were primarily used
internally. A brief listing of their features is given here.
LAMMPS 2001
F90 + MPI
dynamic memory
spatial-decomposition parallelism
@ -96,7 +96,7 @@ LAMMPS 2001
user-defined diagnostics :ul
LAMMPS 99
F77 + MPI
static memory allocation
spatial-decomposition parallelism

View File

@ -4,7 +4,7 @@
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
:line
6. How-to discussions :h3
@ -68,7 +68,7 @@ Look at the {in.chain} input script provided in the {bench} directory
of the LAMMPS distribution to see the original script that these 2
scripts are based on. If that script had the line
restart 50 tmp.restart :pre
restart 50 tmp.restart :pre
added to it, it would produce 2 binary restart files (tmp.restart.50
and tmp.restart.100) as it ran.
@ -76,17 +76,17 @@ and tmp.restart.100) as it ran.
This script could be used to read the 1st restart file and re-run the
last 50 timesteps:
read_restart tmp.restart.50 :pre
read_restart tmp.restart.50 :pre
neighbor 0.4 bin
neigh_modify every 1 delay 1 :pre
neighbor 0.4 bin
neigh_modify every 1 delay 1 :pre
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297 :pre
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297 :pre
timestep 0.012 :pre
timestep 0.012 :pre
run 50 :pre
run 50 :pre
Note that the following commands do not need to be repeated because
their settings are included in the restart file: {units, atom_style,
@ -107,25 +107,25 @@ lmp_g++ -r tmp.restart.50 tmp.restart.data :pre
Then, this script could be used to re-run the last 50 steps:
units lj
atom_style bond
pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
units lj
atom_style bond
pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
special_bonds 0.0 1.0 1.0 :pre
read_data tmp.restart.data :pre
read_data tmp.restart.data :pre
neighbor 0.4 bin
neigh_modify every 1 delay 1 :pre
neighbor 0.4 bin
neigh_modify every 1 delay 1 :pre
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297 :pre
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297 :pre
timestep 0.012 :pre
timestep 0.012 :pre
reset_timestep 50
run 50 :pre
reset_timestep 50
run 50 :pre
Note that nearly all the settings specified in the original {in.chain}
script must be repeated, except the {pair_coeff} and {bond_coeff}
@ -522,7 +522,7 @@ H mass = 1.008
O charge = -1.040
H charge = 0.520
r0 of OH bond = 0.9572
theta of HOH angle = 104.52
theta of HOH angle = 104.52
OM distance = 0.15
LJ epsilon of O-O = 0.1550
LJ sigma of O-O = 3.1536
@ -573,7 +573,7 @@ LJ epsilon of O-O = 0.16275
LJ sigma of O-O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0 :all(b),p
Note that the when using the TIP4P pair style, the neighobr list
Note that the when using the TIP4P pair style, the neighbor list
cutoff for Coulomb interactions is effectively extended by a distance
2 * (OM distance), to account for the offset distance of the
fictitious charges on O atoms in water molecules. Thus it is
@ -618,7 +618,7 @@ any of the parameters above, though it becomes a different model in
that mode of usage.
The SPC/E (extended) water model is the same, except
the partial charge assignemnts change:
the partial charge assignments change:
O charge = -0.8476
H charge = 0.4238 :all(b),p
@ -629,7 +629,7 @@ the SPC and SPC/E models.
Wikipedia also has a nice article on "water
models"_http://en.wikipedia.org/wiki/Water_model.
:line
:line
6.10 Coupling LAMMPS to other codes :link(howto_10),h4
@ -729,7 +729,7 @@ LAMMPS and half to the other code and run both codes simultaneously
before syncing them up periodically. Or it might instantiate multiple
instances of LAMMPS to perform different calculations.
:line
:line
6.11 Visualizing LAMMPS snapshots :link(howto_11),h4
@ -832,7 +832,7 @@ rotation of [A], [B], and [C] and can be computed as follows:
where A = | [A] | indicates the scalar length of [A]. The hat symbol (^)
indicates the corresponding unit vector. {beta} and {gamma} are angles
between the vectors described below. Note that by construction,
between the vectors described below. Note that by construction,
[a], [b], and [c] have strictly positive x, y, and z components, respectively.
If it should happen that
[A], [B], and [C] form a left-handed basis, then the above equations
@ -841,17 +841,17 @@ to first apply an inversion. This can be achieved
by interchanging two basis vectors or by changing the sign of one of them.
For consistency, the same rotation/inversion applied to the basis vectors
must also be applied to atom positions, velocities,
must also be applied to atom positions, velocities,
and any other vector quantities.
This can be conveniently achieved by first converting to
This can be conveniently achieved by first converting to
fractional coordinates in the
old basis and then converting to distance coordinates in the new basis.
The transformation is given by the following equation:
:c,image(Eqs/rotate.jpg)
where {V} is the volume of the box, [X] is the original vector quantity and
[x] is the vector in the LAMMPS basis.
where {V} is the volume of the box, [X] is the original vector quantity and
[x] is the vector in the LAMMPS basis.
There is no requirement that a triclinic box be periodic in any
dimension, though it typically should be in at least the 2nd dimension
@ -863,7 +863,7 @@ boundary conditions in specific dimensions. See the command doc pages
for details.
The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the
time the simluation box is created. This happens in one of 3 ways.
time the simulation box is created. This happens in one of 3 ways.
If the "create_box"_create_box.html command is used with a region of
style {prism}, then a triclinic box is setup. See the
"region"_region.html command for details. If the
@ -938,17 +938,17 @@ defined above. The relationship between these 6 quantities
(a,b,c,alpha,beta,gamma) and the LAMMPS box sizes (lx,ly,lz) =
(xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:
:c,image(Eqs/box.jpg)
:c,image(Eqs/box.jpg)
The inverse relationship can be written as follows:
:c,image(Eqs/box_inverse.jpg)
:c,image(Eqs/box_inverse.jpg)
The values of {a}, {b}, {c} , {alpha}, {beta} , and {gamma} can be printed
out or accessed by computes using the
"thermo_style custom"_thermo_style.html keywords
The values of {a}, {b}, {c} , {alpha}, {beta} , and {gamma} can be printed
out or accessed by computes using the
"thermo_style custom"_thermo_style.html keywords
{cella}, {cellb}, {cellc}, {cellalpha}, {cellbeta}, {cellgamma},
respectively.
respectively.
As discussed on the "dump"_dump.html command doc page, when the BOX
BOUNDS for a snapshot is written to a dump file for a triclinic box,
@ -982,10 +982,10 @@ used with non-orthogonal basis vectors to define a lattice that will
tile a triclinic simulation box via the
"create_atoms"_create_atoms.html command.
A second use is to run Parinello-Rahman dyanamics via the "fix
A second use is to run Parinello-Rahman dynamics via the "fix
npt"_fix_nh.html command, which will adjust the xy, xz, yz tilt
factors to compensate for off-diagonal components of the pressure
tensor. The analalog for an "energy minimization"_minimize.html is
tensor. The analog for an "energy minimization"_minimize.html is
the "fix box/relax"_fix_box_relax.html command.
A third use is to shear a bulk solid to study the response of the
@ -1392,7 +1392,7 @@ custom"_dump.html command.
There is also a "dump local"_dump.html format where the user specifies
what local values to output. A pre-defined index keyword can be
specified to enumuerate the local values. Two additional kinds of
specified to enumerate the local values. Two additional kinds of
keywords can also be specified (c_ID, f_ID), where a
"compute"_compute.html or "fix"_fix.html or "variable"_variable.html
provides the values to be output. In each case, the compute or fix
@ -1525,7 +1525,7 @@ Variables that generate values to output :h5,link(variable)
"Variables"_variable.html defined in an input script can store one or
more strings. But equal-style, vector-style, and atom-style or
atomfile-style variables generate a global scalar value, global vector
or values, or a per-atom vector, resepctively, when accessed. The
or values, or a per-atom vector, respectively, when accessed. The
formulas used to define these variables can contain references to the
thermodynamic keywords and to global and per-atom data generated by
computes, fixes, and other variables. The values generated by
@ -1585,7 +1585,7 @@ Temperature is computed as kinetic energy divided by some number of
degrees of freedom (and the Boltzmann constant). Since kinetic energy
is a function of particle velocity, there is often a need to
distinguish between a particle's advection velocity (due to some
aggregate motiion of particles) and its thermal velocity. The sum of
aggregate motion of particles) and its thermal velocity. The sum of
the two is the particle's total velocity, but the latter is often what
is wanted to compute a temperature.
@ -1640,14 +1640,14 @@ nvt/asphere"_fix_nvt_asphere.html thermostat not only translation
velocities but also rotational velocities for spherical and aspherical
particles.
DPD thermostatting alters pairwise interactions in a manner analagous
DPD thermostatting alters pairwise interactions in a manner analogous
to the per-particle thermostatting of "fix
langevin"_fix_langevin.html.
Any of the thermostatting fixes can use temperature computes that
remove bias which has two effects. First, the current calculated
temperature, which is compared to the requested target temperature, is
caluclated with the velocity bias removed. Second, the thermostat
calculated with the velocity bias removed. Second, the thermostat
adjusts only the thermal temperature component of the particle's
velocities, which are the velocities with the bias removed. The
removed bias is then added back to the adjusted velocities. See the
@ -1854,13 +1854,19 @@ internal LAMMPS operations. Note that LAMMPS classes are defined
within a LAMMPS namespace (LAMMPS_NS) if you use them from another C++
application.
Library.cpp contains these 5 basic functions:
Library.cpp contains these functions for creating and destroying an
instance of LAMMPS and sending it commands to execute. See the
documentation in the src/library.cpp file for details:
void lammps_open(int, char **, MPI_Comm, void **)
void lammps_open_no_mpi(int, char **, void **)
void lammps_close(void *)
int lammps_version(void *)
void lammps_file(void *, char *)
char *lammps_command(void *, char *) :pre
char *lammps_command(void *, char *)
void lammps_commands_list(void *, int, char **)
void lammps_commands_string(void *, char *)
void lammps_free(void *) :pre
The lammps_open() function is used to initialize LAMMPS, passing in a
list of strings as if they were "command-line
@ -1880,6 +1886,10 @@ half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple
instances of LAMMPS to perform different calculations.
The lammps_open_no_mpi() function is similar except that no MPI
communicator is passed from the caller. Instead, MPI_COMM_WORLD is
used to instantiate LAMMPS, and MPI is initialized if necessary.
The lammps_close() function is used to shut down an instance of LAMMPS
and free all its memory.
@ -1891,44 +1901,106 @@ changes to the LAMMPS command syntax between versions. The returned
LAMMPS version code is an integer (e.g. 2 Sep 2015 results in
20150902) that grows with every new LAMMPS version.
The lammps_file() and lammps_command() functions are used to pass a
file or string to LAMMPS as if it were an input script or single
command in an input script. Thus the calling code can read or
generate a series of LAMMPS commands one line at a time and pass it
thru the library interface to setup a problem and then run it,
interleaving the lammps_command() calls with other calls to extract
information from LAMMPS, perform its own operations, or call another
code's library.
The lammps_file(), lammps_command(), lammps_commands_list(), and
lammps_commands_string() functions are used to pass one or more
commands to LAMMPS to execute, the same as if they were coming from an
input script.
Other useful functions are also included in library.cpp. For example:
Via these functions, the calling code can read or generate a series of
LAMMPS commands one or multiple at a time and pass it thru the library
interface to setup a problem and then run it in stages. The caller
can interleave the command function calls with operations it performs,
calls to extract information from or set information within LAMMPS, or
calls to another code's library.
The lammps_file() function passes the filename of an input script.
The lammps_command() function passes a single command as a string.
The lammps_commands_list() function passes multiple commands in a
char** list. In both lammps_command() and lammps_commands_list(),
individual commands may or may not have a trailing newline. The
lammps_commands_string() function passes multiple commands
concatenated into one long string, separated by newline characters.
In both lammps_commands_list() and lammps_commands_string(), a single
command can be spread across multiple lines, if the last printable
character of all but the last line is "&", the same as if the lines
appeared in an input script.
The lammps_free() function is a clean-up function to free memory that
the library allocated previously via other function calls. See
comments in src/library.cpp file for which other functions need this
clean-up.
Library.cpp also contains these functions for extracting information
from LAMMPS and setting value within LAMMPS. Again, see the
documentation in the src/library.cpp file for details, including
which quantities can be queried by name:
void *lammps_extract_global(void *, char *)
void lammps_extract_box(void *, double *, double *,
double *, double *, double *, int *, int *)
void *lammps_extract_atom(void *, char *)
void *lammps_extract_compute(void *, char *, int, int)
void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)
int lammps_set_variable(void *, char *, char *)
void *lammps_extract_variable(void *, char *, char *) :pre
void lammps_reset_box(void *, double *, double *, double, double, double)
int lammps_set_variable(void *, char *, char *) :pre
double lammps_get_thermo(void *, char *)
int lammps_get_natoms(void *)
void lammps_get_coords(void *, double *)
void lammps_put_coords(void *, double *) :pre
void lammps_gather_atoms(void *, double *)
void lammps_scatter_atoms(void *, double *) :pre
void lammps_create_atoms(void *, int, tagint *, int *, double *, double *,
imageint *, int) :pre
These can extract various global or per-atom quantities from LAMMPS as
well as values calculated by a compute, fix, or variable. The
"set_variable" function can set an existing string-style variable to a
new value, so that subsequent LAMMPS commands can access the variable.
The "get" and "put" operations can retrieve and reset atom
coordinates. See the library.cpp file and its associated header file
library.h for details.
The extract functions return a pointer to various global or per-atom
quantities stored in LAMMPS or to values calculated by a compute, fix,
or variable. The pointer returned by the extract_global() function
can be used as a permanent reference to a value which may change. For
the other extract functions, the underlying storage may be reallocated
as LAMMPS runs, so you need to re-call the function to assure a
current pointer or returned value(s).
The key idea of the library interface is that you can write any
functions you wish to define how your code talks to LAMMPS and add
them to src/library.cpp and src/library.h, as well as to the "Python
interface"_Section_python.html. The routines you add can access or
change any LAMMPS data you wish. The examples/COUPLE and python
directories have example C++ and C and Python codes which show how a
driver code can link to LAMMPS as a library, run LAMMPS on a subset of
processors, grab data from LAMMPS, change it, and put it back into
LAMMPS.
The lammps_reset_box() function resets the size and shape of the
simulation box, e.g. as part of restoring a previously extracted and
saved state of a simulation.
The lammps_set_variable() function can set an existing string-style
variable to a new string value, so that subsequent LAMMPS commands can
access the variable.
The lammps_get_thermo() function returns the current value of a thermo
keyword as a double precision value.
The lammps_get_natoms() function returns the total number of atoms in
the system and can be used by the caller to allocate space for the
lammps_gather_atoms() and lammps_scatter_atoms() functions. The
gather function collects atom info of the requested type (atom coords,
types, forces, etc) from all processors, orders them by atom ID, and
returns a full list to each calling processor. The scatter function
does the inverse. It distributes the same kinds of values,
passed by the caller, to each atom owned by individual processors.
The lammps_create_atoms() function takes a list of N atoms as input
with atom types and coords (required), an optionally atom IDs and
velocities and image flags. It uses the coords of each atom to assign
it as a new atom to the processor that owns it. This function is
useful to add atoms to a simulation or (in tandem with
lammps_reset_box()) to restore a previously extracted and saved state
of a simulation. Additional properties for the new atoms can then be
assigned via the lammps_scatter_atoms() or lammps_extract_atom()
functions.
The examples/COUPLE and python directories have example C++ and C and
Python codes which show how a driver code can link to LAMMPS as a
library, run LAMMPS on a subset of processors, grab data from LAMMPS,
change it, and put it back into LAMMPS.
NOTE: You can write code for additional functions as needed to define
how your code talks to LAMMPS and add them to src/library.cpp and
src/library.h, as well as to the "Python
interface"_Section_python.html. The added functions can access or
change any LAMMPS data you wish.
:line
@ -1941,7 +2013,7 @@ a simple Lennard-Jones fluid model. Also, see "this
section"_Section_howto.html#howto_21 of the manual for an analogous
discussion for viscosity.
The thermal conducitivity tensor kappa is a measure of the propensity
The thermal conductivity tensor kappa is a measure of the propensity
of a material to transmit heat energy in a diffusive manner as given
by Fourier's law
@ -2027,7 +2099,7 @@ and grad(Vstream) is the spatial gradient of the velocity of the fluid
moving in another direction, normal to the area through which the
momentum flows. Viscosity thus has units of pressure-time.
The first method is to perform a non-equlibrium MD (NEMD) simulation
The first method is to perform a non-equilibrium MD (NEMD) simulation
by shearing the simulation box via the "fix deform"_fix_deform.html
command, and using the "fix nvt/sllod"_fix_nvt_sllod.html command to
thermostat the fluid via the SLLOD equations of motion.
@ -2053,7 +2125,7 @@ the rNEMD algorithm of Muller-Plathe. Momentum in one dimension is
swapped between atoms in two different layers of the simulation box in
a different dimension. This induces a velocity gradient which can be
monitored with the "fix ave/chunk"_fix_ave_chunk.html command.
The fix tallies the cummulative momentum transfer that it performs.
The fix tallies the cumulative momentum transfer that it performs.
See the "fix viscosity"_fix_viscosity.html command for details.
The fourth method is based on the Green-Kubo (GK) formula which
@ -2092,11 +2164,11 @@ lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4
create_box 1 box
create_atoms 1 box
mass 1 39.948
mass 1 39.948
pair_style lj/cut 13.0
pair_coeff * * 0.2381 3.405
timestep $\{dt\}
thermo $d :pre
thermo $d :pre
# equilibration and thermalization :pre
@ -2130,7 +2202,7 @@ but uses the Einstein formulation, analogous to the Einstein
mean-square-displacement formulation for self-diffusivity. The
time-integrated momentum fluxes play the role of Cartesian
coordinates, whose mean-square displacement increases linearly
with time at sufficiently long times.
with time at sufficiently long times.
:line
@ -2196,7 +2268,7 @@ atoms with same local defect structure | chunk ID = output of "compute centro/at
Note that chunk IDs are integer values, so for atom properties or
computes that produce a floating point value, they will be truncated
to an integer. You could also use the compute in a variable that
scales the floating point value to spread it across multiple intergers.
scales the floating point value to spread it across multiple integers.
Spatial bins can be of various kinds, e.g. 1d bins = slabs, 2d bins =
pencils, 3d bins = boxes, spherical bins, cylindrical bins.
@ -2281,7 +2353,7 @@ largest cluster or fastest diffusing molecule. :l
Example calculations with chunks :h5
Here are eaxmples using chunk commands to calculate various
Here are examples using chunk commands to calculate various
properties:
(1) Average velocity in each of 1000 2d spatial bins:
@ -2352,7 +2424,7 @@ which both have their up- and downsides.
The first approach is to set desired real-space an kspace accuracies
via the {kspace_modify force/disp/real} and {kspace_modify
force/disp/kspace} commands. Note that the accuracies have to be
specified in force units and are thus dependend on the chosen unit
specified in force units and are thus dependent on the chosen unit
settings. For real units, 0.0001 and 0.002 seem to provide reasonable
accurate and efficient computations for the real-space and kspace
accuracies. 0.002 and 0.05 work well for most systems using lj
@ -2372,7 +2444,7 @@ performance. This approach provides a fast initialization of the
simulation. However, it is sensitive to errors: A combination of
parameters that will perform well for one system might result in
far-from-optimal conditions for other simulations. For example,
parametes that provide accurate and fast computations for
parameters that provide accurate and fast computations for
all-atomistic force fields can provide insufficient accuracy or
united-atomistic force fields (which is related to that the latter
typically have larger dispersion coefficients).
@ -2406,7 +2478,7 @@ arithmetic mixing rule substantially increases the computational cost.
The computational overhead can be reduced using the {kspace_modify
mix/disp geom} and {kspace_modify splittol} commands. The first
command simply enforces geometric mixing of the dispersion
coeffiecients in kspace computations. This introduces some error in
coefficients in kspace computations. This introduces some error in
the computations but will also significantly speed-up the
simulations. The second keyword sets the accuracy with which the
dispersion coefficients are approximated using a matrix factorization
@ -2425,7 +2497,7 @@ to specify this command explicitly.
6.25 Polarizable models :link(howto_25),h4
In polarizable force fields the charge distributions in molecules and
materials respond to their electrostatic environements. Polarizable
materials respond to their electrostatic environments. Polarizable
systems can be simulated in LAMMPS using three methods:
the fluctuating charge method, implemented in the "QEQ"_fix_qeq.html
@ -2479,7 +2551,7 @@ this is done by "fix qeq/dynamic"_fix_qeq.html, and for the
charge-on-spring models by the methods outlined in the next two
sections. The assignment of masses to the additional degrees of
freedom can lead to unphysical trajectories if care is not exerted in
choosing the parameters of the poarizable models and the simulation
choosing the parameters of the polarizable models and the simulation
conditions.
In the core-shell model the vibration of the shells is kept faster
@ -2501,7 +2573,7 @@ well.
6.26 Adiabatic core/shell model :link(howto_26),h4
The adiabatic core-shell model by "Mitchell and
Finchham"_#MitchellFinchham is a simple method for adding
Fincham"_#MitchellFincham is a simple method for adding
polarizability to a system. In order to mimic the electron shell of
an ion, a satellite particle is attached to it. This way the ions are
split into a core and a shell where the latter is meant to react to
@ -2510,8 +2582,8 @@ the electrostatic environment inducing polarizability.
Technically, shells are attached to the cores by a spring force f =
k*r where k is a parametrized spring constant and r is the distance
between the core and the shell. The charges of the core and the shell
add up to the ion charge, thus q(ion) = q(core) + q(shell). This
setup introduces the ion polarizability (alpha) given by
add up to the ion charge, thus q(ion) = q(core) + q(shell). This
setup introduces the ion polarizability (alpha) given by
alpha = q(shell)^2 / k. In a
similar fashion the mass of the ion is distributed on the core and the
shell with the core having the larger mass.
@ -2526,7 +2598,7 @@ for NaCl, as found in examples/coreshell, has this format:
432 atoms # core and shell atoms
216 bonds # number of core/shell springs :pre
4 atom types # 2 cores and 2 shells for Na and Cl
4 atom types # 2 cores and 2 shells for Na and Cl
2 bond types :pre
0.0 24.09597 xlo xhi
@ -2545,19 +2617,19 @@ Atoms :pre
1 1 2 1.5005 0.00000000 0.00000000 0.00000000 # core of core/shell pair 1
2 1 4 -2.5005 0.00000000 0.00000000 0.00000000 # shell of core/shell pair 1
3 2 1 1.5056 4.01599500 4.01599500 4.01599500 # core of core/shell pair 2
4 2 3 -0.5056 4.01599500 4.01599500 4.01599500 # shell of core/shell pair 2
4 2 3 -0.5056 4.01599500 4.01599500 4.01599500 # shell of core/shell pair 2
(...) :pre
Bonds # Bond topology for spring forces :pre
1 2 1 2 # spring for core/shell pair 1
2 2 3 4 # spring for core/shell pair 2
2 2 3 4 # spring for core/shell pair 2
(...) :pre
Non-Coulombic (e.g. Lennard-Jones) pairwise interactions are only
defined between the shells. Coulombic interactions are defined
between all cores and shells. If desired, additional bonds can be
specified between cores.
specified between cores.
The "special_bonds"_special_bonds.html command should be used to
turn-off the Coulombic interaction within core/shell pairs, since that
@ -2595,13 +2667,16 @@ bond_coeff 1 63.014 0.0
bond_coeff 2 25.724 0.0 :pre
When running dynamics with the adiabatic core/shell model, the
following issues should be considered. Since the relative motion of
the core and shell particles corresponds to the polarization, typical
thermostats can alter the polarization behaviour, meaning the shell
will not react freely to its electrostatic environment. This is
critical during the equilibration of the system. Therefore
it's typically desirable to decouple the relative motion of the
core/shell pair, which is an imaginary degree of freedom, from the
following issues should be considered. The relative motion of
the core and shell particles corresponds to the polarization,
hereby an instantaneous relaxation of the shells is approximated
and a fast core/shell spring frequency ensures a nearly constant
internal kinetic energy during the simulation.
Thermostats can alter this polarization behaviour, by scaling the
internal kinetic energy, meaning the shell will not react freely to
its electrostatic environment.
Therefore it is typically desirable to decouple the relative motion of
the core/shell pair, which is an imaginary degree of freedom, from the
real physical system. To do that, the "compute
temp/cs"_compute_temp_cs.html command can be used, in conjunction with
any of the thermostat fixes, such as "fix nvt"_fix_nh.html or "fix
@ -2620,7 +2695,7 @@ Note that to perform thermostatting using this definition of
temperature, the "fix modify temp"_fix_modify.html command should be
used to assign the compute to the thermostat fix. Likewise the
"thermo_modify temp"_thermo_modify.html command can be used to make
this temperature be output for the overall system.
this temperature be output for the overall system.
For the NaCl example, this can be done as follows:
@ -2632,46 +2707,56 @@ fix thermostatequ all nve # integrator as needed f
fix_modify thermoberendsen temp CSequ
thermo_modify temp CSequ # output of center-of-mass derived temperature :pre
If "compute temp/cs"_compute_temp_cs.html is used, the decoupled
relative motion of the core and the shell should in theory be
The pressure for the core/shell system is computed via the regular
LAMMPS convention by "treating the cores and shells as individual
particles"_#MitchellFincham2. For the thermo output of the pressure
as well as for the application of a barostat, it is necessary to
use an additional "pressure"_compute_pressure compute based on the
default "temperature"_compute_temp and specifying it as a second
argument in "fix modify"_fix_modify.html and
"thermo_modify"_thermo_modify.html resulting in:
(...)
compute CSequ all temp/cs cores shells
compute thermo_press_lmp all pressure thermo_temp # pressure for individual particles
thermo_modify temp CSequ press thermo_press_lmp # modify thermo to regular pressure
fix press_bar all npt temp 300 300 0.04 iso 0 0 0.4
fix_modify press_bar temp CSequ press thermo_press_lmp # pressure modification for correct kinetic scalar :pre
If "compute temp/cs"_compute_temp_cs.html is used, the decoupled
relative motion of the core and the shell should in theory be
stable. However numerical fluctuation can introduce a small
momentum to the system, which is noticable over long trajectories.
Therefore it is recomendable to use the "fix
momentum"_fix_momentum.html command in combination with "compute
temp/cs"_compute_temp_cs.html when equilibrating the system to
Therefore it is recommendable to use the "fix
momentum"_fix_momentum.html command in combination with "compute
temp/cs"_compute_temp_cs.html when equilibrating the system to
prevent any drift.
When intializing the velocities of a system with core/shell pairs, it
When initializing the velocities of a system with core/shell pairs, it
is also desirable to not introduce energy into the relative motion of
the core/shell particles, but only assign a center-of-mass velocity to
the pairs. This can be done by using the {bias} keyword of the
"velocity create"_velocity.html command and assigning the "compute
temp/cs"_compute_temp_cs.html command to the {temp} keyword of the
"velocity"_velocity.html commmand, e.g.
"velocity"_velocity.html command, e.g.
velocity all create 1427 134 bias yes temp CSequ
velocity all scale 1427 temp CSequ :pre
It is important to note that the polarizability of the core/shell
pairs is based on their relative motion. Therefore the choice of
spring force and mass ratio need to ensure much faster relative motion
of the 2 atoms within the core/shell pair than their center-of-mass
velocity. This allow the shells to effectively react instantaneously
to the electrostatic environment. This fast movement also limits the
timestep size that can be used.
To maintain the correct polarizability of the core/shell pairs, the
kinetic energy of the internal motion shall remain nearly constant.
Therefore the choice of spring force and mass ratio need to ensure
much faster relative motion of the 2 atoms within the core/shell pair
than their center-of-mass velocity. This allows the shells to
effectively react instantaneously to the electrostatic environment and
limits energy transfer to or from the core/shell oscillators.
This fast movement also dictates the timestep that can be used.
The primary literature of the adiabatic core/shell model suggests that
the fast relative motion of the core/shell pairs only allows negligible
energy transfer to the environment. Therefore it is not intended to
decouple the core/shell degree of freedom from the physical system
during production runs. In other words, the "compute
temp/cs"_compute_temp_cs.html command should not be used during
production runs and is only required during equilibration. This way one
is consistent with literature (based on the code packages DL_POLY or
GULP for instance).
The mentioned energy transfer will typically lead to a a small drift
in total energy over time. This internal energy can be monitored
the fast relative motion of the core/shell pairs only allows negligible
energy transfer to the environment.
The mentioned energy transfer will typically lead to a small drift
in total energy over time. This internal energy can be monitored
using the "compute chunk/atom"_compute_chunk_atom.html and "compute
temp/chunk"_compute_temp_chunk.html commands. The internal kinetic
energies of each core/shell pair can then be summed using the sum()
@ -2689,27 +2774,33 @@ command, to use as input to the "compute
chunk/atom"_compute_chunk_atom.html command to define the core/shell
pairs as chunks.
For example,
For example if core/shell pairs are the only molecules:
read_data NaCl_CS_x0.1_prop.data
compute prop all property/atom molecule
compute cs_chunk all chunk/atom c_prop
compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees of freedom for the core/shell pairs
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector :pre
For example if core/shell pairs and other molecules are present:
fix csinfo all property/atom i_CSID # property/atom command
read_data NaCl_CS_x0.1_prop.data fix csinfo NULL CS-Info # atom property added in the data-file
compute prop all property/atom i_CSID
compute cs_chunk all chunk/atom c_prop
compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees of freedom for the core/shell pairs
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector :pre
(...) :pre
The additional section in the date file would be formatted like this:
CS-Info # header of additional section :pre
1 1 # column 1 = atom ID, column 2 = core/shell ID
2 1
3 2
4 2
5 3
6 3
7 4
8 4
1 1 # column 1 = atom ID, column 2 = core/shell ID
2 1
3 2
4 2
5 3
6 3
7 4
8 4
(...) :pre
:line
@ -2717,7 +2808,7 @@ CS-Info # header of additional section :pre
6.27 Drude induced dipoles :link(howto_27),h4
The thermalized Drude model, similarly to the "core-shell"_#howto_26
model, representes induced dipoles by a pair of charges (the core atom
model, represents induced dipoles by a pair of charges (the core atom
and the Drude particle) connected by a harmonic spring. The Drude
model has a number of features aimed at its use in molecular systems
("Lamoureux and Roux"_#howto-Lamoureux):
@ -2771,7 +2862,7 @@ temp/drude"_compute_temp_drude.html. This requires also to use the
command {comm_modify vel yes}.
Short-range damping of the induced dipole interactions can be achieved
using Thole functions through the the "pair style
using Thole functions through the "pair style
thole"_pair_thole.html in "pair_style hybrid/overlay"_pair_hybrid.html
with a Coulomb pair style. It may be useful to use {coul/long/cs} or
similar from the CORESHELL package if the core and Drude particle come
@ -2818,9 +2909,13 @@ Phys, 79, 926 (1983).
:link(Shinoda)
[(Shinoda)] Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).
:link(MitchellFinchham)
[(Mitchell and Finchham)] Mitchell, Finchham, J Phys Condensed Matter,
:link(MitchellFincham)
[(Mitchell and Fincham)] Mitchell, Fincham, J Phys Condensed Matter,
5, 1031-1038 (1993).
:link(MitchellFincham2)
[(Fincham)] Fincham, Mackrodt and Mitchell, J Phys Condensed Matter,
6, 393-404 (1994).
:link(howto-Lamoureux)
[(Lamoureux and Roux)] G. Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)

View File

@ -181,7 +181,7 @@ Atom creation :h5
displace atoms :ul
Ensembles, constraints, and boundary conditions :h5
("fix"_fix.html command)
("fix"_fix.html command)
2d or 3d systems
orthogonal or non-orthogonal (triclinic symmetry) simulation domains
@ -199,7 +199,7 @@ Ensembles, constraints, and boundary conditions :h5
variety of additional boundary conditions and constraints :ul
Integrators :h5
("run"_run.html, "run_style"_run_style.html, "minimize"_minimize.html commands)
("run"_run.html, "run_style"_run_style.html, "minimize"_minimize.html commands)
velocity-Verlet integrator
Brownian dynamics
@ -213,7 +213,7 @@ Diagnostics :h5
see the various flavors of the "fix"_fix.html and "compute"_compute.html commands :ul
Output :h5
("dump"_dump.html, "restart"_restart.html commands)
("dump"_dump.html, "restart"_restart.html commands)
log file of thermodynamic info
text dump files of atom coords, velocities, other per-atom quantities
@ -366,11 +366,11 @@ complementary modeling tasks.
"DL_POLY"_dlpoly
"Tinker"_tinker :ul
:link(charmm,http://www.scripps.edu/brooks)
:link(amber,http://amber.scripps.edu)
:link(charmm,http://www.charmm.org)
:link(amber,http://ambermd.org)
:link(namd,http://www.ks.uiuc.edu/Research/namd/)
:link(nwchem,http://www.emsl.pnl.gov/docs/nwchem/nwchem.html)
:link(dlpoly,http://www.cse.clrc.ac.uk/msi/software/DL_POLY)
:link(dlpoly,http://www.ccp5.ac.uk/DL_POLY_CLASSIC)
:link(tinker,http://dasher.wustl.edu/tinker)
CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for

View File

@ -159,17 +159,17 @@ pack_comm_vel: add velocity info to communication buffer (required)
pack_comm_hybrid: store extra info unique to this atom style (optional)
unpack_comm: retrieve an atom's info from the buffer (required)
unpack_comm_vel: also retrieve velocity info (required)
unpack_comm_hybrid: retreive extra info unique to this atom style (optional)
unpack_comm_hybrid: retrieve extra info unique to this atom style (optional)
pack_reverse: store an atom's info in a buffer communicating partial forces (required)
pack_reverse_hybrid: store extra info unique to this atom style (optional)
unpack_reverse: retrieve an atom's info from the buffer (required)
unpack_reverse_hybrid: retreive extra info unique to this atom style (optional)
unpack_reverse_hybrid: retrieve extra info unique to this atom style (optional)
pack_border: store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel: add velocity info to buffer (required)
pack_border_hybrid: store extra info unique to this atom style (optional)
unpack_border: retrieve an atom's info from the buffer (required)
unpack_border_vel: also retrieve velocity info (required)
unpack_border_hybrid: retreive extra info unique to this atom style (optional)
unpack_border_hybrid: retrieve extra info unique to this atom style (optional)
pack_exchange: store all an atom's info to migrate to another processor (required)
unpack_exchange: retrieve an atom's info from the buffer (required)
size_restart: number of restart quantities associated with proc's atoms (required)
@ -369,7 +369,7 @@ pre_force_respa: same as pre_force, but for rRESPA (optional)
post_force_respa: same as post_force, but for rRESPA (optional)
final_integrate_respa: same as final_integrate, but for rRESPA (optional)
min_pre_force: called after pair & molecular forces are computed in minimizer (optional)
min_post_force: called after pair & molecular forces are computed and communicated in minmizer (optional)
min_post_force: called after pair & molecular forces are computed and communicated in minimizer (optional)
min_store: store extra data for linesearch based minimization on a LIFO stack (optional)
min_pushstore: push the minimization LIFO stack one element down (optional)
min_popstore: pop the minimization LIFO stack one element up (optional)
@ -517,7 +517,7 @@ class. See region.h for details.
inside: determine whether a point is in the region
surface_interior: determine if a point is within a cutoff distance inside of surc
surface_exterior: determine if a point is within a cutoff distance outside of surf
shape_update : change region shape if set by time-depedent variable :tb(s=:)
shape_update : change region shape if set by time-dependent variable :tb(s=:)
:line
@ -601,16 +601,16 @@ Adding keywords for the "thermo_style custom"_thermo_style.html command
"here"_Section_modify.html#mod_13 on this page.
Adding a new math function of one or two arguments can be done by
editing one section of the Variable::evaulate() method. Search for
editing one section of the Variable::evaluate() method. Search for
the word "customize" to find the appropriate location.
Adding a new group function can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find
Variable::evaluate() method. Search for the word "customize" to find
the appropriate location. You may need to add a new method to the
Group class as well (see the group.cpp file).
Accessing a new atom-based vector can be done by editing one section
of the Variable::evaulate() method. Search for the word "customize"
of the Variable::evaluate() method. Search for the word "customize"
to find the appropriate location.
Adding new "compute styles"_compute.html (whose calculated values can
@ -740,7 +740,7 @@ entry to add to the USER-MISC/README file in that dir, along with the
contribute several individual features. :l
If you want your contribution to be added as a user-contribution and
it is several related featues, it is probably best to make it a user
it is several related features, it is probably best to make it a user
package directory with a name like USER-FOO. In addition to your new
files, the directory should contain a README text file. The README
should contain your name and contact information and a brief
@ -785,10 +785,10 @@ file for how to format the cite itself. The "Restrictions" section of
the doc page should indicate that your command is only available if
LAMMPS is built with the appropriate USER-MISC or USER-FOO package.
See other user package doc files for examples of how to do this. The
prerequiste for building the HTML format files are Python 3.x and
prerequisite for building the HTML format files are Python 3.x and
virtualenv, the requirement for generating the PDF format manual
is the "htmldoc"_http://www.htmldoc.org/ software. Please run at least
"make html" and carefully inspect and proofread the resuling HTML format
"make html" and carefully inspect and proofread the resulting HTML format
doc page before submitting your code. :l
For a new package (or even a single command) you should include one or

View File

@ -84,7 +84,7 @@ Package, Description, Author(s), Doc page, Example, Library
"PERI"_#PERI, Peridynamics models, Mike Parks (Sandia), "pair_style peri"_pair_peri.html, peri, -
"POEMS"_#POEMS, coupled rigid body motion, Rudra Mukherjee (JPL), "fix poems"_fix_poems.html, rigid, lib/poems
"PYTHON"_#PYTHON, embed Python code in an input script, -, "python"_python.html, python, lib/python
"REAX"_#REAX, ReaxFF potential, Aidan Thompson (Sandia), "pair_style reax"_pair_reax.html, reax, lib/reax
"REAX"_#REAX, ReaxFF potential, Aidan Thompson (Sandia), "pair_style reax"_pair_reax.html, reax, lib/reax
"REPLICA"_#REPLICA, multi-replica methods, -, "Section 6.6.5"_Section_howto.html#howto_5, tad, -
"RIGID"_#RIGID, rigid bodies, -, "fix rigid"_fix_rigid.html, rigid, -
"SHOCK"_#SHOCK, shock loading methods, -, "fix msst"_fix_msst.html, -, -
@ -94,7 +94,7 @@ Package, Description, Author(s), Doc page, Example, Library
:tb(ea=c)
The "Authors" column lists a name(s) if a specific person is
responible for creating and maintaining the package.
responsible for creating and maintaining the package.
(1) The COLLOID package includes Fast Lubrication Dynamics pair styles
which were created by Amit Kumar and Michael Bybee from Jonathan
@ -182,7 +182,7 @@ Supporting info: "atom_style body"_atom_style.html, "body"_body.html,
"pair_style body"_pair_body.html, examples/body
:line
CLASS2 package :link(CLASS2),h5
Contents: Bond, angle, dihedral, improper, and pair styles for the
@ -206,9 +206,9 @@ Supporting info: "bond_style class2"_bond_class2.html, "angle_style
class2"_angle_class2.html, "dihedral_style
class2"_dihedral_class2.html, "improper_style
class2"_improper_class2.html, "pair_style lj/class2"_pair_class2.html
:line
COLLOID package :link(COLLOID),h5
Contents: Support for coarse-grained colloidal particles. Wall fix
@ -239,9 +239,9 @@ lubricate"_pair_lubricate.html, "pair_style
lubricateU"_pair_lubricateU.html, examples/colloid, examples/srd
:line
COMPRESS package :link(COMPRESS),h5
Contents: Support for compressed output of dump files via the zlib
compression library, using dump styles with a "gz" in their style
name.
@ -271,7 +271,7 @@ atom/gz"_dump.html, "dump cfg/gz"_dump.html, "dump
custom/gz"_dump.html, "dump xyz/gz"_dump.html
:line
CORESHELL package :link(CORESHELL),h5
Contents: Compute and pair styles that implement the adiabatic
@ -302,7 +302,7 @@ buck/coul/long/cs"_pair_cs.html, pair_style
lj/cut/coul/long/cs"_pair_lj.html, examples/coreshell
:line
DIPOLE package :link(DIPOLE),h5
Contents: An atom style and several pair styles to support point
@ -326,9 +326,9 @@ Supporting info: "atom_style dipole"_atom_style.html, "pair_style
lj/cut/dipole/cut"_pair_dipole.html, "pair_style
lj/cut/dipole/long"_pair_dipole.html, "pair_style
lj/long/dipole/long"_pair_dipole.html, examples/dipole
:line
GPU package :link(GPU),h5
Contents: Dozens of pair styles and a version of the PPPM long-range
@ -385,9 +385,9 @@ Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5
for any pair style listed with a (g),
"kspace_style"_kspace_style.html, "package gpu"_package.html,
examples/accelerate, bench/FERMI, bench/KEPLER
:line
GRANULAR package :link(GRANULAR),h5
Contents: Fixes and pair styles that support models of finite-size
@ -412,9 +412,9 @@ Supporting info: "Section 6.6"_Section_howto.html#howto_6, "fix
pour"_fix_pour.html, "fix wall/gran"_fix_wall_gran.html, "pair_style
gran/hooke"_pair_gran.html, "pair_style
gran/hertz/history"_pair_gran.html, examples/pour, bench/in.chute
:line
KIM package :link(KIM),h5
Contents: A pair style that interfaces to the Knowledge Base for
@ -443,9 +443,9 @@ Make.py -p ^kim -a machine :pre
Supporting info: src/KIM/README, lib/kim/README, "pair_style
kim"_pair_kim.html, examples/kim
:line
KOKKOS package :link(KOKKOS),h5
Contents: Dozens of atom, pair, bond, angle, dihedral, improper styles
@ -462,7 +462,7 @@ options you are optimizing for: CPU acceleration via OpenMP, GPU
acceleration, or Intel Xeon Phi. (You can build multiple times to
create LAMMPS executables for different hardware.) It also requires a
C++11 compatible compiler. For GPUs, the NVIDIA "nvcc" compiler is
used, and an appopriate KOKKOS_ARCH setting should be made in your
used, and an appropriate KOKKOS_ARCH setting should be made in your
Makefile.machine for your GPU hardware and NVIDIA software.
The simplest way to do this is to use Makefile.kokkos_cuda or
@ -501,7 +501,7 @@ for any pair style listed with a (k), "package kokkos"_package.html,
examples/accelerate, bench/FERMI, bench/KEPLER
:line
KSPACE package :link(KSPACE),h5
Contents: A variety of long-range Coulombic solvers, and pair styles
@ -543,7 +543,7 @@ which have "long" or "msm" in their style name,
examples/peptide, bench/in.rhodo
:line
MANYBODY package :link(MANYBODY),h5
Contents: A variety of many-body and bond-order potentials. These
@ -565,14 +565,14 @@ make machine :pre
Make.py -p ^manybody -a machine :pre
Supporting info:
Supporting info:
Examples: Pair Styles section of "Section
3.5"_Section_commands.html#cmd_5, examples/comb, examples/eim,
examples/nb3d, examples/vashishta
:line
MC package :link(MC),h5
Contents: Several fixes and a pair style that have Monte Carlo (MC) or
@ -598,9 +598,9 @@ Supporting info: "fix atom/swap"_fix_atom_swap.html, "fix
bond/break"_fix_bond_break.html, "fix
bond/create"_fix_bond_create.html, "fix bond/swap"_fix_bond_swap.html,
"fix gcmc"_fix_gcmc.html, "pair_style dsmc"_pair_dsmc.html
:line
MEAM package :link(MEAM),h5
Contents: A pair style for the modified embedded atom (MEAM)
@ -644,9 +644,9 @@ Make.py -p ^meam -a machine :pre
Supporting info: lib/meam/README, "pair_style meam"_pair_meam.html,
examples/meam
:line
MISC package :link(MISC),h5
Contents: A variety of computes, fixes, and pair styles that are not
@ -670,9 +670,9 @@ Make.py -p ^misc -a machine :pre
Supporting info: "compute ti"_compute_ti.html, "fix
evaporate"_fix_evaporate.html, "fix tmm"_fix_ttm.html, "fix
viscosity"_fix_viscosity.html, examples/misc
:line
MOLECULE package :link(MOLECULE),h5
Contents: A large number of atom, pair, bond, angle, dihedral,
@ -704,7 +704,7 @@ lj/charmm/coul/charmm"_pair_charmm.html,
examples/micelle, examples/peptide, bench/in.chain, bench/in.rhodo
:line
MPIIO package :link(MPIIO),h5
Contents: Support for parallel output/input of dump and restart files
@ -729,9 +729,9 @@ Make.py -p ^mpiio -a machine :pre
Supporting info: "dump"_dump.html, "restart"_restart.html,
"write_restart"_write_restart.html, "read_restart"_read_restart.html
:line
OPT package :link(OPT),h5
Contents: A handful of pair styles with an "opt" in their style name
@ -768,7 +768,7 @@ Supporting info: "Section 5.3"_Section_accelerate.html#acc_3,
listed with an (t), examples/accelerate, bench/KEPLER
:line
PERI package :link(PERI),h5
Contents: Support for the Peridynamics method, a particle-based
@ -796,9 +796,9 @@ Supporting info:
"doc/PDF/PDLammps_VES.pdf"_PDF/PDLammps_VES.pdf, "atom_style
peri"_atom_style.html, "compute damage/atom"_compute_damage_atom.html,
"pair_style peri/pmb"_pair_peri.html, examples/peri
:line
POEMS package :link(POEMS),h5
Contents: A fix that wraps the Parallelizable Open source Efficient
@ -839,7 +839,7 @@ Supporting info: src/POEMS/README, lib/poems/README,
"fix poems"_fix_poems.html, examples/rigid
:line
PYTHON package :link(PYTHON),h5
Contents: A "python"_python.html command which allow you to execute
@ -873,9 +873,9 @@ make machine :pre
Make.py -p ^python -a machine :pre
Supporting info: examples/python
:line
QEQ package :link(QEQ),h5
Contents: Several fixes for performing charge equilibration (QEq) via
@ -897,9 +897,9 @@ make machine :pre
Make.py -p ^qeq -a machine :pre
Supporting info: "fix qeq/*"_fix_qeq.html, examples/qeq
:line
REAX package :link(REAX),h5
Contents: A pair style for the ReaxFF potential, a universal reactive
@ -941,9 +941,9 @@ Make.py -p ^reax -a machine :pre
Supporting info: lib/reax/README, "pair_style reax"_pair_reax.html,
"fix reax/bonds"_fix_reax_bonds.html, examples/reax
:line
REPLICA package :link(REPLICA),h5
Contents: A collection of multi-replica methods that are used by
@ -955,8 +955,8 @@ multi-replica simulations in LAMMPS. Multi-replica methods included
in the package are nudged elastic band (NEB), parallel replica
dynamics (PRD), temperature accelerated dynamics (TAD), parallel
tempering, and a verlet/split algorithm for performing long-range
Coulombics on one set of processors, and the remainded of the force
field calcalation on another set.
Coulombics on one set of processors, and the remainder of the force
field calculation on another set.
To install via make or Make.py:
@ -978,7 +978,7 @@ Supporting info: "Section 6.5"_Section_howto.html#howto_5,
examples/tad
:line
RIGID package :link(RIGID),h5
Contents: A collection of computes and fixes which enforce rigid
@ -1005,7 +1005,7 @@ Supporting info: "compute erotate/rigid"_compute_erotate_rigid.html,
rigid/*"_fix_rigid.html, examples/ASPHERE, examples/rigid
:line
SHOCK package :link(SHOCK),h5
Contents: A small number of fixes useful for running impact
@ -1028,15 +1028,15 @@ Make.py -p ^shock -a machine :pre
Supporting info: "fix append/atoms"_fix_append_atoms.html, "fix
msst"_fix_msst.html, "fix nphug"_fix_nphug.html, "fix
wall/piston"_fix_wall_piston.html, examples/hugoniostat, examples/msst
:line
SNAP package :link(SNAP),h5
Contents: A pair style for the spectral neighbor analysis potential
(SNAP), which is an empirical potential which can be quantum accurate
when fit to an archive of DFT data. Computes useful for analyzing
properties of the potential are also included.
when fit to an archive of DFT data. Computes useful for analyzing
properties of the potential are also included.
To install via make or Make.py:
@ -1055,9 +1055,9 @@ Make.py -p ^snap -a machine :pre
Supporting info: "pair snap"_pair_snap.html, "compute
sna/atom"_compute_sna_atom.html, "compute snad/atom"_compute_sna_atom.html,
"compute snav/atom"_compute_sna_atom.html, examples/snap
:line
SRD package :link(SRD),h5
Contents: Two fixes which implement the Stochastic Rotation Dynamics
@ -1080,9 +1080,9 @@ Make.py -p ^srd -a machine :pre
Supporting info: "fix srd"_fix_srd.html, "fix
wall/srd"_fix_wall_srd.html, examples/srd, examples/ASPHERE
:line
VORONOI package :link(VORONOI),h5
Contents: A "compute voronoi/atom"_compute_voronoi_atom.html command
@ -1129,9 +1129,9 @@ Make.py -p ^voronoi -a machine :pre
Supporting info: src/VORONOI/README, lib/voronoi/README, "compute
voronoi/atom"_compute_voronoi_atom.html, examples/voronoi
:line
4.2 User packages :h4,link(pkg_2)
The current list of user-contributed packages is as follows:
@ -1140,6 +1140,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
"USER-ATC"_#USER-ATC, atom-to-continuum coupling, Jones & Templeton & Zimmerman (1), "fix atc"_fix_atc.html, USER/atc, "atc"_atc, lib/atc
"USER-AWPMD"_#USER-AWPMD, wave-packet MD, Ilya Valuev (JIHT), "pair_style awpmd/cut"_pair_awpmd.html, USER/awpmd, -, lib/awpmd
"USER-CG-CMM"_#USER-CG-CMM, coarse-graining model, Axel Kohlmeyer (Temple U), "pair_style lj/sdk"_pair_sdk.html, USER/cg-cmm, "cg"_cg, -
"USER-CGDNA"_#USER-CGDNA, coarse-grained DNA force fields, Oliver Henrich (U Edinburgh), src/USER-CGDNA/README, USER/cgdna, -, -
"USER-COLVARS"_#USER-COLVARS, collective variables, Fiorin & Henin & Kohlmeyer (2), "fix colvars"_fix_colvars.html, USER/colvars, "colvars"_colvars, lib/colvars
"USER-DIFFRACTION"_#USER-DIFFRACTION, virutal x-ray and electron diffraction, Shawn Coleman (ARL),"compute xrd"_compute_xrd.html, USER/diffraction, -, -
"USER-DPD"_#USER-DPD, reactive dissipative particle dynamics (DPD), Larentzos & Mattox & Brennan (5), src/USER-DPD/README, USER/dpd, -, -
@ -1153,6 +1154,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER-MISC/README, -, -, -
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surface, Stefan Paquay (Eindhoven U of Technology), "fix manifoldforce"_fix_manifoldforce.html, USER/manifold, "manifold"_manifold, -
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_VMD molfile plug-ins, Axel Kohlmeyer (Temple U), "dump molfile"_dump_molfile.html, -, -, VMD-MOLFILE
"USER-NC-DUMP"_#USER-NC-DUMP, dump output via NetCDF, Lars Pastewka (Karlsruhe Institute of Technology, KIT), "dump nc / dump nc/mpiio"_dump_nc.html, -, -, lib/netcdf
"USER-OMP"_#USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section 5.3.4"_accelerate_omp.html, -, -, -
"USER-PHONON"_#USER-PHONON, phonon dynamical matrix, Ling-Ti Kong (Shanghai Jiao Tong U), "fix phonon"_fix_phonon.html, USER/phonon, -, -
"USER-QMMM"_#USER-QMMM, QM/MM coupling, Axel Kohlmeyer (Temple U), "fix qmmm"_fix_qmmm.html, USER/qmmm, -, lib/qmmm
@ -1174,7 +1176,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
:link(VMD,http://www.ks.uiuc.edu/Research/vmd)
The "Authors" column lists a name(s) if a specific person is
responible for creating and maintaining the package.
responsible for creating and maintaining the package.
(1) The ATC package was created by Reese Jones, Jeremy Templeton, and
Jon Zimmerman (Sandia).
@ -1283,6 +1285,31 @@ him directly if you have questions.
:line
USER-CGDNA package :link(USER-CGDNA),h5
Contents: The CGDNA package implements coarse-grained force fields for
single- and double-stranded DNA. This is at the moment mainly the
oxDNA model, developed by Doye, Louis and Ouldridge at the University
of Oxford. The package also contains Langevin-type rigid-body
integrators with improved stability.
See these doc pages to get started:
"bond_style oxdna/fene"_bond_oxdna.html
"pair_style oxdna/..."_pair_oxdna.html
"fix nve/dotc/langevin"_fix_nve_dotc_langevin.html :ul
Supporting info: /src/USER-CGDNA/README, "bond_style
oxdna/fene"_bond_oxdna.html, "pair_style
oxdna/..."_pair_oxdna.html, "fix
nve/dotc/langevin"_fix_nve_dotc_langevin.html
Author: Oliver Henrich at the University of Edinburgh, UK (o.henrich
at epcc.ed.ac.uk or ohenrich at ph.ed.ac.uk). Contact him directly if
you have any questions.
:line
USER-COLVARS package :link(USER-COLVARS),h5
Contents: COLVARS stands for collective variables which can be used to
@ -1302,7 +1329,7 @@ fix. The COLVARS library itself is written and maintained by Giacomo
Fiorin (ICMS, Temple University, Philadelphia, PA, USA) and Jerome
Henin (LISM, CNRS, Marseille, France). Contact them directly if you
have questions.
:line
USER-DIFFRACTION package :link(USER-DIFFRACTION),h5
@ -1380,7 +1407,7 @@ in 2007. See src/USER-EFF/README for more details. There are
auxiliary tools for using this package in tools/eff; see its README
file.
Supporting info:
Supporting info:
Author: Andres Jaramillo-Botero at CalTech (ajaramil at
wag.caltech.edu). Contact him directly if you have questions.
@ -1456,21 +1483,21 @@ LINKFLAGS: add -fopenmp :ul
For Phi mode add the following in addition to the CPU mode flags:
CCFLAGS: add -DLMP_INTEL_OFFLOAD and
CCFLAGS: add -DLMP_INTEL_OFFLOAD and
LINKFLAGS: add -offload :ul
And also add this to CCFLAGS:
-offload-option,mic,compiler,"-fp-model fast=2 -mGLOB_default_function_attrs=\"gather_scatter_loop_unroll=4\"" :pre
Examples:
Examples:
:line
USER-LB package :link(USER-LB),h5
Supporting info:
Supporting info:
This package contains a LAMMPS implementation of a background
Lattice-Boltzmann fluid, which can be used to model MD particles
influenced by hydrodynamic forces.
@ -1489,8 +1516,8 @@ Examples: examples/USER/lb
USER-MGPT package :link(USER-MGPT),h5
Supporting info:
Supporting info:
This package contains a fast implementation for LAMMPS of
quantum-based MGPT multi-ion potentials. The MGPT or model GPT method
derives from first-principles DFT-based generalized pseudopotential
@ -1521,8 +1548,8 @@ Examples: examples/USER/mgpt
USER-MISC package :link(USER-MISC),h5
Supporting info:
Supporting info:
The files in this package are a potpourri of (mostly) unrelated
features contributed to LAMMPS by users. Each feature is a single
pair of files (*.cpp and *.h).
@ -1548,8 +1575,8 @@ Examples: examples/USER/misc
USER-MANIFOLD package :link(USER-MANIFOLD),h5
Supporting info:
Supporting info:
This package contains a dump molfile command which uses molfile
plugins that are bundled with the
"VMD"_http://www.ks.uiuc.edu/Research/vmd molecular visualization and
@ -1574,8 +1601,8 @@ Contact him directly if you have questions.
USER-MOLFILE package :link(USER-MOLFILE),h5
Supporting info:
Supporting info:
This package contains a dump molfile command which uses molfile
plugins that are bundled with the
"VMD"_http://www.ks.uiuc.edu/Research/vmd molecular visualization and
@ -1598,14 +1625,38 @@ The person who created this package is Axel Kohlmeyer at Temple U
:line
USER-NC-DUMP package :link(USER-NC-DUMP),h5
Contents: Dump styles for writing NetCDF format files. NetCDF is a binary,
portable, self-describing file format on top of HDF5. The file format
contents follow the AMBER NetCDF trajectory conventions
(http://ambermd.org/netcdf/nctraj.xhtml), but include extensions to this
convention. This package implements a "dump nc"_dump_nc.html command
and a "dump nc/mpiio"_dump_nc.html command to output LAMMPS snapshots
in this format. See src/USER-NC-DUMP/README for more details.
NetCDF files can be directly visualized with the following tools:
Ovito (http://www.ovito.org/). Ovito supports the AMBER convention
and all of the above extensions. :ulb,l
VMD (http://www.ks.uiuc.edu/Research/vmd/) :l
AtomEye (http://www.libatoms.org/). The libAtoms version of AtomEye contains
a NetCDF reader that is not present in the standard distribution of AtomEye :l,ule
The person who created these files is Lars Pastewka at
Karlsruhe Institute of Technology (lars.pastewka at kit.edu).
Contact him directly if you have questions.
:line
USER-OMP package :link(USER-OMP),h5
Supporting info:
Supporting info:
This package provides OpenMP multi-threading support and
other optimizations of various LAMMPS pair styles, dihedral
styles, and fix styles.
See this section of the manual to get started:
"Section 5.3"_Section_accelerate.html#acc_3
@ -1643,8 +1694,8 @@ Examples: examples/USER/phonon
USER-QMMM package :link(USER-QMMM),h5
Supporting info:
Supporting info:
This package provides a fix qmmm command which allows LAMMPS to be
used in a QM/MM simulation, currently only in combination with pw.x
code from the "Quantum ESPRESSO"_espresso package.
@ -1667,11 +1718,11 @@ The person who created this package is Axel Kohlmeyer at Temple U
(akohlmey at gmail.com). Contact him directly if you have questions.
:line
USER-QTB package :link(USER-QTB),h5
Supporting info:
Supporting info:
This package provides a self-consistent quantum treatment of the
vibrational modes in a classical molecular dynamics simulation. By
coupling the MD simulation to a colored thermostat, it introduces zero
@ -1701,16 +1752,16 @@ Examples: examples/USER/qtb
USER-QUIP package :link(USER-QUIP),h5
Supporting info:
Supporting info:
Examples: examples/USER/quip
:line
USER-REAXC package :link(USER-REAXC),h5
Supporting info:
Supporting info:
This package contains a implementation for LAMMPS of the ReaxFF force
field. ReaxFF uses distance-dependent bond-order functions to
represent the contributions of chemical bonding to the potential
@ -1727,7 +1778,7 @@ particularly with respect to the charge equilibration calculation. It
should also be easier to build and use since there are no complicating
issues with Fortran memory allocation or linking to a Fortran library.
For technical details about this implemention of ReaxFF, see
For technical details about this implementation of ReaxFF, see
this paper:
Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods
@ -1748,24 +1799,24 @@ Examples: examples/reax
USER-SMD package :link(USER-SMD),h5
Supporting info:
Supporting info:
This package implements smoothed Mach dynamics (SMD) in
LAMMPS. Currently, the package has the following features:
* Does liquids via traditional Smooth Particle Hydrodynamics (SPH)
* Also solves solids mechanics problems via a state of the art
* Also solves solids mechanics problems via a state of the art
stabilized meshless method with hourglass control.
* Can specify hydrostatic interactions independently from material
* Can specify hydrostatic interactions independently from material
strength models, i.e. pressure and deviatoric stresses are separated.
* Many material models available (Johnson-Cook, plasticity with
hardening, Mie-Grueneisen, Polynomial EOS). Easy to add new
* Many material models available (Johnson-Cook, plasticity with
hardening, Mie-Grueneisen, Polynomial EOS). Easy to add new
material models.
* Rigid boundary conditions (walls) can be loaded as surface geometries
* Rigid boundary conditions (walls) can be loaded as surface geometries
from *.STL files.
See the file doc/PDF/SMD_LAMMPS_userguide.pdf to get started.
@ -1783,8 +1834,8 @@ Examples: examples/USER/smd
USER-SMTBQ package :link(USER-SMTBQ),h5
Supporting info:
Supporting info:
This package implements the Second Moment Tight Binding - QEq (SMTB-Q)
potential for the description of ionocovalent bonds in oxides.
@ -1797,7 +1848,7 @@ See this doc page to get started:
The persons who created the USER-SMTBQ package are Nicolas Salles,
Emile Maras, Olivier Politano, Robert Tetot, who can be contacted at
these email addreses: lammps@u-bourgogne.fr, nsalles@laas.fr. Contact
these email addresses: lammps@u-bourgogne.fr, nsalles@laas.fr. Contact
them directly if you have any questions.
Examples: examples/USER/smtbq
@ -1806,22 +1857,22 @@ Examples: examples/USER/smtbq
USER-SPH package :link(USER-SPH),h5
Supporting info:
Supporting info:
This package implements smoothed particle hydrodynamics (SPH) in
LAMMPS. Currently, the package has the following features:
* Tait, ideal gas, Lennard-Jones equation of states, full support for
* Tait, ideal gas, Lennard-Jones equation of states, full support for
complete (i.e. internal-energy dependent) equations of state
* Plain or Monaghans XSPH integration of the equations of motion
* Density continuity or density summation to propagate the density field
* Commands to set internal energy and density of particles from the
* Commands to set internal energy and density of particles from the
input script
* Output commands to access internal energy and density for dumping and
* Output commands to access internal energy and density for dumping and
thermo output
See the file doc/PDF/SPH_LAMMPS_userguide.pdf to get started.
@ -1839,7 +1890,7 @@ Examples: examples/USER/sph
USER-TALLY package :link(USER-TALLY),h5
Supporting info:
Supporting info:
Examples: examples/USER/tally

View File

@ -69,7 +69,7 @@ bench/in.lj input script.
For all the benchmarks, a useful metric is the CPU cost per atom per
timestep. Since performance scales roughly linearly with problem size
and timesteps for all LAMMPS models (i.e. inteatomic or coarse-grained
and timesteps for all LAMMPS models (i.e. interatomic or coarse-grained
potentials), the run time of any problem using the same model (atom
style, force field, cutoff, etc) can then be estimated.

View File

@ -8,28 +8,36 @@
11. Python interface to LAMMPS :h3
LAMMPS can work together with Python in two ways. First, Python can
LAMMPS can work together with Python in three ways. First, Python can
wrap LAMMPS through the "LAMMPS library
interface"_Section_howto.html#howto_19, so that a Python script can
create one or more instances of LAMMPS and launch one or more
simulations. In Python lingo, this is "extending" Python with LAMMPS.
Second, LAMMPS can use the Python interpreter, so that a LAMMPS input
Second, the low-level Python interface can be used indirectly through the
PyLammps and IPyLammps wrapper classes in Python. These wrappers try to
simplify the usage of LAMMPS in Python by providing an object-based interface
to common LAMMPS functionality. It also reduces the amount of code necessary to
parameterize LAMMPS scripts through Python and makes variables and computes
directly accessible. See "PyLammps interface"_#py_9 for more details.
Third, LAMMPS can use the Python interpreter, so that a LAMMPS input
script can invoke Python code, and pass information back-and-forth
between the input script and Python functions you write. The Python
code can also callback to LAMMPS to query or change its attributes.
In Python lingo, this is "embedding" Python in LAMMPS.
This section describes how to do both.
This section describes how to use these three approaches.
11.1 "Overview of running LAMMPS from Python"_#py_1
11.2 "Overview of using Python from a LAMMPS script"_#py_2
11.2 "Overview of using Python from a LAMMPS script"_#py_2
11.3 "Building LAMMPS as a shared library"_#py_3
11.4 "Installing the Python wrapper into Python"_#py_4
11.5 "Extending Python with MPI to run in parallel"_#py_5
11.6 "Testing the Python-LAMMPS interface"_#py_6
11.7 "Using LAMMPS from Python"_#py_7
11.8 "Example Python scripts that use LAMMPS"_#py_8 :ul
11.8 "Example Python scripts that use LAMMPS"_#py_8
11.9 "PyLammps interface"_#py_9 :ul
If you are not familiar with it, "Python"_http://www.python.org is a
powerful scripting and programming language which can essentially do
@ -89,7 +97,7 @@ current LAMMPS library interface and how to call them from Python.
Section 11.8 gives some examples of coupling LAMMPS to other tools via
Python. For example, LAMMPS can easily be coupled to a GUI or other
visualization tools that display graphs or animations in real time as
LAMMPS runs. Examples of such scripts are inlcluded in the python
LAMMPS runs. Examples of such scripts are included in the python
directory.
Two advantages of using Python to run LAMMPS are how concise the
@ -169,7 +177,7 @@ of Python and your machine to successfully build LAMMPS. See the
lib/python/README file for more info.
If you want to write Python code with callbacks to LAMMPS, then you
must also follow the steps overviewed in the preceeding section (11.1)
must also follow the steps overviewed in the preceding section (11.1)
for running LAMMPS from Python. I.e. you must build LAMMPS as a
shared library and insure that Python can find the python/lammps.py
file and the shared library.
@ -317,7 +325,7 @@ sudo python setup.py install :pre
Again, the "sudo" is only needed if required to copy PyPar files into
your Python distribution's site-packages directory.
If you have successully installed PyPar, you should be able to run
If you have successfully installed PyPar, you should be able to run
Python and type
import pypar :pre
@ -361,7 +369,7 @@ user privilege into the user local directory type
python setup.py install --user :pre
If you have successully installed mpi4py, you should be able to run
If you have successfully installed mpi4py, you should be able to run
Python and type
from mpi4py import MPI :pre
@ -503,7 +511,7 @@ one of several ways:
The last command requires that the first line of the script be
something like this:
#!/usr/local/bin/python
#!/usr/local/bin/python
#!/usr/local/bin/python -i :pre
where the path points to where you have Python installed, and that you
@ -534,10 +542,11 @@ from lammps import lammps :pre
These are the methods defined by the lammps module. If you look at
the files src/library.cpp and src/library.h you will see that they
correspond one-to-one with calls you can make to the LAMMPS library
from a C++ or C or Fortran program.
from a C++ or C or Fortran program, and which are described in
"Section 6.19"_Section_howto.html#howto_19 of the manual.
lmp = lammps() # create a LAMMPS object using the default liblammps.so library
4 optional args are allowed: name, cmdargs, ptr, comm
# 4 optional args are allowed: name, cmdargs, ptr, comm
lmp = lammps(ptr=lmpptr) # use lmpptr as previously created LAMMPS object
lmp = lammps(comm=split) # create a LAMMPS object with a custom communicator, requires mpi4py 2.0.0 or later
lmp = lammps(name="g++") # create a LAMMPS object using the liblammps_g++.so library
@ -549,37 +558,41 @@ version = lmp.version() # return the numerical version id, e.g. LAMMPS 2 Sep 20
lmp.file(file) # run an entire input script, file = "in.lj"
lmp.command(cmd) # invoke a single LAMMPS command, cmd = "run 100" :pre
lmp.commands_list(cmdlist) # invoke commands in cmdlist = ["run 10", "run 20"]
lmp.commands_string(multicmd) # invoke commands in multicmd = "run 10\nrun 20"
xlo = lmp.extract_global(name,type) # extract a global quantity
# name = "boxxlo", "nlocal", etc
# type = 0 = int
# 1 = double :pre
# type = 0 = int
# 1 = double :pre
coords = lmp.extract_atom(name,type) # extract a per-atom quantity
# name = "x", "type", etc
# type = 0 = vector of ints
# 1 = array of ints
# 2 = vector of doubles
# 3 = array of doubles :pre
# type = 0 = vector of ints
# 1 = array of ints
# 2 = vector of doubles
# 3 = array of doubles :pre
eng = lmp.extract_compute(id,style,type) # extract value(s) from a compute
v3 = lmp.extract_fix(id,style,type,i,j) # extract value(s) from a fix
# id = ID of compute or fix
# style = 0 = global data
# 1 = per-atom data
# 2 = local data
# type = 0 = scalar
# 1 = vector
# 2 = array
# i,j = indices of value in global vector or array :pre
# style = 0 = global data
# 1 = per-atom data
# 2 = local data
# type = 0 = scalar
# 1 = vector
# 2 = array
# i,j = indices of value in global vector or array :pre
var = lmp.extract_variable(name,group,flag) # extract value(s) from a variable
# name = name of variable
# group = group ID (ignored for equal-style variables)
# flag = 0 = equal-style variable
# 1 = atom-style variable :pre
# name = name of variable
# group = group ID (ignored for equal-style variables)
# flag = 0 = equal-style variable
# 1 = atom-style variable :pre
flag = lmp.set_variable(name,value) # set existing named string-style variable to value, flag = 0 if successful
value = lmp.get_thermo(name) # return current value of a thermo keyword
natoms = lmp.get_natoms() # total # of atoms as int
data = lmp.gather_atoms(name,type,count) # return atom attribute of all atoms gathered into data, ordered by atom ID
# name = "x", "charge", "type", etc
@ -597,11 +610,12 @@ lmp = lammps() :pre
create an instance of LAMMPS, wrapped in a Python class by the lammps
Python module, and return an instance of the Python class as lmp. It
is used to make all subequent calls to the LAMMPS library.
is used to make all subsequent calls to the LAMMPS library.
Additional arguments can be used to tell Python the name of the shared
library to load or to pass arguments to the LAMMPS instance, the same
as if LAMMPS were launched from a command-line prompt.
Additional arguments to lammps() can be used to tell Python the name
of the shared library to load or to pass arguments to the LAMMPS
instance, the same as if LAMMPS were launched from a command-line
prompt.
If the ptr argument is set like this:
@ -626,8 +640,9 @@ lmp2 = lammps()
lmp1.file("in.file1")
lmp2.file("in.file2") :pre
The file() and command() methods allow an input script or single
commands to be invoked.
The file(), command(), commands_list(), commands_string() methods
allow an input script, a single command, or multiple commands to be
invoked.
The extract_global(), extract_atom(), extract_compute(),
extract_fix(), and extract_variable() methods return values or
@ -647,7 +662,7 @@ or integers (int **) is returned. You need to specify the appropriate
data type via the type argument.
For extract_compute() and extract_fix(), the global, per-atom, or
local data calulated by the compute or fix can be accessed. What is
local data calculated by the compute or fix can be accessed. What is
returned depends on whether the compute or fix calculates a scalar or
vector or array. For a scalar, a single double value is returned. If
the compute or fix calculates a vector or array, a pointer to the
@ -724,7 +739,7 @@ lmp.scatter_coords("x",1,3,x) :pre
Alternatively, you can just change values in the vector returned by
gather_atoms("x",1,3), since it is a ctypes vector of doubles.
:line
:line
As noted above, these Python class methods correspond one-to-one with
the functions in the LAMMPS library interface in src/library.cpp and
@ -759,7 +774,7 @@ demo.py, invoke various LAMMPS library interface routines,
simple.py, run in parallel, similar to examples/COUPLE/simple/simple.cpp,
split.py, same as simple.py but running in parallel on a subset of procs,
gui.py, GUI go/stop/temperature-slider to control LAMMPS,
plot.py, real-time temeperature plot with GnuPlot via Pizza.py,
plot.py, real-time temperature plot with GnuPlot via Pizza.py,
viz_tool.py, real-time viz via some viz package,
vizplotgui_tool.py, combination of viz_tool.py and plot.py and gui.py :tb(c=2)
@ -767,7 +782,7 @@ vizplotgui_tool.py, combination of viz_tool.py and plot.py and gui.py :tb(c=2)
For the viz_tool.py and vizplotgui_tool.py commands, replace "tool"
with "gl" or "atomeye" or "pymol" or "vmd", depending on what
visualization package you have installed.
visualization package you have installed.
Note that for GL, you need to be able to run the Pizza.py GL tool,
which is included in the pizza sub-directory. See the "Pizza.py doc
@ -817,3 +832,7 @@ different visualization package options. Click to see larger images:
:image(JPG/screenshot_atomeye_small.jpg,JPG/screenshot_atomeye.jpg)
:image(JPG/screenshot_pymol_small.jpg,JPG/screenshot_pymol.jpg)
:image(JPG/screenshot_vmd_small.jpg,JPG/screenshot_vmd.jpg)
11.9 PyLammps interface :link(py_9),h4
Please see the "PyLammps Tutorial"_tutorial_pylammps.html.

View File

@ -33,7 +33,7 @@ tar -xzvf lammps*.tar.gz :pre
This will create a LAMMPS directory containing two files and several
sub-directories:
README: text file
LICENSE: the GNU General Public License (GPL)
bench: benchmark problems
@ -80,7 +80,7 @@ This section has the following sub-sections:
Read this first :h5,link(start_2_1)
If you want to avoid building LAMMPS yourself, read the preceeding
If you want to avoid building LAMMPS yourself, read the preceding
section about options available for downloading and installing
executables. Details are discussed on the "download"_download page.
@ -251,7 +251,7 @@ re-compile, after typing "make clean" (which will describe different
clean options).
The LMP_INC variable is used to include options that turn on ifdefs
within the LAMMPS code. The options that are currently recogized are:
within the LAMMPS code. The options that are currently recognized are:
-DLAMMPS_GZIP
-DLAMMPS_JPEG
@ -362,7 +362,7 @@ installed on your platform. If MPI is installed on your system in the
usual place (under /usr/local), you also may not need to specify these
3 variables, assuming /usr/local is in your path. On some large
parallel machines which use "modules" for their compile/link
environements, you may simply need to include the correct module in
environments, you may simply need to include the correct module in
your build environment, before building LAMMPS. Or the parallel
machine may have a vendor-provided MPI which the compiler has no
trouble finding.
@ -413,7 +413,7 @@ uses (for performing 1d FFTs) when running the particle-particle
particle-mesh (PPPM) option for long-range Coulombics via the
"kspace_style"_kspace_style.html command.
LAMMPS supports various open-source or vendor-supplied FFT libraries
LAMMPS supports common open-source or vendor-supplied FFT libraries
for this purpose. If you leave these 3 variables blank, LAMMPS will
use the open-source "KISS FFT library"_http://kissfft.sf.net, which is
included in the LAMMPS distribution. This library is portable to all
@ -423,15 +423,14 @@ package in your build, you can also leave the 3 variables blank.
Otherwise, select which kinds of FFTs to use as part of the FFT_INC
setting by a switch of the form -DFFT_XXX. Recommended values for XXX
are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are: INTEL, SGI,
ACML, and T3E. For backward compatability, using -DFFT_FFTW will use
the FFTW2 library. Using -DFFT_NONE will use the KISS library
described above.
are: MKL or FFTW3. FFTW2 and NONE are supported as legacy options.
Selecting -DFFT_FFTW will use the FFTW3 library and -DFFT_NONE will
use the KISS library described above.
You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables,
so the compiler and linker can find the needed FFT header and library
files. Note that on some large parallel machines which use "modules"
for their compile/link environements, you may simply need to include
for their compile/link environments, you may simply need to include
the correct module in your build environment. Or the parallel machine
may have a vendor-provided FFT library which the compiler has no
trouble finding.
@ -451,7 +450,7 @@ you must also manually specify the correct library, namely -lsfftw or
The FFT_INC variable also allows for a -DFFT_SINGLE setting that will
use single-precision FFTs with PPPM, which can speed-up long-range
calulations, particularly in parallel or on GPUs. Fourier transform
calculations, particularly in parallel or on GPUs. Fourier transform
and related PPPM operations are somewhat insensitive to floating point
truncation errors and thus do not always need to be performed in
double precision. Using the -DFFT_SINGLE setting trades off a little
@ -600,10 +599,10 @@ LAMMPS will generate a run-time error. As far as we know, the
settings defined in src/lmptype.h are portable and work on every
current system.
In all cases, the size of problem that can be run on a per-processor
basis is limited by 4-byte integer storage to 2^31 atoms per processor
(about 2 billion). This should not normally be a limitation since such
a problem would have a huge per-processor memory footprint due to
In all cases, the size of problem that can be run on a per-processor
basis is limited by 4-byte integer storage to 2^31 atoms per processor
(about 2 billion). This should not normally be a limitation since such
a problem would have a huge per-processor memory footprint due to
neighbor lists and would run very slowly in terms of CPU secs/timestep.
:line
@ -683,7 +682,7 @@ various make commands that can be used to manipulate packages.
If you use a command in a LAMMPS input script that is part of a
package, you must have built LAMMPS with that package, else you will
get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can
Every command's doc page specifies if it is part of a package. You can
also type
lmp_machine -h :pre
@ -706,7 +705,7 @@ future changes to LAMMPS.
User packages, such as user-atc or user-omp, have been contributed by
users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package.
Otherwise, they are a a set of files grouped together which add a
Otherwise, they are a set of files grouped together which add a
specific functionality to the code.
User packages don't necessarily meet the requirements of the standard
@ -841,7 +840,7 @@ libpackage.a
Makefile.lammps :pre
The Makefile.lammps file will typically be a copy of one of the
Makefile.lammps.* files in the library directory.
Makefile.lammps.* files in the library directory.
Note that you must insure that the settings in Makefile.lammps are
appropriate for your system. If they are not, the LAMMPS build may
@ -883,7 +882,7 @@ A few packages require specific settings in Makefile.machine, to
either build or use the package effectively. These are the
USER-INTEL, KOKKOS, USER-OMP, and OPT packages, used for accelerating
code performance on CPUs or other hardware, as discussed in "Section
5.3"_Section_accelerate.html#acc_3.
5.3"_Section_accelerate.html#acc_3.
A summary of what Makefile.machine changes are needed for each of
these packages is given in "Section 4"_Section_packages.html.
@ -1009,7 +1008,7 @@ Instead, it creates src/MAKE/MINE/Makefile.auto, which you can save or
rename if desired. Likewise it creates an executable named
src/lmp_auto, which you can rename using the -o switch if desired.
The most recently executed Make.py commmand is saved in
The most recently executed Make.py command is saved in
src/Make.py.last. You can use the "-r" switch (for redo) to re-invoke
the last command, or you can save a sequence of one or more Make.py
commands to a file and invoke the file of commands using "-r". You
@ -1065,7 +1064,7 @@ src/MAKE/Makefile.foo and perform the build in the directory
Obj_shared_foo. This is so that each file can be compiled with the
-fPIC flag which is required for inclusion in a shared library. The
build will create the file liblammps_foo.so which another application
can link to dyamically. It will also create a soft link liblammps.so,
can link to dynamically. It will also create a soft link liblammps.so,
which will point to the most recently built shared library. This is
the file the Python wrapper loads by default.
@ -1199,7 +1198,7 @@ installer package from "here"_http://rpm.lammps.org/windows.html
For running the non-MPI executable, follow these steps:
Get a command prompt by going to Start->Run... ,
Get a command prompt by going to Start->Run... ,
then typing "cmd". :ulb,l
Move to the directory where you have your input, e.g. a copy of
@ -1209,7 +1208,7 @@ At the command prompt, type "lmp_serial -in in.lj", replacing [in.lj]
with the name of your LAMMPS input script. :l
:ule
For the MPI version, which allows you to run LAMMPS under Windows on
For the MPI version, which allows you to run LAMMPS under Windows on
multiple processors, follow these steps:
Download and install
@ -1224,7 +1223,7 @@ For this you need to start a Command Prompt in {Administrator Mode}
installation directory, then into the subdirectory [bin] and execute
[smpd.exe -install]. Exit the command window.
Get a new, regular command prompt by going to Start->Run... ,
Get a new, regular command prompt by going to Start->Run... ,
then typing "cmd". :l
Move to the directory where you have your input file
@ -1417,8 +1416,8 @@ LAMMPS is compiled with CUDA=yes.
numa Nm :pre
This option is only relevant when using pthreads with hwloc support.
In this case Nm defines the number of NUMA regions (typicaly sockets)
on a node which will be utilizied by a single MPI rank. By default Nm
In this case Nm defines the number of NUMA regions (typically sockets)
on a node which will be utilized by a single MPI rank. By default Nm
= 1. If this option is used the total number of worker-threads per
MPI rank is threads*numa. Currently it is always almost better to
assign at least one MPI rank per NUMA region, and leave numa set to
@ -1482,13 +1481,13 @@ replica runs on on one or a few processors. Note that with MPI
installed on a machine (e.g. your desktop), you can run on more
(virtual) processors than you have physical processors.
To run multiple independent simulatoins from one input script, using
To run multiple independent simulations from one input script, using
multiple partitions, see "Section 6.4"_Section_howto.html#howto_4
of the manual. World- and universe-style "variables"_variable.html
are useful in this context.
-plog file :pre
Specify the base name for the partition log files, so partition N
writes log information to file.N. If file is none, then no partition
log files are created. This overrides the filename specified in the
@ -1499,7 +1498,7 @@ replica_files/log.lammps) If this option is not used the log file for
partition N is log.lammps.N or whatever is specified by the -log
command-line option.
-pscreen file :pre
-pscreen file :pre
Specify the base name for the partition screen file, so partition N
writes screen information to file.N. If file is none, then no
@ -1511,7 +1510,7 @@ sub-directory (-pscreen replica_files/screen). If this option is not
used the screen file for partition N is screen.N or whatever is
specified by the -screen command-line option.
-restart restartfile {remap} datafile keyword value ... :pre
-restart restartfile {remap} datafile keyword value ... :pre
Convert the restart file into a data file and immediately exit. This
is the same operation as if the following 2-line input script were
@ -1572,7 +1571,7 @@ to
so that the processors in each partition will be
0 1 2 4 5 6 8 9 10
0 1 2 4 5 6 8 9 10
3 7 11 :pre
See the "processors" command for how to insure processors from each
@ -1601,9 +1600,9 @@ implementations, either by environment variables that specify how to
order physical processors, or by config files that specify what
physical processors to assign to each MPI rank. The -reorder switch
simply gives you a portable way to do this without relying on MPI
itself. See the "processors out"_processors command for how to output
info on the final assignment of physical processors to the LAMMPS
simulation domain.
itself. See the "processors out"_processors.html command for how
to output info on the final assignment of physical processors to
the LAMMPS simulation domain.
-screen file :pre
@ -1663,12 +1662,12 @@ invokes the default USER-INTEL settings, as if the command "package
intel 1" were used at the top of your input script. These settings
can be changed by using the "-package intel" command-line switch or
the "package intel"_package.html command in your script. If the
USER-OMP package is also installed, the hybrid style with "intel omp"
arguments can be used to make the omp suffix a second choice, if a
requested style is not available in the USER-INTEL package. It will
also invoke the default USER-OMP settings, as if the command "package
omp 0" were used at the top of your input script. These settings can
be changed by using the "-package omp" command-line switch or the
USER-OMP package is also installed, the hybrid style with "intel omp"
arguments can be used to make the omp suffix a second choice, if a
requested style is not available in the USER-INTEL package. It will
also invoke the default USER-OMP settings, as if the command "package
omp 0" were used at the top of your input script. These settings can
be changed by using the "-package omp" command-line switch or the
"package omp"_package.html command in your script.
For the KOKKOS package, using this command-line switch also invokes
@ -1727,7 +1726,7 @@ thermodynamic state and a total run time for the simulation. It then
appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:
Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms
Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms :pre
Performance: 18.436 ns/day 1.302 hours/ns 106.689 timesteps/s
97.0% CPU use with 4 MPI tasks x no OpenMP threads :pre
@ -1757,14 +1756,14 @@ Ave special neighs/atom = 2.34032
Neighbor list builds = 26
Dangerous builds = 0 :pre
The first section provides a global loop timing summary. The loop time
The first section provides a global loop timing summary. The {loop time}
is the total wall time for the section. The {Performance} line is
provided for convenience to help predicting the number of loop
continuations required and for comparing performance with other
similar MD codes. The CPU use line provides the CPU utilzation per
continuations required and for comparing performance with other,
similar MD codes. The {CPU use} line provides the CPU utilization per
MPI task; it should be close to 100% times the number of OpenMP
threads (or 1). Lower numbers correspond to delays due to file I/O or
insufficient thread utilization.
threads (or 1 of no OpenMP). Lower numbers correspond to delays due
to file I/O or insufficient thread utilization.
The MPI task section gives the breakdown of the CPU run time (in
seconds) into major categories:
@ -1791,7 +1790,7 @@ is present that also prints the CPU utilization in percent. In
addition, when using {timer full} and the "package omp"_package.html
command are active, a similar timing summary of time spent in threaded
regions to monitor thread utilization and load balance is provided. A
new entry is the {Reduce} section, which lists the time spend in
new entry is the {Reduce} section, which lists the time spent in
reducing the per-thread data elements to the storage for non-threaded
computation. These thread timings are taking from the first MPI rank
only and and thus, as the breakdown for MPI tasks can change from MPI
@ -1833,7 +1832,7 @@ e.g.
Minimization stats:
Stopping criterion = linesearch alpha is zero
Energy initial, next-to-last, final =
Energy initial, next-to-last, final =
-6372.3765206 -8328.46998942 -8328.46998942
Force two-norm initial, final = 1059.36 5.36874
Force max component initial, final = 58.6026 1.46872

View File

@ -104,7 +104,7 @@ since binary files are not compatible across all platforms.
ch2lmp tool :h4,link(charmm)
The ch2lmp sub-directory contains tools for converting files
back-and-forth between the CHARMM MD code and LAMMPS.
back-and-forth between the CHARMM MD code and LAMMPS.
They are intended to make it easy to use CHARMM as a builder and as a
post-processor for LAMMPS. Using charmm2lammps.pl, you can convert a
@ -471,7 +471,7 @@ These tools were written by Aidan Thompson at Sandia.
restart2data tool :h4,link(restart)
NOTE: This tool is now obsolete and is not included in the current
LAMMPS distribution. This is becaues there is now a
LAMMPS distribution. This is because there is now a
"write_data"_write_data.html command, which can create a data file
from within an input script. Running LAMMPS with the "-r"
"command-line switch"_Section_start.html#start_7 as follows:

View File

@ -27,7 +27,7 @@
syntax</a></h2>
<p>fix_modify AtC consistent_fe_initialization &lt;on | off&gt;</p>
<ul>
<li>&lt;on|off&gt; = switch to activiate/deactiviate the intial setting of FE intrinsic field to match the projected MD field </li>
<li>&lt;on|off&gt; = switch to activiate/deactiviate the initial setting of FE intrinsic field to match the projected MD field </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>

View File

@ -20,7 +20,7 @@ coprocessors via offloading neighbor list and non-bonded force
calculations to the Phi. The same C++ code is used in both cases.
When offloading to a coprocessor from a CPU, the same routine is run
twice, once on the CPU and once with an offload flag. This allows
LAMMPS to run on the CPU cores and coprocessor cores simulataneously.
LAMMPS to run on the CPU cores and coprocessor cores simultaneously.
[Currently Available USER-INTEL Styles:]
@ -29,80 +29,80 @@ Bond Styles: fene, harmonic :l
Dihedral Styles: charmm, harmonic, opls :l
Fixes: nve, npt, nvt, nvt/sllod :l
Improper Styles: cvff, harmonic :l
Pair Styles: buck/coul/cut, buck/coul/long, buck, gayberne,
Pair Styles: buck/coul/cut, buck/coul/long, buck, eam, gayberne,
charmm/coul/long, lj/cut, lj/cut/coul/long, sw, tersoff :l
K-Space Styles: pppm :l
:ule
[Speed-ups to expect:]
The speedups will depend on your simulation, the hardware, which
styles are used, the number of atoms, and the floating-point
precision mode. Performance improvements are shown compared to
LAMMPS {without using other acceleration packages} as these are
under active development (and subject to performance changes). The
The speedups will depend on your simulation, the hardware, which
styles are used, the number of atoms, and the floating-point
precision mode. Performance improvements are shown compared to
LAMMPS {without using other acceleration packages} as these are
under active development (and subject to performance changes). The
measurements were performed using the input files available in
the src/USER-INTEL/TEST directory. These are scalable in size; the
results given are with 512K particles (524K for Liquid Crystal).
the src/USER-INTEL/TEST directory. These are scalable in size; the
results given are with 512K particles (524K for Liquid Crystal).
Most of the simulations are standard LAMMPS benchmarks (indicated
by the filename extension in parenthesis) with modifications to the
run length and to add a warmup run (for use with offload
benchmarks).
by the filename extension in parenthesis) with modifications to the
run length and to add a warmup run (for use with offload
benchmarks).
:c,image(JPG/user_intel.png)
Results are speedups obtained on Intel Xeon E5-2697v4 processors
(code-named Broadwell) and Intel Xeon Phi 7250 processors
Results are speedups obtained on Intel Xeon E5-2697v4 processors
(code-named Broadwell) and Intel Xeon Phi 7250 processors
(code-named Knights Landing) with "18 Jun 2016" LAMMPS built with
Intel Parallel Studio 2016 update 3. Results are with 1 MPI task
per physical core. See {src/USER-INTEL/TEST/README} for the raw
Intel Parallel Studio 2016 update 3. Results are with 1 MPI task
per physical core. See {src/USER-INTEL/TEST/README} for the raw
simulation rates and instructions to reproduce.
:line
[Quick Start for Experienced Users:]
LAMMPS should be built with the USER-INTEL package installed.
LAMMPS should be built with the USER-INTEL package installed.
Simulations should be run with 1 MPI task per physical {core},
not {hardware thread}.
For Intel Xeon CPUs:
Edit src/MAKE/OPTIONS/Makefile.intel_cpu_intelmpi as necessary. :ulb,l
If using {kspace_style pppm} in the input script, add "neigh_modify binsize 3" and "kspace_modify diff ad" to the input script for better
If using {kspace_style pppm} in the input script, add "neigh_modify binsize 3" and "kspace_modify diff ad" to the input script for better
performance. :l
"-pk intel 0 omp 2 -sf intel" added to LAMMPS command-line :l
:ule
For Intel Xeon Phi CPUs for simulations without {kspace_style
For Intel Xeon Phi CPUs for simulations without {kspace_style
pppm} in the input script :
Edit src/MAKE/OPTIONS/Makefile.knl as necessary. :ulb,l
Runs should be performed using MCDRAM. :l
"-pk intel 0 omp 2 -sf intel" {or} "-pk intel 0 omp 4 -sf intel"
should be added to the LAMMPS command-line. Choice for best
"-pk intel 0 omp 2 -sf intel" {or} "-pk intel 0 omp 4 -sf intel"
should be added to the LAMMPS command-line. Choice for best
performance will depend on the simulation. :l
:ule
For Intel Xeon Phi CPUs for simulations with {kspace_style
For Intel Xeon Phi CPUs for simulations with {kspace_style
pppm} in the input script:
Edit src/MAKE/OPTIONS/Makefile.knl as necessary. :ulb,l
Runs should be performed using MCDRAM. :l
Add "neigh_modify binsize 3" to the input script for better
Add "neigh_modify binsize 3" to the input script for better
performance. :l
Add "kspace_modify diff ad" to the input script for better
Add "kspace_modify diff ad" to the input script for better
performance. :l
export KMP_AFFINITY=none :l
"-pk intel 0 omp 3 lrt yes -sf intel" or "-pk intel 0 omp 1 lrt yes
-sf intel" added to LAMMPS command-line. Choice for best performance
-sf intel" added to LAMMPS command-line. Choice for best performance
will depend on the simulation. :l
:ule
For Intel Xeon Phi coprocessors (Offload):
For Intel Xeon Phi coprocessors (Offload):
Edit src/MAKE/OPTIONS/Makefile.intel_coprocessor as necessary :ulb,l
"-pk intel N omp 1" added to command-line where N is the number of
"-pk intel N omp 1" added to command-line where N is the number of
coprocessors per node. :l
:ule
@ -111,11 +111,11 @@ coprocessors per node. :l
[Required hardware/software:]
In order to use offload to coprocessors, an Intel Xeon Phi
coprocessor and an Intel compiler are required. For this, the
coprocessor and an Intel compiler are required. For this, the
recommended version of the Intel compiler is 14.0.1.106 or
versions 15.0.2.044 and higher.
Although any compiler can be used with the USER-INTEL pacakge,
Although any compiler can be used with the USER-INTEL package,
currently, vectorization directives are disabled by default when
not using Intel compilers due to lack of standard support and
observations of decreased performance. The OpenMP standard now
@ -133,7 +133,7 @@ slightly lower.
[Notes about Simultaneous Multithreading:]
Modern CPUs often support Simultaneous Multithreading (SMT). On
Modern CPUs often support Simultaneous Multithreading (SMT). On
Intel processors, this is called Hyper-Threading (HT) technology.
SMT is hardware support for running multiple threads efficiently on
a single core. {Hardware threads} or {logical cores} are often used
@ -141,8 +141,8 @@ to refer to the number of threads that are supported in hardware.
For example, the Intel Xeon E5-2697v4 processor is described
as having 36 cores and 72 threads. This means that 36 MPI processes
or OpenMP threads can run simultaneously on separate cores, but that
up to 72 MPI processes or OpenMP threads can be running on the CPU
without costly operating system context switches.
up to 72 MPI processes or OpenMP threads can be running on the CPU
without costly operating system context switches.
Molecular dynamics simulations will often run faster when making use
of SMT. If a thread becomes stalled, for example because it is
@ -150,18 +150,18 @@ waiting on data that has not yet arrived from memory, another thread
can start running so that the CPU pipeline is still being used
efficiently. Although benefits can be seen by launching a MPI task
for every hardware thread, for multinode simulations, we recommend
that OpenMP threads are used for SMT instead, either with the
USER-INTEL package, "USER-OMP package"_accelerate_omp.html", or
that OpenMP threads are used for SMT instead, either with the
USER-INTEL package, "USER-OMP package"_accelerate_omp.html, or
"KOKKOS package"_accelerate_kokkos.html. In the example above, up
to 36X speedups can be observed by using all 36 physical cores with
LAMMPS. By using all 72 hardware threads, an additional 10-30%
performance gain can be achieved.
The BIOS on many platforms allows SMT to be disabled, however, we do
not recommend this on modern processors as there is little to no
not recommend this on modern processors as there is little to no
benefit for any software package in most cases. The operating system
will report every hardware thread as a separate core allowing one to
determine the number of hardware threads available. On Linux systems,
will report every hardware thread as a separate core allowing one to
determine the number of hardware threads available. On Linux systems,
this information can normally be obtained with:
cat /proc/cpuinfo :pre
@ -182,21 +182,21 @@ Makefile.intel_cpu_openpmi # Intel Compiler, OpenMPI, No Offload
Makefile.intel_coprocessor # Intel Compiler, Intel MPI, Offload :pre
Makefile.knl is identical to Makefile.intel_cpu_intelmpi except that
it explicitly specifies that vectorization should be for Intel
Xeon Phi x200 processors making it easier to cross-compile. For
users with recent installations of Intel Parallel Studio, the
it explicitly specifies that vectorization should be for Intel
Xeon Phi x200 processors making it easier to cross-compile. For
users with recent installations of Intel Parallel Studio, the
process can be as simple as:
make yes-user-intel
source /opt/intel/parallel_studio_xe_2016.3.067/psxevars.sh
source /opt/intel/parallel_studio_xe_2016.3.067/psxevars.sh
# or psxevars.csh for C-shell
make intel_cpu_intelmpi :pre
Alternatively, the build can be accomplished with the src/Make.py
script, described in "Section 2.4"_Section_start.html#start_4 of the
Alternatively, the build can be accomplished with the src/Make.py
script, described in "Section 2.4"_Section_start.html#start_4 of the
manual. Type "Make.py -h" for help. For an example:
Make.py -v -p intel omp -intel cpu -a file intel_cpu_intelmpi :pre
Make.py -v -p intel omp -intel cpu -a file intel_cpu_intelmpi :pre
Note that if you build with support for a Phi coprocessor, the same
binary can be used on nodes with or without coprocessors installed.
@ -205,26 +205,26 @@ without offload support will produce a smaller binary.
The general requirements for Makefiles with the USER-INTEL package
are as follows. "-DLAMMPS_MEMALIGN=64" is required for CCFLAGS. When
using Intel compilers, "-restrict" is required and "-qopenmp" is
highly recommended for CCFLAGS and LINKFLAGS. LIB should include
using Intel compilers, "-restrict" is required and "-qopenmp" is
highly recommended for CCFLAGS and LINKFLAGS. LIB should include
"-ltbbmalloc". For builds supporting offload, "-DLMP_INTEL_OFFLOAD"
is required for CCFLAGS and "-qoffload" is required for LINKFLAGS.
Other recommended CCFLAG options for best performance are
"-O2 -fno-alias -ansi-alias -qoverride-limits fp-model fast=2
-no-prec-div". The Make.py command will add all of these
Other recommended CCFLAG options for best performance are
"-O2 -fno-alias -ansi-alias -qoverride-limits fp-model fast=2
-no-prec-div". The Make.py command will add all of these
automatically.
NOTE: The vectorization and math capabilities can differ depending on
the CPU. For Intel compilers, the "-x" flag specifies the type of
processor for which to optimize. "-xHost" specifies that the compiler
should build for the processor used for compiling. For Intel Xeon Phi
should build for the processor used for compiling. For Intel Xeon Phi
x200 series processors, this option is "-xMIC-AVX512". For fourth
generation Intel Xeon (v4/Broadwell) processors, "-xCORE-AVX2" should
generation Intel Xeon (v4/Broadwell) processors, "-xCORE-AVX2" should
be used. For older Intel Xeon processors, "-xAVX" will perform best
in general for the different simulations in LAMMPS. The default
in most of the example Makefiles is to use "-xHost", however this
should not be used when cross-compiling.
[Running LAMMPS with the USER-INTEL package:]
Running LAMMPS with the USER-INTEL package is similar to normal use
@ -232,7 +232,7 @@ with the exceptions that one should 1) specify that LAMMPS should use
the USER-INTEL package, 2) specify the number of OpenMP threads, and
3) optionally specify the specific LAMMPS styles that should use the
USER-INTEL package. 1) and 2) can be performed from the command-line
or by editing the input script. 3) requires editing the input script.
or by editing the input script. 3) requires editing the input script.
Advanced performance tuning options are also described below to get
the best performance.
@ -241,14 +241,14 @@ coprocessor), best performance is normally obtained by using 1 MPI
task per physical core and additional OpenMP threads with SMT. For
Intel Xeon processors, 2 OpenMP threads should be used for SMT.
For Intel Xeon Phi CPUs, 2 or 4 OpenMP threads should be used
(best choice depends on the simulation). In cases where the user
specifies that LRT mode is used (described below), 1 or 3 OpenMP
(best choice depends on the simulation). In cases where the user
specifies that LRT mode is used (described below), 1 or 3 OpenMP
threads should be used. For multi-node runs, using 1 MPI task per
physical core will often perform best, however, depending on the
machine and scale, users might get better performance by decreasing
the number of MPI tasks and using more OpenMP threads. For
performance, the product of the number of MPI tasks and OpenMP
threads should not exceed the number of available hardware threads in
the number of MPI tasks and using more OpenMP threads. For
performance, the product of the number of MPI tasks and OpenMP
threads should not exceed the number of available hardware threads in
almost all cases.
NOTE: Setting core affinity is often used to pin MPI tasks and OpenMP
@ -257,21 +257,21 @@ uniform. Unless disabled at build time, affinity for MPI tasks and
OpenMP threads on the host (CPU) will be set by default on the host
{when using offload to a coprocessor}. In this case, it is unnecessary
to use other methods to control affinity (e.g. taskset, numactl,
I_MPI_PIN_DOMAIN, etc.). This can be disabled with the {no_affinity}
option to the "package intel"_package.html command or by disabling the
option at build time (by adding -DINTEL_OFFLOAD_NOAFFINITY to the
CCFLAGS line of your Makefile). Disabling this option is not
recommended, especially when running on a machine with Intel
I_MPI_PIN_DOMAIN, etc.). This can be disabled with the {no_affinity}
option to the "package intel"_package.html command or by disabling the
option at build time (by adding -DINTEL_OFFLOAD_NOAFFINITY to the
CCFLAGS line of your Makefile). Disabling this option is not
recommended, especially when running on a machine with Intel
Hyper-Threading technology disabled.
[Run with the USER-INTEL package from the command line:]
To enable USER-INTEL optimizations for all available styles used in
the input script, the "-sf intel"
To enable USER-INTEL optimizations for all available styles used in
the input script, the "-sf intel"
"command-line switch"_Section_start.html#start_7 can be used without
any requirement for editing the input script. This switch will
automatically append "intel" to styles that support it. It also
invokes a default command: "package intel 1"_package.html. This
automatically append "intel" to styles that support it. It also
invokes a default command: "package intel 1"_package.html. This
package command is used to set options for the USER-INTEL package.
The default package command will specify that USER-INTEL calculations
are performed in mixed precision, that the number of OpenMP threads
@ -281,16 +281,16 @@ support, that 1 coprocessor per node will be used with automatic
balancing of work between the CPU and the coprocessor.
You can specify different options for the USER-INTEL package by using
the "-pk intel Nphi" "command-line switch"_Section_start.html#start_7
the "-pk intel Nphi" "command-line switch"_Section_start.html#start_7
with keyword/value pairs as specified in the documentation. Here,
Nphi = # of Xeon Phi coprocessors/node (ignored without offload
support). Common options to the USER-INTEL package include {omp} to
override any OMP_NUM_THREADS setting and specify the number of OpenMP
threads, {mode} to set the floating-point precision mode, and
{lrt} to enable Long-Range Thread mode as described below. See the
"package intel"_package.html command for details, including the
default values used for all its options if not specified, and how to
set the number of OpenMP threads via the OMP_NUM_THREADS environment
{lrt} to enable Long-Range Thread mode as described below. See the
"package intel"_package.html command for details, including the
default values used for all its options if not specified, and how to
set the number of OpenMP threads via the OMP_NUM_THREADS environment
variable if desired.
Examples (see documentation for your MPI/Machine for differences in
@ -303,7 +303,7 @@ mpirun -np 72 -ppn 36 lmp_machine -sf intel -in in.script -pk intel 0 omp 2 mode
As an alternative to adding command-line arguments, the input script
can be edited to enable the USER-INTEL package. This requires adding
the "package intel"_package.html command to the top of the input
the "package intel"_package.html command to the top of the input
script. For the second example above, this would be:
package intel 0 omp 2 mode double :pre
@ -314,46 +314,46 @@ add an "intel" suffix to the individual style, e.g.:
pair_style lj/cut/intel 2.5 :pre
Alternatively, the "suffix intel"_suffix.html command can be added to
the input script to enable USER-INTEL styles for the commands that
the input script to enable USER-INTEL styles for the commands that
follow in the input script.
[Tuning for Performance:]
NOTE: The USER-INTEL package will perform better with modifications
to the input script when "PPPM"_kspace_style.html is used:
"kspace_modify diff ad"_kspace_modify.html and "neigh_modify binsize
NOTE: The USER-INTEL package will perform better with modifications
to the input script when "PPPM"_kspace_style.html is used:
"kspace_modify diff ad"_kspace_modify.html and "neigh_modify binsize
3"_neigh_modify.html should be added to the input script.
Long-Range Thread (LRT) mode is an option to the "package
Long-Range Thread (LRT) mode is an option to the "package
intel"_package.html command that can improve performance when using
"PPPM"_kspace_style.html for long-range electrostatics on processors
with SMT. It generates an extra pthread for each MPI task. The thread
is dedicated to performing some of the PPPM calculations and MPI
with SMT. It generates an extra pthread for each MPI task. The thread
is dedicated to performing some of the PPPM calculations and MPI
communications. On Intel Xeon Phi x200 series CPUs, this will likely
always improve performance, even on a single node. On Intel Xeon
processors, using this mode might result in better performance when
using multiple nodes, depending on the machine. To use this mode,
specify that the number of OpenMP threads is one less than would
specify that the number of OpenMP threads is one less than would
normally be used for the run and add the "lrt yes" option to the "-pk"
command-line suffix or "package intel" command. For example, if a run
would normally perform best with "-pk intel 0 omp 4", instead use
"-pk intel 0 omp 3 lrt yes". When using LRT, you should set the
environment variable "KMP_AFFINITY=none". LRT mode is not supported
"-pk intel 0 omp 3 lrt yes". When using LRT, you should set the
environment variable "KMP_AFFINITY=none". LRT mode is not supported
when using offload.
Not all styles are supported in the USER-INTEL package. You can mix
the USER-INTEL package with styles from the "OPT"_accelerate_opt.html
package or the "USER-OMP package"_accelerate_omp.html". Of course,
the USER-INTEL package with styles from the "OPT"_accelerate_opt.html
package or the "USER-OMP package"_accelerate_omp.html. Of course,
this requires that these packages were installed at build time. This
can performed automatically by using "-sf hybrid intel opt" or
"-sf hybrid intel omp" command-line options. Alternatively, the "opt"
and "omp" suffixes can be appended manually in the input script. For
the latter, the "package omp"_package.html command must be in the
input script or the "-pk omp Nt" "command-line
switch"_Section_start.html#start_7 must be used where Nt is the
input script or the "-pk omp Nt" "command-line
switch"_Section_start.html#start_7 must be used where Nt is the
number of OpenMP threads. The number of OpenMP threads should not be
set differently for the different packages. Note that the "suffix
hybrid intel omp"_suffix.html command can also be used within the
set differently for the different packages. Note that the "suffix
hybrid intel omp"_suffix.html command can also be used within the
input script to automatically append the "omp" suffix to styles when
USER-INTEL styles are not available.
@ -374,33 +374,33 @@ that MPI runs are performed in MCDRAM.
[Tuning for Offload Performance:]
The default settings for offload should give good performance.
The default settings for offload should give good performance.
When using LAMMPS with offload to Intel coprocessors, best performance
will typically be achieved with concurrent calculations performed on
both the CPU and the coprocessor. This is achieved by offloading only
a fraction of the neighbor and pair computations to the coprocessor or
using "hybrid"_pair_hybrid.html pair styles where only one style uses
the "intel" suffix. For simulations with long-range electrostatics or
bond, angle, dihedral, improper calculations, computation and data
transfer to the coprocessor will run concurrently with computations
the "intel" suffix. For simulations with long-range electrostatics or
bond, angle, dihedral, improper calculations, computation and data
transfer to the coprocessor will run concurrently with computations
and MPI communications for these calculations on the host CPU. This
is illustrated in the figure below for the rhodopsin protein benchmark
running on E5-2697v2 processors with a Intel Xeon Phi 7120p
running on E5-2697v2 processors with a Intel Xeon Phi 7120p
coprocessor. In this plot, the vertical access is time and routines
running at the same time are running concurrently on both the host and
the coprocessor.
:c,image(JPG/offload_knc.png)
The fraction of the offloaded work is controlled by the {balance}
keyword in the "package intel"_package.html command. A balance of 0
runs all calculations on the CPU. A balance of 1 runs all
supported calculations on the coprocessor. A balance of 0.5 runs half
of the calculations on the coprocessor. Setting the balance to -1
(the default) will enable dynamic load balancing that continously
adjusts the fraction of offloaded work throughout the simulation.
Because data transfer cannot be timed, this option typically produces
The fraction of the offloaded work is controlled by the {balance}
keyword in the "package intel"_package.html command. A balance of 0
runs all calculations on the CPU. A balance of 1 runs all
supported calculations on the coprocessor. A balance of 0.5 runs half
of the calculations on the coprocessor. Setting the balance to -1
(the default) will enable dynamic load balancing that continously
adjusts the fraction of offloaded work throughout the simulation.
Because data transfer cannot be timed, this option typically produces
results within 5 to 10 percent of the optimal fixed balance.
If running short benchmark runs with dynamic load balancing, adding a
@ -418,17 +418,17 @@ with 60 cores available for offload and 4 hardware threads per core
each MPI task to use a subset of 10 threads on the coprocessor. Fine
tuning of the number of threads to use per MPI task or the number of
threads to use per core can be accomplished with keyword settings of
the "package intel"_package.html command.
the "package intel"_package.html command.
The USER-INTEL package has two modes for deciding which atoms will be
handled by the coprocessor. This choice is controlled with the {ghost}
keyword of the "package intel"_package.html command. When set to 0,
ghost atoms (atoms at the borders between MPI tasks) are not offloaded
to the card. This allows for overlap of MPI communication of forces
with computation on the coprocessor when the "newton"_newton.html
setting is "on". The default is dependent on the style being used,
The USER-INTEL package has two modes for deciding which atoms will be
handled by the coprocessor. This choice is controlled with the {ghost}
keyword of the "package intel"_package.html command. When set to 0,
ghost atoms (atoms at the borders between MPI tasks) are not offloaded
to the card. This allows for overlap of MPI communication of forces
with computation on the coprocessor when the "newton"_newton.html
setting is "on". The default is dependent on the style being used,
however, better performance may be achieved by setting this option
explictly.
explicitly.
When using offload with CPU Hyper-Threading disabled, it may help
performance to use fewer MPI tasks and OpenMP threads than available
@ -442,10 +442,10 @@ mode is being used and indicating the number of coprocessor threads
per MPI task. Additionally, an offload timing summary is printed at
the end of each run. When offloading, the frequency for "atom
sorting"_atom_modify.html is changed to 1 so that the per-atom data is
effectively sorted at every rebuild of the neighbor lists. All the
available coprocessor threads on each Phi will be divided among MPI
tasks, unless the {tptask} option of the "-pk intel" "command-line
switch"_Section_start.html#start_7 is used to limit the coprocessor
effectively sorted at every rebuild of the neighbor lists. All the
available coprocessor threads on each Phi will be divided among MPI
tasks, unless the {tptask} option of the "-pk intel" "command-line
switch"_Section_start.html#start_7 is used to limit the coprocessor
threads per MPI task.
[Restrictions:]

View File

@ -65,7 +65,7 @@ Make.py -v -p kokkos -kokkos omp -o mpi -a file mpi # or one-line build via Ma
mpirun -np 16 lmp_mpi -k on -sf kk -in in.lj # 1 node, 16 MPI tasks/node, no threads
mpirun -np 2 -ppn 1 lmp_mpi -k on t 16 -sf kk -in in.lj # 2 nodes, 1 MPI task/node, 16 threads/task
mpirun -np 2 lmp_mpi -k on t 8 -sf kk -in in.lj # 1 node, 2 MPI tasks/node, 8 threads/task
mpirun -np 2 lmp_mpi -k on t 8 -sf kk -in in.lj # 1 node, 2 MPI tasks/node, 8 threads/task
mpirun -np 32 -ppn 4 lmp_mpi -k on t 4 -sf kk -in in.lj # 8 nodes, 4 MPI tasks/node, 4 threads/task :pre
specify variables and settings in your Makefile.machine that enable OpenMP, GPU, or Phi support
@ -110,14 +110,14 @@ mpirun -np 96 -ppn 12 lmp_g++ -k on t 20 -sf kk -in in.lj # ditto on 8 Phis :p
[Required hardware/software:]
Kokkos support within LAMMPS must be built with a C++11 compatible
compiler. If using gcc, version 4.8.1 or later is required.
compiler. If using gcc, version 4.7.2 or later is required.
To build with Kokkos support for CPUs, your compiler must support the
OpenMP interface. You should have one or more multi-core CPUs so that
multiple threads can be launched by each MPI task running on a CPU.
To build with Kokkos support for NVIDIA GPUs, NVIDIA Cuda software
version 6.5 or later must be installed on your system. See the
version 7.5 or later must be installed on your system. See the
discussion for the "GPU"_accelerate_gpu.html package for details of
how to check and do this.
@ -178,7 +178,7 @@ make kokkos_cuda_mpich :pre
These examples set the KOKKOS-specific OMP, MIC, CUDA variables on the
make command line which requires a GNU-compatible make command. Try
"gmake" if your system's standard make complains.
"gmake" if your system's standard make complains.
NOTE: If you build using make line variables and re-build LAMMPS twice
with different KOKKOS options and the *same* target, e.g. g++ in the
@ -217,7 +217,7 @@ best performance its CCFLAGS setting should use -O3 and have a
KOKKOS_ARCH setting that matches the compute capability of your NVIDIA
hardware and software installation, e.g. KOKKOS_ARCH=Kepler30. Note
the minimal required compute capability is 2.0, but this will give
signicantly reduced performance compared to Kepler generation GPUs
significantly reduced performance compared to Kepler generation GPUs
with compute capability 3.x. For the LINK setting, "nvcc" should not
be used; instead use g++ or another compiler suitable for linking C++
applications. Often you will want to use your MPI compiler wrapper
@ -234,7 +234,7 @@ provides alternative methods via environment variables for binding
threads to hardware cores. More info on binding threads to cores is
given in "Section 5.3"_Section_accelerate.html#acc_3.
KOKKOS_ARCH=KNC enables compiler switches needed when compling for an
KOKKOS_ARCH=KNC enables compiler switches needed when compiling for an
Intel Phi processor.
KOKKOS_USE_TPLS=librt enables use of a more accurate timer mechanism
@ -272,7 +272,7 @@ coprocessor support you need to insure there are one or more MPI tasks
per coprocessor, and choose the number of coprocessor threads to use
per MPI task (via the "-k" command-line switch discussed below). The
product of MPI tasks * coprocessor threads/task should not exceed the
maximum number of threads the coproprocessor is designed to run,
maximum number of threads the coprocessor is designed to run,
otherwise performance will suffer. This value is 240 for current
generation Xeon Phi(TM) chips, which is 60 physical cores * 4
threads/core. Note that with the KOKKOS package you do not need to
@ -333,7 +333,7 @@ device=CUDA are the same.
You must still use the "-k on" "command-line
switch"_Section_start.html#start_7 to enable the KOKKOS package, and
specify its additional arguments for hardware options appopriate to
specify its additional arguments for hardware options appropriate to
your system, as documented above.
Use the "suffix kk"_suffix.html command, or you can explicitly add a
@ -394,7 +394,7 @@ additional parallelism (beyond MPI) will be invoked on the host
CPU(s).
You can compare the performance running in different modes:
run with 1 MPI task/node and N threads/task
run with N MPI tasks/node and 1 thread/task
run with settings in between these extremes :ul
@ -427,7 +427,7 @@ e.g. src/MAKE/Makefile.cuda, is correct for your GPU hardware/software
details).
The -np setting of the mpirun command should set the number of MPI
tasks/node to be equal to the # of physical GPUs on the node.
tasks/node to be equal to the # of physical GPUs on the node.
Use the "-k" "command-line switch"_Section_commands.html#start_7 to
specify the number of GPUs per node, and the number of threads per MPI

View File

@ -96,7 +96,7 @@ variable.
Depending on which styles are accelerated, you should look for a
reduction in the "Pair time", "Bond time", "KSpace time", and "Loop
time" values printed at the end of a run.
time" values printed at the end of a run.
You may see a small performance advantage (5 to 20%) when running a
USER-OMP style (in serial or parallel) with a single thread per MPI

View File

@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -8,6 +8,7 @@
angle_style class2 command :h3
angle_style class2/omp command :h3
angle_style class2/kk command :h3
[Syntax:]

View File

@ -61,7 +61,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -66,7 +66,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -66,7 +66,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -21,11 +21,11 @@ angle_coeff 6 2.1 180.0 :pre
[Description:]
The {dipole} angle style is used to control the orientation of a dipolar
atom within a molecule "(Orsi)"_#Orsi. Specifically, the {dipole} angle
style restrains the orientation of a point dipole mu_j (embedded in atom
'j') with respect to a reference (bond) vector r_ij = r_i - r_j, where 'i'
is another atom of the same molecule (typically, 'i' and 'j' are also
covalently bonded).
atom within a molecule "(Orsi)"_#Orsi. Specifically, the {dipole} angle
style restrains the orientation of a point dipole mu_j (embedded in atom
'j') with respect to a reference (bond) vector r_ij = r_i - r_j, where 'i'
is another atom of the same molecule (typically, 'i' and 'j' are also
covalently bonded).
It is convenient to define an angle gamma between the 'free' vector mu_j
and the reference (bond) vector r_ij:
@ -37,21 +37,21 @@ The {dipole} angle style uses the potential:
:c,image(Eqs/angle_dipole_potential.jpg)
where K is a rigidity constant and gamma0 is an equilibrium (reference)
angle.
angle.
The torque on the dipole can be obtained by differentiating the
potential using the 'chain rule' as in appendix C.3 of
The torque on the dipole can be obtained by differentiating the
potential using the 'chain rule' as in appendix C.3 of
"(Allen)"_#Allen:
:c,image(Eqs/angle_dipole_torque.jpg)
Example: if gamma0 is set to 0 degrees, the torque generated by
the potential will tend to align the dipole along the reference
the potential will tend to align the dipole along the reference
direction defined by the (bond) vector r_ij (in other words, mu_j is
restrained to point towards atom 'i').
The dipolar torque T_j must be counterbalanced in order to conserve
the local angular momentum. This is achieved via an additional force
The dipolar torque T_j must be counterbalanced in order to conserve
the local angular momentum. This is achieved via an additional force
couple generating a torque equivalent to the opposite of T_j:
:c,image(Eqs/angle_dipole_couple.jpg)
@ -118,7 +118,7 @@ This angle style should not be used with SHAKE.
:line
:link(Orsi)
[(Orsi)] Orsi & Essex, The ELBA force field for coarse-grain modeling of
[(Orsi)] Orsi & Essex, The ELBA force field for coarse-grain modeling of
lipid membranes, PloS ONE 6(12): e28637, 2011.
:link(Allen)

View File

@ -62,7 +62,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
USER_MISC package. See the "Making LAMMPS"_Section_start.html#start_3
USER_MISC package. See the "Making LAMMPS"_Section_start.html#start_3
section for more info on packages.
[Related commands:]

View File

@ -61,7 +61,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
USER_MISC package. See the "Making LAMMPS"_Section_start.html#start_3
USER_MISC package. See the "Making LAMMPS"_Section_start.html#start_3
section for more info on packages.
[Related commands:]

Some files were not shown because too many files have changed in this diff Show More