Compare commits
295 Commits
stable_17N
...
patch_17Ja
| Author | SHA1 | Date | |
|---|---|---|---|
| d2fc88a626 | |||
| c52a26382f | |||
| ad4d299975 | |||
| 83408b195f | |||
| cd7bdf9251 | |||
| 8c5b108900 | |||
| c19d2011bb | |||
| 973bef4d45 | |||
| 1b9e50c8cb | |||
| 252e07e083 | |||
| 74a661ae26 | |||
| d8bc590aaf | |||
| c9bea60710 | |||
| 5cd856c97f | |||
| 2f13365cf5 | |||
| 0a2b78acb8 | |||
| 3f46b6d782 | |||
| 5abd6e5122 | |||
| f3a82f454e | |||
| 473a3ebeef | |||
| b220850377 | |||
| fa00e0593f | |||
| 4a09399dc6 | |||
| 5821fe8dd5 | |||
| 98ceb6feb1 | |||
| 61cff85435 | |||
| aa0b327f7e | |||
| 04fe071968 | |||
| 78498715b4 | |||
| b2f67fea30 | |||
| c59bcf31d1 | |||
| 2540fc281c | |||
| e8e03dd440 | |||
| daf766d4f8 | |||
| 630783c8e8 | |||
| c94030d966 | |||
| 1229f6f60b | |||
| 0b081b0086 | |||
| 8e1cf6643c | |||
| 6950a99162 | |||
| 9f4e5e0661 | |||
| 34cb4027df | |||
| 1d0e600ab7 | |||
| 7162cafdf5 | |||
| ee9e7cfbd5 | |||
| 7839c335da | |||
| 622d926849 | |||
| 92d15d4a89 | |||
| 95706ac846 | |||
| d06688bb91 | |||
| d014e00e53 | |||
| 0db2a07993 | |||
| 33412c76ed | |||
| e5ac49d1de | |||
| 1a81da0f73 | |||
| c31f1e9f22 | |||
| ebd25cc078 | |||
| 9250a55923 | |||
| a9f0b7d523 | |||
| 20f8a8c219 | |||
| 09af780aa8 | |||
| 51e52b477a | |||
| 20a4e365b7 | |||
| 51fa33a407 | |||
| ccd09e3967 | |||
| 142770cb2a | |||
| 63f202501b | |||
| 83da5d3b5d | |||
| ebbf60b112 | |||
| 12c4fa25e8 | |||
| 3ac58452de | |||
| 9b348d567b | |||
| 467377094a | |||
| 5656e90b78 | |||
| 41a6a3076e | |||
| d4e8d47387 | |||
| f6a819580c | |||
| 6af56e686d | |||
| eb1c6a225c | |||
| 4d0a6d83bd | |||
| 958722573f | |||
| 9d46670972 | |||
| 1a9f2df3d0 | |||
| 1310438c8b | |||
| 9bf771207d | |||
| b9144d6332 | |||
| 267f05e5ca | |||
| aebc8ea826 | |||
| 53a1de1d40 | |||
| d059b5d334 | |||
| 7cff343680 | |||
| a1ac861084 | |||
| 17bdb57bb4 | |||
| fe14158c10 | |||
| 0bcbcca140 | |||
| 4cfe122ac6 | |||
| b46629ee39 | |||
| 42bbeb3f16 | |||
| 933b288ce9 | |||
| a7c5905ca4 | |||
| 37d5567f6d | |||
| b10d0c17ec | |||
| 4f45d39ac7 | |||
| 7d057d4c83 | |||
| 4f096dbad5 | |||
| 18b12efc9f | |||
| 2c7fea1e0d | |||
| 4d98bbdfa5 | |||
| 391ab761a4 | |||
| b0ebd3ef4e | |||
| 94c4f8fe5f | |||
| aa146e9b38 | |||
| eca9539f84 | |||
| 27172c4a55 | |||
| 4f195254af | |||
| 9a0007a13f | |||
| 994f36bc6f | |||
| b3557bfbf5 | |||
| 371df8ea72 | |||
| 06ae2804f6 | |||
| 68814d4fc8 | |||
| 616ca1de03 | |||
| b0263e87bb | |||
| 925f42727f | |||
| f553e230db | |||
| 6ab716164b | |||
| 7a45c72b97 | |||
| 634eb357d2 | |||
| a1036f2d74 | |||
| c301d70333 | |||
| 781daad2a0 | |||
| 3faa57a413 | |||
| fa435fb514 | |||
| ba96fcc15a | |||
| 304f65b164 | |||
| 4c33f31265 | |||
| ae8d882b03 | |||
| 7559bc9c5f | |||
| 62dea1bb63 | |||
| 800ff43413 | |||
| 9161bd98bf | |||
| f3327ca214 | |||
| 54963ba7da | |||
| ea76041803 | |||
| 7fb4faa439 | |||
| 41c9357dde | |||
| d1a55ad2e0 | |||
| d9a0f575f6 | |||
| 01e3a31639 | |||
| 992becc75f | |||
| 8b5e15e979 | |||
| b2b33cca16 | |||
| 2ceee6b9be | |||
| 386c12c970 | |||
| 590f317550 | |||
| c4e02a5d2b | |||
| c7ac9e79cb | |||
| 2ba424e1a3 | |||
| ca30c1ec88 | |||
| a1b441a71f | |||
| f6f2170369 | |||
| 81a2db8a0c | |||
| 0a176841e7 | |||
| 3027ac9250 | |||
| fc54ab5cea | |||
| e364b80724 | |||
| 830c9e8661 | |||
| 4907b29ad2 | |||
| eff7238ff2 | |||
| 126fb22e93 | |||
| 0a90492c44 | |||
| fed629c23e | |||
| 925481c3f4 | |||
| da2ad5b6e0 | |||
| bfcab72268 | |||
| f509f133af | |||
| 624c57e9da | |||
| f3b355bcbe | |||
| ae5764beac | |||
| fda43c00fd | |||
| b34be30be6 | |||
| 13b6196b82 | |||
| baf55c90f4 | |||
| 770f5d0bf7 | |||
| a31b00965a | |||
| a5e46e3e6a | |||
| 31be0da590 | |||
| 0f3b2544a1 | |||
| 586514e05c | |||
| 43c459ba56 | |||
| b5c3d2f66c | |||
| 5187cb97e5 | |||
| eff503e56c | |||
| cdcebab3bd | |||
| ddf678da51 | |||
| 435421301b | |||
| 9b48c49f83 | |||
| d3d5ac17bf | |||
| 8318c67816 | |||
| 7c61dbf5e2 | |||
| 39a12b15d7 | |||
| fb3f597f41 | |||
| d14814ae2e | |||
| beb5a30f67 | |||
| 7ddb6670c0 | |||
| 789e62388f | |||
| 7d098bff90 | |||
| 1d970d3cdf | |||
| 42d430168b | |||
| 5ff5bc2a6c | |||
| 02ae2d218a | |||
| 470908fc93 | |||
| 6759630c16 | |||
| 87781771ba | |||
| df46b9aa38 | |||
| 647c6f00ce | |||
| 237307eda2 | |||
| d58dd4f159 | |||
| ae70f1090f | |||
| 59d100ab57 | |||
| 61e71d23ed | |||
| b6f2f0e6e9 | |||
| ff0441ac16 | |||
| 41907d3110 | |||
| b95f255af4 | |||
| d7b542101a | |||
| 0ffa50f8e8 | |||
| 7893215964 | |||
| 3dff9f2018 | |||
| dab232c542 | |||
| 9e9d9d5aa5 | |||
| c982b174a2 | |||
| 87a5a35bad | |||
| fd174ce2b1 | |||
| b11f376a4f | |||
| 230b29eae6 | |||
| 2383c31f15 | |||
| e175a18bdb | |||
| a5bde82e37 | |||
| d787afcca9 | |||
| 176cde8ed3 | |||
| 2862c20815 | |||
| 78e018829f | |||
| c78914e7b3 | |||
| 635f3ce128 | |||
| 81f68e06fd | |||
| 2a026c9ad8 | |||
| 4a3091f844 | |||
| 747c95c525 | |||
| 5c64934bc8 | |||
| 4e62e58d29 | |||
| 5ac2d9532e | |||
| 19ac9d2959 | |||
| 9f313aac75 | |||
| 0102c5dadc | |||
| 07e46b797a | |||
| b45d1e37ef | |||
| 2e7fd513d4 | |||
| 82364d10e3 | |||
| 16c8a307e5 | |||
| 94f14ab051 | |||
| 683f514fac | |||
| f617993944 | |||
| 4641c9e568 | |||
| 705f66aaee | |||
| e57ae1ce3f | |||
| 950442b8b1 | |||
| 1c68e42ecc | |||
| 5f94b31806 | |||
| fdf5d68f9f | |||
| 0c25f3b1d6 | |||
| 14c7cf4197 | |||
| 26870f223d | |||
| 09544d0698 | |||
| b5130a3b35 | |||
| 20daf82463 | |||
| 114926a488 | |||
| 5eb9dd0c5d | |||
| ebabc8f0bc | |||
| 232abf8534 | |||
| d22caf2658 | |||
| 3842aa6095 | |||
| 32c240978a | |||
| 212c2617f6 | |||
| 40f85c93ba | |||
| 2f02d98469 | |||
| 4553881fc2 | |||
| 81fcbcd99c | |||
| 82c6eb4675 | |||
| 8ed3f4226e | |||
| 9b7a0d7e1c | |||
| c9c2ae6c61 | |||
| 0229556b03 | |||
| 357d4517e8 | |||
| a4a97de84f |
@ -43,7 +43,7 @@ clean-all:
|
||||
rm -rf $(BUILDDIR)/* utils/txt2html/txt2html.exe
|
||||
|
||||
clean:
|
||||
rm -rf $(RSTDIR)
|
||||
rm -rf $(RSTDIR) html
|
||||
|
||||
html: $(OBJECTS)
|
||||
@(\
|
||||
|
||||
BIN
doc/src/Eqs/fix_grem.jpg
Normal file
|
After Width: | Height: | Size: 6.1 KiB |
9
doc/src/Eqs/fix_grem.tex
Normal file
@ -0,0 +1,9 @@
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
T_{eff} = \lambda + \eta (H - H_0)
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
BIN
doc/src/JPG/pylammps_dihedral.jpg
Normal file
|
After Width: | Height: | Size: 70 KiB |
BIN
doc/src/JPG/pylammps_mc_disordered.jpg
Normal file
|
After Width: | Height: | Size: 104 KiB |
BIN
doc/src/JPG/pylammps_mc_energies_plot.jpg
Normal file
|
After Width: | Height: | Size: 53 KiB |
BIN
doc/src/JPG/pylammps_mc_minimum.jpg
Normal file
|
After Width: | Height: | Size: 111 KiB |
BIN
doc/src/JPG/tutorial_additional_changes.png
Normal file
|
After Width: | Height: | Size: 21 KiB |
BIN
doc/src/JPG/tutorial_automated_checks.png
Normal file
|
After Width: | Height: | Size: 99 KiB |
BIN
doc/src/JPG/tutorial_automated_checks_passed.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
|
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 16 KiB |
BIN
doc/src/JPG/tutorial_changes_others.png
Normal file
|
After Width: | Height: | Size: 19 KiB |
BIN
doc/src/JPG/tutorial_create_new_pull_request1.png
Normal file
|
After Width: | Height: | Size: 51 KiB |
BIN
doc/src/JPG/tutorial_create_new_pull_request2.png
Normal file
|
After Width: | Height: | Size: 34 KiB |
BIN
doc/src/JPG/tutorial_edits_maintainers.png
Normal file
|
After Width: | Height: | Size: 13 KiB |
|
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 15 KiB |
|
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 70 KiB |
|
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 25 KiB |
BIN
doc/src/JPG/tutorial_new_pull_request.png
Normal file
|
After Width: | Height: | Size: 19 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request.png
Normal file
|
After Width: | Height: | Size: 27 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request2.png
Normal file
|
After Width: | Height: | Size: 78 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request3.png
Normal file
|
After Width: | Height: | Size: 77 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request4.png
Normal file
|
After Width: | Height: | Size: 104 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request5.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request6.png
Normal file
|
After Width: | Height: | Size: 6.2 KiB |
BIN
doc/src/JPG/tutorial_reverse_pull_request7.png
Normal file
|
After Width: | Height: | Size: 25 KiB |
BIN
doc/src/JPG/tutorial_steve_assignee.png
Normal file
|
After Width: | Height: | Size: 45 KiB |
@ -1,7 +1,7 @@
|
||||
<!-- HTML_ONLY -->
|
||||
<HEAD>
|
||||
<TITLE>LAMMPS Users Manual</TITLE>
|
||||
<META NAME="docnumber" CONTENT="17 Nov 2016 version">
|
||||
<META NAME="docnumber" CONTENT="17 Jan 2017 version">
|
||||
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
|
||||
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
|
||||
</HEAD>
|
||||
@ -21,7 +21,7 @@
|
||||
<H1></H1>
|
||||
|
||||
LAMMPS Documentation :c,h3
|
||||
17 Nov 2016 version :c,h4
|
||||
17 Jan 2017 version :c,h4
|
||||
|
||||
Version info: :h4
|
||||
|
||||
|
||||
@ -531,7 +531,8 @@ package"_Section_start.html#start_3.
|
||||
"dump nc"_dump_nc.html,
|
||||
"dump nc/mpiio"_dump_nc.html,
|
||||
"group2ndx"_group2ndx.html,
|
||||
"ndx2group"_group2ndx.html :tb(c=3,ea=c)
|
||||
"ndx2group"_group2ndx.html,
|
||||
"temper/grem"_temper_grem.html :tb(c=3,ea=c)
|
||||
|
||||
:line
|
||||
|
||||
@ -580,8 +581,9 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
|
||||
"indent"_fix_indent.html,
|
||||
"langevin (k)"_fix_langevin.html,
|
||||
"lineforce"_fix_lineforce.html,
|
||||
"momentum"_fix_momentum.html,
|
||||
"momentum (k)"_fix_momentum.html,
|
||||
"move"_fix_move.html,
|
||||
"mscg"_fix_mscg.html,
|
||||
"msst"_fix_msst.html,
|
||||
"neb"_fix_neb.html,
|
||||
"nph (ko)"_fix_nh.html,
|
||||
@ -632,10 +634,10 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
|
||||
"rigid/nve (o)"_fix_rigid.html,
|
||||
"rigid/nvt (o)"_fix_rigid.html,
|
||||
"rigid/small (o)"_fix_rigid.html,
|
||||
"rigid/small/nph"_fix_rigid.html,
|
||||
"rigid/small/npt"_fix_rigid.html,
|
||||
"rigid/small/nve"_fix_rigid.html,
|
||||
"rigid/small/nvt"_fix_rigid.html,
|
||||
"rigid/small/nph (o)"_fix_rigid.html,
|
||||
"rigid/small/npt (o)"_fix_rigid.html,
|
||||
"rigid/small/nve (o)"_fix_rigid.html,
|
||||
"rigid/small/nvt (o)"_fix_rigid.html,
|
||||
"setforce (k)"_fix_setforce.html,
|
||||
"shake"_fix_shake.html,
|
||||
"spring"_fix_spring.html,
|
||||
@ -687,6 +689,7 @@ package"_Section_start.html#start_3.
|
||||
"eos/table/rx"_fix_eos_table_rx.html,
|
||||
"flow/gauss"_fix_flow_gauss.html,
|
||||
"gle"_fix_gle.html,
|
||||
"grem"_fix_grem.html,
|
||||
"imd"_fix_imd.html,
|
||||
"ipi"_fix_ipi.html,
|
||||
"langevin/drude"_fix_langevin_drude.html,
|
||||
@ -700,6 +703,7 @@ package"_Section_start.html#start_3.
|
||||
"manifoldforce"_fix_manifoldforce.html,
|
||||
"meso/stationary"_fix_meso_stationary.html,
|
||||
"nve/manifold/rattle"_fix_nve_manifold_rattle.html,
|
||||
"nvk"_fix_nvk.html,
|
||||
"nvt/manifold/rattle"_fix_nvt_manifold_rattle.html,
|
||||
"nph/eff"_fix_nh_eff.html,
|
||||
"npt/eff"_fix_nh_eff.html,
|
||||
@ -765,6 +769,7 @@ KOKKOS, o = USER-OMP, t = OPT.
|
||||
"erotate/sphere"_compute_erotate_sphere.html,
|
||||
"erotate/sphere/atom"_compute_erotate_sphere_atom.html,
|
||||
"event/displace"_compute_event_displace.html,
|
||||
"global/atom"_compute_global_atom.html,
|
||||
"group/group"_compute_group_group.html,
|
||||
"gyration"_compute_gyration.html,
|
||||
"gyration/chunk"_compute_gyration_chunk.html,
|
||||
@ -911,10 +916,10 @@ KOKKOS, o = USER-OMP, t = OPT.
|
||||
"coul/msm"_pair_coul.html,
|
||||
"coul/streitz"_pair_coul.html,
|
||||
"coul/wolf (ko)"_pair_coul.html,
|
||||
"dpd (o)"_pair_dpd.html,
|
||||
"dpd/tstat (o)"_pair_dpd.html,
|
||||
"dpd (go)"_pair_dpd.html,
|
||||
"dpd/tstat (go)"_pair_dpd.html,
|
||||
"dsmc"_pair_dsmc.html,
|
||||
"eam (gkot)"_pair_eam.html,
|
||||
"eam (gkiot)"_pair_eam.html,
|
||||
"eam/alloy (gkot)"_pair_eam.html,
|
||||
"eam/fs (gkot)"_pair_eam.html,
|
||||
"eim (o)"_pair_eim.html,
|
||||
|
||||
@ -55,12 +55,13 @@ LAMMPS errors are detected at setup time; others like a bond
|
||||
stretching too far may not occur until the middle of a run.
|
||||
|
||||
LAMMPS tries to flag errors and print informative error messages so
|
||||
you can fix the problem. Of course, LAMMPS cannot figure out your
|
||||
physics or numerical mistakes, like choosing too big a timestep,
|
||||
specifying erroneous force field coefficients, or putting 2 atoms on
|
||||
top of each other! If you run into errors that LAMMPS doesn't catch
|
||||
that you think it should flag, please send an email to the
|
||||
"developers"_http://lammps.sandia.gov/authors.html.
|
||||
you can fix the problem. For most errors it will also print the last
|
||||
input script command that it was processing. Of course, LAMMPS cannot
|
||||
figure out your physics or numerical mistakes, like choosing too big a
|
||||
timestep, specifying erroneous force field coefficients, or putting 2
|
||||
atoms on top of each other! If you run into errors that LAMMPS
|
||||
doesn't catch that you think it should flag, please send an email to
|
||||
the "developers"_http://lammps.sandia.gov/authors.html.
|
||||
|
||||
If you get an error message about an invalid command in your input
|
||||
script, you can determine what command is causing the problem by
|
||||
|
||||
@ -1936,18 +1936,22 @@ documentation in the src/library.cpp file for details, including
|
||||
which quantities can be queried by name:
|
||||
|
||||
void *lammps_extract_global(void *, char *)
|
||||
void lammps_extract_box(void *, double *, double *,
|
||||
double *, double *, double *, int *, int *)
|
||||
void *lammps_extract_atom(void *, char *)
|
||||
void *lammps_extract_compute(void *, char *, int, int)
|
||||
void *lammps_extract_fix(void *, char *, int, int, int, int)
|
||||
void *lammps_extract_variable(void *, char *, char *) :pre
|
||||
|
||||
int lammps_set_variable(void *, char *, char *)
|
||||
double lammps_get_thermo(void *, char *) :pre
|
||||
void lammps_reset_box(void *, double *, double *, double, double, double)
|
||||
int lammps_set_variable(void *, char *, char *) :pre
|
||||
|
||||
double lammps_get_thermo(void *, char *)
|
||||
int lammps_get_natoms(void *)
|
||||
void lammps_gather_atoms(void *, double *)
|
||||
void lammps_scatter_atoms(void *, double *) :pre
|
||||
void lammps_create_atoms(void *, int, tagint *, int *, double *, double *) :pre
|
||||
void lammps_create_atoms(void *, int, tagint *, int *, double *, double *,
|
||||
imageint *, int) :pre
|
||||
|
||||
The extract functions return a pointer to various global or per-atom
|
||||
quantities stored in LAMMPS or to values calculated by a compute, fix,
|
||||
@ -1957,10 +1961,16 @@ the other extract functions, the underlying storage may be reallocated
|
||||
as LAMMPS runs, so you need to re-call the function to assure a
|
||||
current pointer or returned value(s).
|
||||
|
||||
The lammps_reset_box() function resets the size and shape of the
|
||||
simulation box, e.g. as part of restoring a previously extracted and
|
||||
saved state of a simulation.
|
||||
|
||||
The lammps_set_variable() function can set an existing string-style
|
||||
variable to a new string value, so that subsequent LAMMPS commands can
|
||||
access the variable. The lammps_get_thermo() function returns the
|
||||
current value of a thermo keyword as a double.
|
||||
access the variable.
|
||||
|
||||
The lammps_get_thermo() function returns the current value of a thermo
|
||||
keyword as a double precision value.
|
||||
|
||||
The lammps_get_natoms() function returns the total number of atoms in
|
||||
the system and can be used by the caller to allocate space for the
|
||||
@ -1973,10 +1983,13 @@ passed by the caller, to each atom owned by individual processors.
|
||||
|
||||
The lammps_create_atoms() function takes a list of N atoms as input
|
||||
with atom types and coords (required), an optionally atom IDs and
|
||||
velocities. It uses the coords of each atom to assign it as a new
|
||||
atom to the processor that owns it. Additional properties for the new
|
||||
atoms can be assigned via the lammps_scatter_atoms() or
|
||||
lammps_extract_atom() functions.
|
||||
velocities and image flags. It uses the coords of each atom to assign
|
||||
it as a new atom to the processor that owns it. This function is
|
||||
useful to add atoms to a simulation or (in tandem with
|
||||
lammps_reset_box()) to restore a previously extracted and saved state
|
||||
of a simulation. Additional properties for the new atoms can then be
|
||||
assigned via the lammps_scatter_atoms() or lammps_extract_atom()
|
||||
functions.
|
||||
|
||||
The examples/COUPLE and python directories have example C++ and C and
|
||||
Python codes which show how a driver code can link to LAMMPS as a
|
||||
|
||||
@ -1153,7 +1153,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
|
||||
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER-MISC/README, -, -, -
|
||||
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surface, Stefan Paquay (Eindhoven U of Technology), "fix manifoldforce"_fix_manifoldforce.html, USER/manifold, "manifold"_manifold, -
|
||||
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_VMD molfile plug-ins, Axel Kohlmeyer (Temple U), "dump molfile"_dump_molfile.html, -, -, VMD-MOLFILE
|
||||
"USER-NC-DUMP"_#USER-NC-DUMP, dump output via NetCDF, Lars Pastewka (Karlsruhe Institute of Technology, KIT), "dump nc, dump nc/mpiio"_dump_nc.html, -, -, lib/netcdf
|
||||
"USER-NC-DUMP"_#USER-NC-DUMP, dump output via NetCDF, Lars Pastewka (Karlsruhe Institute of Technology, KIT), "dump nc / dump nc/mpiio"_dump_nc.html, -, -, lib/netcdf
|
||||
"USER-OMP"_#USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section 5.3.4"_accelerate_omp.html, -, -, -
|
||||
"USER-PHONON"_#USER-PHONON, phonon dynamical matrix, Ling-Ti Kong (Shanghai Jiao Tong U), "fix phonon"_fix_phonon.html, USER/phonon, -, -
|
||||
"USER-QMMM"_#USER-QMMM, QM/MM coupling, Axel Kohlmeyer (Temple U), "fix qmmm"_fix_qmmm.html, USER/qmmm, -, lib/qmmm
|
||||
@ -1610,11 +1610,12 @@ and a "dump nc/mpiio"_dump_nc.html command to output LAMMPS snapshots
|
||||
in this format. See src/USER-NC-DUMP/README for more details.
|
||||
|
||||
NetCDF files can be directly visualized with the following tools:
|
||||
|
||||
Ovito (http://www.ovito.org/). Ovito supports the AMBER convention
|
||||
and all of the above extensions. :ulb,l
|
||||
and all of the above extensions. :ulb,l
|
||||
VMD (http://www.ks.uiuc.edu/Research/vmd/) :l
|
||||
AtomEye (http://www.libatoms.org/). The libAtoms version of AtomEye contains
|
||||
a NetCDF reader that is not present in the standard distribution of AtomEye :l,ule
|
||||
a NetCDF reader that is not present in the standard distribution of AtomEye :l,ule
|
||||
|
||||
The person who created these files is Lars Pastewka at
|
||||
Karlsruhe Institute of Technology (lars.pastewka at kit.edu).
|
||||
|
||||
@ -8,19 +8,26 @@
|
||||
|
||||
11. Python interface to LAMMPS :h3
|
||||
|
||||
LAMMPS can work together with Python in two ways. First, Python can
|
||||
LAMMPS can work together with Python in three ways. First, Python can
|
||||
wrap LAMMPS through the "LAMMPS library
|
||||
interface"_Section_howto.html#howto_19, so that a Python script can
|
||||
create one or more instances of LAMMPS and launch one or more
|
||||
simulations. In Python lingo, this is "extending" Python with LAMMPS.
|
||||
|
||||
Second, LAMMPS can use the Python interpreter, so that a LAMMPS input
|
||||
Second, the low-level Python interface can be used indirectly through the
|
||||
PyLammps and IPyLammps wrapper classes in Python. These wrappers try to
|
||||
simplify the usage of LAMMPS in Python by providing an object-based interface
|
||||
to common LAMMPS functionality. It also reduces the amount of code necessary to
|
||||
parameterize LAMMPS scripts through Python and makes variables and computes
|
||||
directly accessible. See "PyLammps interface"_#py_9 for more details.
|
||||
|
||||
Third, LAMMPS can use the Python interpreter, so that a LAMMPS input
|
||||
script can invoke Python code, and pass information back-and-forth
|
||||
between the input script and Python functions you write. The Python
|
||||
code can also callback to LAMMPS to query or change its attributes.
|
||||
In Python lingo, this is "embedding" Python in LAMMPS.
|
||||
|
||||
This section describes how to do both.
|
||||
This section describes how to use these three approaches.
|
||||
|
||||
11.1 "Overview of running LAMMPS from Python"_#py_1
|
||||
11.2 "Overview of using Python from a LAMMPS script"_#py_2
|
||||
@ -29,7 +36,8 @@ This section describes how to do both.
|
||||
11.5 "Extending Python with MPI to run in parallel"_#py_5
|
||||
11.6 "Testing the Python-LAMMPS interface"_#py_6
|
||||
11.7 "Using LAMMPS from Python"_#py_7
|
||||
11.8 "Example Python scripts that use LAMMPS"_#py_8 :ul
|
||||
11.8 "Example Python scripts that use LAMMPS"_#py_8
|
||||
11.9 "PyLammps interface"_#py_9 :ul
|
||||
|
||||
If you are not familiar with it, "Python"_http://www.python.org is a
|
||||
powerful scripting and programming language which can essentially do
|
||||
@ -824,3 +832,7 @@ different visualization package options. Click to see larger images:
|
||||
:image(JPG/screenshot_atomeye_small.jpg,JPG/screenshot_atomeye.jpg)
|
||||
:image(JPG/screenshot_pymol_small.jpg,JPG/screenshot_pymol.jpg)
|
||||
:image(JPG/screenshot_vmd_small.jpg,JPG/screenshot_vmd.jpg)
|
||||
|
||||
11.9 PyLammps interface :link(py_9),h4
|
||||
|
||||
Please see the "PyLammps Tutorial"_tutorial_pylammps.html.
|
||||
|
||||
@ -1727,7 +1727,7 @@ thermodynamic state and a total run time for the simulation. It then
|
||||
appends statistics about the CPU time and storage requirements for the
|
||||
simulation. An example set of statistics is shown here:
|
||||
|
||||
Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms
|
||||
Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms :pre
|
||||
|
||||
Performance: 18.436 ns/day 1.302 hours/ns 106.689 timesteps/s
|
||||
97.0% CPU use with 4 MPI tasks x no OpenMP threads :pre
|
||||
@ -1757,14 +1757,14 @@ Ave special neighs/atom = 2.34032
|
||||
Neighbor list builds = 26
|
||||
Dangerous builds = 0 :pre
|
||||
|
||||
The first section provides a global loop timing summary. The loop time
|
||||
The first section provides a global loop timing summary. The {loop time}
|
||||
is the total wall time for the section. The {Performance} line is
|
||||
provided for convenience to help predicting the number of loop
|
||||
continuations required and for comparing performance with other
|
||||
similar MD codes. The CPU use line provides the CPU utilzation per
|
||||
continuations required and for comparing performance with other,
|
||||
similar MD codes. The {CPU use} line provides the CPU utilzation per
|
||||
MPI task; it should be close to 100% times the number of OpenMP
|
||||
threads (or 1). Lower numbers correspond to delays due to file I/O or
|
||||
insufficient thread utilization.
|
||||
threads (or 1 of no OpenMP). Lower numbers correspond to delays due
|
||||
to file I/O or insufficient thread utilization.
|
||||
|
||||
The MPI task section gives the breakdown of the CPU run time (in
|
||||
seconds) into major categories:
|
||||
@ -1791,7 +1791,7 @@ is present that also prints the CPU utilization in percent. In
|
||||
addition, when using {timer full} and the "package omp"_package.html
|
||||
command are active, a similar timing summary of time spent in threaded
|
||||
regions to monitor thread utilization and load balance is provided. A
|
||||
new entry is the {Reduce} section, which lists the time spend in
|
||||
new entry is the {Reduce} section, which lists the time spent in
|
||||
reducing the per-thread data elements to the storage for non-threaded
|
||||
computation. These thread timings are taking from the first MPI rank
|
||||
only and and thus, as the breakdown for MPI tasks can change from MPI
|
||||
|
||||
@ -29,7 +29,7 @@ Bond Styles: fene, harmonic :l
|
||||
Dihedral Styles: charmm, harmonic, opls :l
|
||||
Fixes: nve, npt, nvt, nvt/sllod :l
|
||||
Improper Styles: cvff, harmonic :l
|
||||
Pair Styles: buck/coul/cut, buck/coul/long, buck, gayberne,
|
||||
Pair Styles: buck/coul/cut, buck/coul/long, buck, eam, gayberne,
|
||||
charmm/coul/long, lj/cut, lj/cut/coul/long, sw, tersoff :l
|
||||
K-Space Styles: pppm :l
|
||||
:ule
|
||||
|
||||
@ -110,14 +110,14 @@ mpirun -np 96 -ppn 12 lmp_g++ -k on t 20 -sf kk -in in.lj # ditto on 8 Phis :p
|
||||
[Required hardware/software:]
|
||||
|
||||
Kokkos support within LAMMPS must be built with a C++11 compatible
|
||||
compiler. If using gcc, version 4.8.1 or later is required.
|
||||
compiler. If using gcc, version 4.7.2 or later is required.
|
||||
|
||||
To build with Kokkos support for CPUs, your compiler must support the
|
||||
OpenMP interface. You should have one or more multi-core CPUs so that
|
||||
multiple threads can be launched by each MPI task running on a CPU.
|
||||
|
||||
To build with Kokkos support for NVIDIA GPUs, NVIDIA Cuda software
|
||||
version 6.5 or later must be installed on your system. See the
|
||||
version 7.5 or later must be installed on your system. See the
|
||||
discussion for the "GPU"_accelerate_gpu.html package for details of
|
||||
how to check and do this.
|
||||
|
||||
|
||||
@ -91,6 +91,7 @@ Commands :h1
|
||||
suffix
|
||||
tad
|
||||
temper
|
||||
temper_grem
|
||||
thermo
|
||||
thermo_modify
|
||||
thermo_style
|
||||
|
||||
@ -51,12 +51,12 @@ relative to the center of mass (COM) velocity of the 2 atoms in the
|
||||
bond.
|
||||
|
||||
The value {engvib} is the vibrational kinetic energy of the two atoms
|
||||
in the bond, which is simply 1/2 m1 v1^2 + 1/2 m1 v2^2, where v1 and
|
||||
in the bond, which is simply 1/2 m1 v1^2 + 1/2 m2 v2^2, where v1 and
|
||||
v2 are the magnitude of the velocity of the 2 atoms along the bond
|
||||
direction, after the COM velocity has been subtracted from each.
|
||||
|
||||
The value {engrot} is the rotationsl kinetic energy of the two atoms
|
||||
in the bond, which is simply 1/2 m1 v1^2 + 1/2 m1 v2^2, where v1 and
|
||||
in the bond, which is simply 1/2 m1 v1^2 + 1/2 m2 v2^2, where v1 and
|
||||
v2 are the magnitude of the velocity of the 2 atoms perpendicular to
|
||||
the bond direction, after the COM velocity has been subtracted from
|
||||
each.
|
||||
@ -67,7 +67,7 @@ Vcm^2 where Vcm = magnitude of the velocity of the COM.
|
||||
|
||||
Note that these 3 kinetic energy terms are simply a partitioning of
|
||||
the summed kinetic energy of the 2 atoms themselves. I.e. total KE =
|
||||
1/2 m1 v1^2 + 1/2 m2 v3^2 = engvib + engrot + engtrans, where v1,v2
|
||||
1/2 m1 v1^2 + 1/2 m2 v2^2 = engvib + engrot + engtrans, where v1,v2
|
||||
are the magnitude of the velocities of the 2 atoms, without any
|
||||
adjustment for the COM velocity.
|
||||
|
||||
|
||||
@ -641,7 +641,8 @@ the restarted simulation begins.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"fix ave/chunk"_fix_ave_chunk.html
|
||||
"fix ave/chunk"_fix_ave_chunk.html,
|
||||
"compute global/atom"_compute_global_atom.html
|
||||
|
||||
[Default:]
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ The neighbor list needed to compute this quantity is constructed each
|
||||
time the calculation is performed (i.e. each time a snapshot of atoms
|
||||
is dumped). Thus it can be inefficient to compute/dump this quantity
|
||||
too frequently or to have multiple compute/dump commands, each of a
|
||||
{clsuter/atom} style.
|
||||
{cluster/atom} style.
|
||||
|
||||
NOTE: If you have a bonded system, then the settings of
|
||||
"special_bonds"_special_bonds.html command can remove pairwise
|
||||
|
||||
@ -10,22 +10,34 @@ compute coord/atom command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
compute ID group-ID coord/atom cutoff type1 type2 ... :pre
|
||||
compute ID group-ID coord/atom cstyle args ... :pre
|
||||
|
||||
ID, group-ID are documented in "compute"_compute.html command
|
||||
coord/atom = style name of this compute command
|
||||
cutoff = distance within which to count coordination neighbors (distance units)
|
||||
typeN = atom type for Nth coordination count (see asterisk form below) :ul
|
||||
one cstyle must be appended :ul
|
||||
|
||||
cstyle = {cutoff} or {orientorder}
|
||||
|
||||
{cutoff} args = cutoff typeN
|
||||
cutoff = distance within which to count coordination neighbors (distance units)
|
||||
typeN = atom type for Nth coordination count (see asterisk form below) :pre
|
||||
|
||||
{orientorder} args = orientorderID threshold
|
||||
orientorderID = ID of a previously defined orientorder/atom compute
|
||||
threshold = minimum value of the scalar product between two 'connected' atoms (see text for explanation) :pre
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all coord/atom 2.0
|
||||
compute 1 all coord/atom 6.0 1 2
|
||||
compute 1 all coord/atom 6.0 2*4 5*8 * :pre
|
||||
compute 1 all coord/atom cutoff 2.0
|
||||
compute 1 all coord/atom cutoff 6.0 1 2
|
||||
compute 1 all coord/atom cutoff 6.0 2*4 5*8 *
|
||||
compute 1 all coord/atom orientorder 2 0.5 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Define a computation that calculates one or more coordination numbers
|
||||
This compute performs generic calculations between neighboring atoms. So far,
|
||||
there are two cstyles implemented: {cutoff} and {orientorder}.
|
||||
The {cutoff} cstyle calculates one or more coordination numbers
|
||||
for each atom in a group.
|
||||
|
||||
A coordination number is defined as the number of neighbor atoms with
|
||||
@ -49,6 +61,14 @@ from 1 to N. A leading asterisk means all types from 1 to n
|
||||
(inclusive). A middle asterisk means all types from m to n
|
||||
(inclusive).
|
||||
|
||||
The {orientorder} cstyle calculates the number of 'connected' atoms j
|
||||
around each atom i. The atom j is connected to i if the scalar product
|
||||
({Ybar_lm(i)},{Ybar_lm(j)}) is larger than {threshold}. Thus, this cstyle
|
||||
will work only if a "compute orientorder/atom"_compute_orientorder_atom.html
|
||||
has been previously defined. This cstyle allows one to apply the
|
||||
ten Wolde's criterion to identify cristal-like atoms in a system
|
||||
(see "ten Wolde et al."_#tenWolde).
|
||||
|
||||
The value of all coordination numbers will be 0.0 for atoms not in the
|
||||
specified compute group.
|
||||
|
||||
@ -83,10 +103,19 @@ options.
|
||||
The per-atom vector or array values will be a number >= 0.0, as
|
||||
explained above.
|
||||
|
||||
[Restrictions:] none
|
||||
[Restrictions:]
|
||||
The cstyle {orientorder} can only be used if a
|
||||
"compute orientorder/atom"_compute_orientorder_atom.html command
|
||||
was previously defined. Otherwise, an error message will be issued.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"compute cluster/atom"_compute_cluster_atom.html
|
||||
"compute orientorder/atom"_compute_orientorder_atom.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
:line
|
||||
|
||||
:link(tenWolde)
|
||||
[(tenWolde)] P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996).
|
||||
|
||||
220
doc/src/compute_global_atom.txt
Normal file
@ -0,0 +1,220 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
compute global/atom command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
compute ID group-ID style index input1 input2 ... :pre
|
||||
|
||||
ID, group-ID are documented in "compute"_compute.html command :ulb,l
|
||||
global/atom = style name of this compute command :l
|
||||
index = c_ID, c_ID\[N\], f_ID, f_ID\[N\], v_name :l
|
||||
c_ID = per-atom vector calculated by a compute with ID
|
||||
c_ID\[I\] = Ith column of per-atom array calculated by a compute with ID
|
||||
f_ID = per-atom vector calculated by a fix with ID
|
||||
f_ID\[I\] = Ith column of per-atom array calculated by a fix with ID
|
||||
v_name = per-atom vector calculated by an atom-style variable with name :pre
|
||||
one or more inputs can be listed :l
|
||||
input = c_ID, c_ID\[N\], f_ID, f_ID\[N\], v_name :l
|
||||
c_ID = global vector calculated by a compute with ID
|
||||
c_ID\[I\] = Ith column of global array calculated by a compute with ID, I can include wildcard (see below)
|
||||
f_ID = global vector calculated by a fix with ID
|
||||
f_ID\[I\] = Ith column of global array calculated by a fix with ID, I can include wildcard (see below)
|
||||
v_name = global vector calculated by a vector-style variable with name :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all global/atom c_chunk c_com\[1\\] c_com\[2\\] c_com\[3\\]
|
||||
compute 1 all global/atom c_chunk c_com\[*\\] :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Define a calculation that assigns global values to each atom from
|
||||
vectors or arrays of global values. The specified {index} parameter
|
||||
is used to determine which global value is assigned to each atom.
|
||||
|
||||
The {index} parameter must reference a per-atom vector or array from a
|
||||
"compute"_compute.html or "fix"_fix.html or the evaluation of an
|
||||
atom-style "variable"_variable.html. Each {input} value must
|
||||
reference a global vector or array from a "compute"_compute.html or
|
||||
"fix"_fix.html or the evaluation of an vector-style
|
||||
"variable"_variable.html. Details are given below.
|
||||
|
||||
The {index} value for an atom is used as a index I (from 1 to N) into
|
||||
the vector associated with each of the input values. The Ith value
|
||||
from the input vector becomes one output value for that atom. If the
|
||||
atom is not in the specified group, or the index I < 1 or I > M, where
|
||||
M is the actual length of the input vector, then an output value of
|
||||
0.0 is assigned to the atom.
|
||||
|
||||
An example of how this command is useful, is in the context of
|
||||
"chunks" which are static or dyanmic subsets of atoms. The "compute
|
||||
chunk/atom"_compute_chunk_atom.html command assigns unique chunk IDs
|
||||
to each atom. It's output can be used as the {index} parameter for
|
||||
this command. Various other computes with "chunk" in their style
|
||||
name, such as "compute com/chunk"_compute_com_chunk.html or "compute
|
||||
msd/chunk"_compute_msd_chunk.html, calculate properties for each
|
||||
chunk. The output of these commands are global vectors or arrays,
|
||||
with one or more values per chunk, and can be used as input values for
|
||||
this command. This command will then assign the global chunk value to
|
||||
each atom in the chunk, producing a per-atom vector or per-atom array
|
||||
as output. The per-atom values can then be output to a dump file or
|
||||
used by any command that uses per-atom values from a compute as input,
|
||||
as discussed in "Section 6.15"_Section_howto.html#howto_15.
|
||||
|
||||
As a concrete example, these commands will calculate the displacement
|
||||
of each atom from the center-of-mass of the molecule it is in, and
|
||||
dump those values to a dump file. In this case, each molecule is a
|
||||
chunk.
|
||||
|
||||
compute cc1 all chunk/atom molecule
|
||||
compute myChunk all com/chunk cc1
|
||||
compute prop all property/atom xu yu zu
|
||||
compute glob all global/atom c_cc1 c_myChunk\[*\]
|
||||
variable dx atom c_prop\[1\]-c_glob\[1\]
|
||||
variable dy atom c_prop\[2\]-c_glob\[2\]
|
||||
variable dz atom c_prop\[3\]-c_glob\[3\]
|
||||
variable dist atom sqrt(v_dx*v_dx+v_dy*v_dy+v_dz*v_dz)
|
||||
dump 1 all custom 100 tmp.dump id xu yu zu c_glob\[1\] c_glob\[2\] c_glob\[3\] &
|
||||
v_dx v_dy v_dz v_dist
|
||||
dump_modify 1 sort id :pre
|
||||
|
||||
You can add these commands to the bench/in.chain script to see how
|
||||
they work.
|
||||
|
||||
:line
|
||||
|
||||
Note that for input values from a compute or fix, the bracketed index
|
||||
I can be specified using a wildcard asterisk with the index to
|
||||
effectively specify multiple values. This takes the form "*" or "*n"
|
||||
or "n*" or "m*n". If N = the size of the vector (for {mode} = scalar)
|
||||
or the number of columns in the array (for {mode} = vector), then an
|
||||
asterisk with no numeric values means all indices from 1 to N. A
|
||||
leading asterisk means all indices from 1 to n (inclusive). A
|
||||
trailing asterisk means all indices from n to N (inclusive). A middle
|
||||
asterisk means all indices from m to n (inclusive).
|
||||
|
||||
Using a wildcard is the same as if the individual columns of the array
|
||||
had been listed one by one. E.g. these 2 compute global/atom commands
|
||||
are equivalent, since the "compute com/chunk"_compute_com_chunk.html
|
||||
command creates a global array with 3 columns:
|
||||
|
||||
compute cc1 all chunk/atom molecule
|
||||
compute com all com/chunk cc1
|
||||
compute 1 all global/atom c_cc1 c_com\[1\] c_com\[2\] c_com\[3\]
|
||||
compute 1 all global/atom c_cc1 c_com\[*\] :pre
|
||||
|
||||
:line
|
||||
|
||||
This section explains the {index} parameter. Note that it must
|
||||
reference per-atom values, as contrasted with the {input} values which
|
||||
must reference global values.
|
||||
|
||||
Note that all of these options generate floating point values. When
|
||||
they are used as an index into the specified input vectors, they
|
||||
simple rounded down to convert the value to integer indices. The
|
||||
final values should range from 1 to N (inclusive), since they are used
|
||||
to access values from N-length vectors.
|
||||
|
||||
If {index} begins with "c_", a compute ID must follow which has been
|
||||
previously defined in the input script. The compute must generate
|
||||
per-atom quantities. See the individual "compute"_compute.html doc
|
||||
page for details. If no bracketed integer is appended, the per-atom
|
||||
vector calculated by the compute is used. If a bracketed integer is
|
||||
appended, the Ith column of the per-atom array calculated by the
|
||||
compute is used. Users can also write code for their own compute
|
||||
styles and "add them to LAMMPS"_Section_modify.html. See the
|
||||
discussion above for how I can be specified with a wildcard asterisk
|
||||
to effectively specify multiple values.
|
||||
|
||||
If {index} begins with "f_", a fix ID must follow which has been
|
||||
previously defined in the input script. The Fix must generate
|
||||
per-atom quantities. See the individual "fix"_fix.html doc page for
|
||||
details. Note that some fixes only produce their values on certain
|
||||
timesteps, which must be compatible with when compute global/atom
|
||||
references the values, else an error results. If no bracketed integer
|
||||
is appended, the per-atom vector calculated by the fix is used. If a
|
||||
bracketed integer is appended, the Ith column of the per-atom array
|
||||
calculated by the fix is used. Users can also write code for their
|
||||
own fix style and "add them to LAMMPS"_Section_modify.html. See the
|
||||
discussion above for how I can be specified with a wildcard asterisk
|
||||
to effectively specify multiple values.
|
||||
|
||||
If {index} begins with "v_", a variable name must follow which has
|
||||
been previously defined in the input script. It must be an
|
||||
"atom-style variable"_variable.html. Atom-style variables can
|
||||
reference thermodynamic keywords and various per-atom attributes, or
|
||||
invoke other computes, fixes, or variables when they are evaluated, so
|
||||
this is a very general means of generating per-atom quantities to use
|
||||
as {index}.
|
||||
|
||||
:line
|
||||
|
||||
This section explains the kinds of {input} values that can be used.
|
||||
Note that inputs reference global values, as contrasted with the
|
||||
{index} parameter which must reference per-atom values.
|
||||
|
||||
If a value begins with "c_", a compute ID must follow which has been
|
||||
previously defined in the input script. The compute must generate a
|
||||
global vector or array. See the individual "compute"_compute.html doc
|
||||
page for details. If no bracketed integer is appended, the vector
|
||||
calculated by the compute is used. If a bracketed integer is
|
||||
appended, the Ith column of the array calculated by the compute is
|
||||
used. Users can also write code for their own compute styles and "add
|
||||
them to LAMMPS"_Section_modify.html. See the discussion above for how
|
||||
I can be specified with a wildcard asterisk to effectively specify
|
||||
multiple values.
|
||||
|
||||
If a value begins with "f_", a fix ID must follow which has been
|
||||
previously defined in the input script. The fix must generate a
|
||||
global vector or array. See the individual "fix"_fix.html doc page
|
||||
for details. Note that some fixes only produce their values on
|
||||
certain timesteps, which must be compatible with when compute
|
||||
global/atom references the values, else an error results. If no
|
||||
bracketed integer is appended, the vector calculated by the fix is
|
||||
used. If a bracketed integer is appended, the Ith column of the array
|
||||
calculated by the fix is used. Users can also write code for their
|
||||
own fix style and "add them to LAMMPS"_Section_modify.html. See the
|
||||
discussion above for how I can be specified with a wildcard asterisk
|
||||
to effectively specify multiple values.
|
||||
|
||||
If a value begins with "v_", a variable name must follow which has
|
||||
been previously defined in the input script. It must be a
|
||||
"vector-style variable"_variable.html. Vector-style variables can
|
||||
reference thermodynamic keywords and various other attributes of
|
||||
atoms, or invoke other computes, fixes, or variables when they are
|
||||
evaluated, so this is a very general means of generating a vector of
|
||||
global quantities which the {index} parameter will reference for
|
||||
assignement of global values to atoms.
|
||||
|
||||
:line
|
||||
|
||||
[Output info:]
|
||||
|
||||
If a single input is specified this compute produces a per-atom
|
||||
vector. If multiple inputs are specified, this compute produces a
|
||||
per-atom array values, where the number of columns is equal to the
|
||||
number of inputs specified. These values can be used by any command
|
||||
that uses per-atom vector or array values from a compute as input.
|
||||
See "Section 6.15"_Section_howto.html#howto_15 for an overview of
|
||||
LAMMPS output options.
|
||||
|
||||
The per-atom vector or array values will be in whatever units the
|
||||
corresponsing input values are in.
|
||||
|
||||
[Restrictions:] none
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"compute"_compute.html, "fix"_fix.html, "variable"_variable.html,
|
||||
"compute chunk/atom"_compute_chunk_atom.html, "compute
|
||||
reduce"_compute_reduce.html
|
||||
|
||||
[Default:] none
|
||||
@ -15,17 +15,19 @@ compute ID group-ID orientorder/atom keyword values ... :pre
|
||||
ID, group-ID are documented in "compute"_compute.html command :ulb,l
|
||||
orientorder/atom = style name of this compute command :l
|
||||
one or more keyword/value pairs may be appended :l
|
||||
keyword = {cutoff} or {nnn} or {degrees}
|
||||
keyword = {cutoff} or {nnn} or {degrees} or {components}
|
||||
{cutoff} value = distance cutoff
|
||||
{nnn} value = number of nearest neighbors
|
||||
{degrees} values = nlvalues, l1, l2,... :pre
|
||||
{degrees} values = nlvalues, l1, l2,...
|
||||
{components} value = l :pre
|
||||
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all orientorder/atom
|
||||
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5 :pre
|
||||
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5
|
||||
compute 1 all orientorder/atom degrees 4 6 components 6 nnn NULL cutoff 3.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -71,6 +73,13 @@ The numerical values of all order parameters up to {Q}12
|
||||
for a range of commonly encountered high-symmetry structures are given
|
||||
in Table I of "Mickel et al."_#Mickel.
|
||||
|
||||
The optional keyword {components} will output the components of
|
||||
the normalized complex vector {Ybar_lm} of degree {l}, which must be
|
||||
explicitly included in the keyword {degrees}. This option can be used
|
||||
in conjunction with "compute coord_atom"_compute_coord_atom.html to
|
||||
calculate the ten Wolde's criterion to identify crystal-like particles
|
||||
(see "ten Wolde et al."_#tenWolde96).
|
||||
|
||||
The value of {Ql} is set to zero for atoms not in the
|
||||
specified compute group, as well as for atoms that have less than
|
||||
{nnn} neighbors within the distance cutoff.
|
||||
@ -98,6 +107,12 @@ the neighbor list.
|
||||
This compute calculates a per-atom array with {nlvalues} columns, giving the
|
||||
{Ql} values for each atom, which are real numbers on the range 0 <= {Ql} <= 1.
|
||||
|
||||
If the keyword {components} is set, then the real and imaginary parts of each
|
||||
component of (normalized) {Ybar_lm} will be added to the output array in the
|
||||
following order:
|
||||
Re({Ybar_-m}) Im({Ybar_-m}) Re({Ybar_-m+1}) Im({Ybar_-m+1}) ... Re({Ybar_m}) Im({Ybar_m}).
|
||||
This way, the per-atom array will have a total of {nlvalues}+2*(2{l}+1) columns.
|
||||
|
||||
These values can be accessed by any command that uses
|
||||
per-atom values from a compute as input. See "Section
|
||||
6.15"_Section_howto.html#howto_15 for an overview of LAMMPS output
|
||||
@ -117,5 +132,9 @@ The option defaults are {cutoff} = pair style cutoff, {nnn} = 12, {degrees} = 5
|
||||
|
||||
:link(Steinhardt)
|
||||
[(Steinhardt)] P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
|
||||
|
||||
:link(Mickel)
|
||||
[(Mickel)] W. Mickel, S. C. Kapfer, G. E. Schroeder-Turkand, K. Mecke, J. Chem. Phys. 138, 044501 (2013).
|
||||
|
||||
:link(tenWolde96)
|
||||
[(tenWolde)] P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996).
|
||||
|
||||
@ -27,7 +27,7 @@ contact radius is used only to prevent particles belonging to
|
||||
different physical bodies from penetrating each other. It is used by
|
||||
the contact pair styles, e.g., smd/hertz and smd/tri_surface.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
The value of the contact radius will be 0.0 for particles not in the
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/damage :pre
|
||||
Define a computation that calculates the damage status of SPH particles
|
||||
according to the damage model which is defined via the SMD SPH pair styles, e.g., the maximum plastic strain failure criterion.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth Mach Dynamics in LAMMPS.
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output Info:]
|
||||
|
||||
|
||||
@ -32,7 +32,7 @@ configuration. This compute is only really useful for debugging the
|
||||
hourglass control mechanim which is part of the Total-Lagrangian SPH
|
||||
pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output Info:]
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/internal/energy :pre
|
||||
Define a computation which outputs the per-particle enthalpy, i.e.,
|
||||
the sum of potential energy and heat.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output Info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that outputs the equivalent plastic strain per
|
||||
particle. This command is only meaningful if a material model with
|
||||
plasticity is defined.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output Info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that outputs the time rate of the equivalent
|
||||
plastic strain. This command is only meaningful if a material model
|
||||
with plasticity is defined.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output Info:]
|
||||
|
||||
@ -26,7 +26,7 @@ The mass density is the mass of a particle which is constant during
|
||||
the course of a simulation, divided by its volume, which can change
|
||||
due to mechanical deformation.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that calculates the deformation gradient. It is
|
||||
only meaningful for particles which interact according to the
|
||||
Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -30,7 +30,7 @@ time step. This calculation is performed automatically in the
|
||||
relevant SPH pair styles and this compute only serves to make the
|
||||
stable time increment accessible for output purposes.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that calculates the number of particles inside of
|
||||
the smoothing kernel radius for particles interacting via the
|
||||
Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -26,7 +26,7 @@ associated with a particle as a rotated ellipsoid. It is only
|
||||
meaningful for particles which interact according to the
|
||||
Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/tlsph/strain :pre
|
||||
Define a computation that calculates the Green-Lagrange strain tensor
|
||||
for particles interacting via the Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/tlsph/strain/rate :pre
|
||||
Define a computation that calculates the rate of the strain tensor for
|
||||
particles interacting via the Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/tlsph/stress :pre
|
||||
Define a computation that outputs the Cauchy stress tensor for
|
||||
particles interacting via the Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that returns the coordinates of the vertices
|
||||
corresponding to the triangle-elements of a mesh created by the "fix
|
||||
smd/wall_surface"_fix_smd_wall_surface.html.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that returns the number of neighbor particles
|
||||
inside of the smoothing kernel radius for particles interacting via
|
||||
the updated Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/ulsph/strain :pre
|
||||
Define a computation that outputs the logarithmic strain tensor. for
|
||||
particles interacting via the updated Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -25,7 +25,7 @@ Define a computation that outputs the rate of the logarithmic strain
|
||||
tensor for particles interacting via the updated Lagrangian SPH pair
|
||||
style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -23,7 +23,7 @@ compute 1 all smd/ulsph/stress :pre
|
||||
|
||||
Define a computation that outputs the Cauchy stress tensor.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -24,7 +24,7 @@ compute 1 all smd/vol :pre
|
||||
Define a computation that provides the per-particle volume and the sum
|
||||
of the per-particle volumes of the group for which the fix is defined.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth
|
||||
Mach Dynamics in LAMMPS.
|
||||
|
||||
[Output info:]
|
||||
|
||||
@ -35,6 +35,7 @@ Computes :h1
|
||||
compute_erotate_sphere_atom
|
||||
compute_event_displace
|
||||
compute_fep
|
||||
compute_global_atom
|
||||
compute_group_group
|
||||
compute_gyration
|
||||
compute_gyration_chunk
|
||||
|
||||
@ -31,21 +31,19 @@ fix abf all colvars colvars.inp tstat 1 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
This fix interfaces LAMMPS to a "collective variables" or "colvars"
|
||||
module library which allows to calculate potentials of mean force
|
||||
This fix interfaces LAMMPS to the collective variables "Colvars"
|
||||
library, which allows to calculate potentials of mean force
|
||||
(PMFs) for any set of colvars, using different sampling methods:
|
||||
currently implemented are the Adaptive Biasing Force (ABF) method,
|
||||
metadynamics, Steered Molecular Dynamics (SMD) and Umbrella Sampling
|
||||
(US) via a flexible harmonic restraint bias. The colvars library is
|
||||
hosted at "http://colvars.github.io/"_http://colvars.github.io/
|
||||
(US) via a flexible harmonic restraint bias.
|
||||
|
||||
This documentation describes only the fix colvars command itself and
|
||||
LAMMPS specific parts of the code. The full documentation of the
|
||||
colvars library is available as "this supplementary PDF document"_PDF/colvars-refman-lammps.pdf
|
||||
|
||||
A detailed discussion of the implementation of the portable collective
|
||||
variable library is in "(Fiorin)"_#Fiorin. Additional information can
|
||||
be found in "(Henin)"_#Henin.
|
||||
The Colvars library is developed at "https://github.com/colvars/colvars"_https://github.com/colvars/colvars
|
||||
A detailed discussion of its implementation is in "(Fiorin)"_#Fiorin.
|
||||
|
||||
There are some example scripts for using this package with LAMMPS in the
|
||||
examples/USER/colvars directory.
|
||||
@ -129,8 +127,3 @@ and tstat = NULL.
|
||||
|
||||
:link(Fiorin)
|
||||
[(Fiorin)] Fiorin , Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594
|
||||
|
||||
:link(Henin)
|
||||
[(Henin)] Henin, Fiorin, Chipot, Klein, J. Chem. Theory Comput., 6,
|
||||
35-47 (2010)
|
||||
|
||||
|
||||
@ -10,7 +10,7 @@ fix eos/table/rx command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID eos/table/rx style file1 N keyword file2 :pre
|
||||
fix ID group-ID eos/table/rx style file1 N keyword ... :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command
|
||||
eos/table/rx = style name of this fix command
|
||||
@ -18,11 +18,16 @@ style = {linear} = method of interpolation
|
||||
file1 = filename containing the tabulated equation of state
|
||||
N = use N values in {linear} tables
|
||||
keyword = name of table keyword correponding to table file
|
||||
file2 = filename containing the heats of formation of each species :ul
|
||||
file2 = filename containing the heats of formation of each species (optional)
|
||||
deltaHf = heat of formation for a single species in energy units (optional)
|
||||
energyCorr = energy correction in energy units (optional)
|
||||
tempCorrCoeff = temperature correction coefficient (optional) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD thermo.table :pre
|
||||
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD thermo.table
|
||||
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD 1.5
|
||||
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD 1.5 0.025 0.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -39,7 +44,15 @@ where {m} is the number of species, {c_i,j} is the concentration of
|
||||
species {j} in particle {i}, {u_j} is the internal energy of species j,
|
||||
{DeltaH_f,j} is the heat of formation of species {j}, N is the number of
|
||||
molecules represented by the coarse-grained particle, kb is the
|
||||
Boltzmann constant, and T is the temperature of the system.
|
||||
Boltzmann constant, and T is the temperature of the system. Additionally,
|
||||
it is possible to modify the concentration-dependent particle internal
|
||||
energy relation by adding an energy correction, temperature-dependent
|
||||
correction, and/or a molecule-dependent correction. An energy correction can
|
||||
be specified as a constant (in energy units). A temperature correction can be
|
||||
specified by multiplying a temperature correction coefficient by the
|
||||
internal temperature. A molecular correction can be specified by
|
||||
by multiplying a molecule correction coefficient by the average number of
|
||||
product gas particles in the coarse-grain particle.
|
||||
|
||||
Fix {eos/table/rx} creates interpolation tables of length {N} from {m}
|
||||
internal energy values of each species {u_j} listed in a file as a
|
||||
@ -58,6 +71,14 @@ file is described below.
|
||||
The second filename specifies a file containing heat of formation
|
||||
{DeltaH_f,j} for each species.
|
||||
|
||||
In cases where the coarse-grain particle represents a single molecular
|
||||
species (i.e., no reactions occur and fix {rx} is not present in the input file),
|
||||
fix {eos/table/rx} can be applied in a similar manner to fix {eos/table}
|
||||
within a non-reactive DPD simulation. In this case, the heat of formation
|
||||
filename is replaced with the heat of formation value for the single species.
|
||||
Additionally, the energy correction and temperature correction coefficients may
|
||||
also be specified as fix arguments.
|
||||
|
||||
:line
|
||||
|
||||
The format of a tabulated file is as follows (without the
|
||||
@ -116,6 +137,19 @@ Note that the species can be listed in any order. The tag that is
|
||||
used as the species name must correspond with the tags used to define
|
||||
the reactions with the "fix rx"_fix_rx.html command.
|
||||
|
||||
Alternatively, corrections to the EOS can be included by specifying
|
||||
three additional columns that correspond to the energy correction,
|
||||
the temperature correction coefficient and molecule correction
|
||||
coefficient. In this case, the format of the file is as follows:
|
||||
|
||||
# HEAT OF FORMATION TABLE (one or more comment or blank lines) :pre
|
||||
(blank)
|
||||
h2 0.00 1.23 0.025 0.0 (species name, heat of formation, energy correction, temperature correction coefficient, molecule correction coefficient)
|
||||
no2 0.34 0.00 0.000 -1.76
|
||||
n2 0.00 0.00 0.000 -1.76
|
||||
...
|
||||
no 0.93 0.00 0.000 -1.76 :pre
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
@ -151,7 +151,7 @@ The option default for the {energy} keyword is energy = no.
|
||||
:line
|
||||
|
||||
:link(Strong)
|
||||
[(Strong)] Strong and Eaves, J. Phys. Chem. Lett. 7, 1907 (2016).
|
||||
[(Strong)] Strong and Eaves, J. Phys. Chem. B 121, 189 (2017).
|
||||
|
||||
:link(Evans)
|
||||
[(Evans)] Evans and Morriss, Phys. Rev. Lett. 56, 2172 (1986).
|
||||
|
||||
@ -21,7 +21,7 @@ type = atom type for inserted atoms (must be 0 if mol keyword used) :l
|
||||
seed = random # seed (positive integer) :l
|
||||
T = temperature of the ideal gas reservoir (temperature units) :l
|
||||
mu = chemical potential of the ideal gas reservoir (energy units) :l
|
||||
translate = maximum Monte Carlo translation distance (length units) :l
|
||||
displace = maximum Monte Carlo translation distance (length units) :l
|
||||
zero or more keyword/value pairs may be appended to args :l
|
||||
keyword = {mol}, {region}, {maxangle}, {pressure}, {fugacity_coeff}, {full_energy}, {charge}, {group}, {grouptype}, {intra_energy}, or {tfac_insert}
|
||||
{mol} value = template-ID
|
||||
|
||||
111
doc/src/fix_grem.txt
Normal file
@ -0,0 +1,111 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
fix grem command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID grem lambda eta H0 thermostat-ID :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
grem = style name of this fix command :l
|
||||
lambda = intercept parameter of linear effective temperature function :l
|
||||
eta = slope parameter of linear effective temperature function :l
|
||||
H0 = shift parameter of linear effective temperature function :l
|
||||
thermostat-ID = ID of Nose-Hoover thermostat or barostat used in simulation :l,ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix fxgREM all grem 400 -0.01 -30000 fxnpt
|
||||
thermo_modify press fxgREM_press :pre
|
||||
|
||||
fix fxgREM all grem 502 -0.15 -80000 fxnvt :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
This fix implements the molecular dynamics version of the generalized
|
||||
replica exchange method (gREM) originally developed by "(Kim)"_#Kim2010,
|
||||
which uses non-Boltzmann ensembles to sample over first order phase
|
||||
transitions. The is done by defining replicas with an enthalpy
|
||||
dependent effective temperature
|
||||
|
||||
:c,image(Eqs/fix_grem.jpg)
|
||||
|
||||
with {eta} negative and steep enough to only intersect the
|
||||
characteristic microcanonical temperature (Ts) of the system once,
|
||||
ensuring a unimodal enthalpy distribution in that replica. {Lambda} is
|
||||
the intercept and effects the generalized ensemble similar to how
|
||||
temperature effects a Boltzmann ensemble. {H0} is a reference
|
||||
enthalpy, and is typically set as the lowest desired sampled enthalpy.
|
||||
Further explanation can be found in our recent papers
|
||||
"(Malolepsza)"_#Malolepsza.
|
||||
|
||||
This fix requires a Nose-Hoover thermostat fix reference passed to the
|
||||
grem as {thermostat-ID}. Two distinct temperatures exist in this
|
||||
generalized ensemble, the effective temperature defined above, and a
|
||||
kinetic temperature that controls the velocity distribution of
|
||||
particles as usual. Either constant volume or constant pressure
|
||||
algorithms can be used.
|
||||
|
||||
The fix enforces a generalized ensemble in a single replica
|
||||
only. Typically, this ideaology is combined with replica exchange with
|
||||
replicas differing by {lambda} only for simplicity, but this is not
|
||||
required. A multi-replica simulation can be run within the LAMMPS
|
||||
environment using the "temper/grem"_temper_grem.html command. This
|
||||
utilizes LAMMPS partition mode and requires the number of available
|
||||
processors be on the order of the number of desired replicas. A
|
||||
100-replica simulation would require at least 100 processors (1 per
|
||||
world at minimum). If a many replicas are needed on a small number of
|
||||
processors, multi-replica runs can be run outside of LAMMPS. An
|
||||
example of this can be found in examples/USER/misc/grem and has no
|
||||
limit on the number of replicas per processor. However, this is very
|
||||
inefficient and error prone and should be avoided if possible.
|
||||
|
||||
In general, defining the generalized ensembles is unique for every
|
||||
system. When starting a many-replica simulation without any knowledge
|
||||
of the underlying microcanonical temperature, there are several tricks
|
||||
we have utilized to optimize the process. Choosing a less-steep {eta}
|
||||
yields broader distributions, requiring fewer replicas to map the
|
||||
microcanonical temperature. While this likely struggles from the same
|
||||
sampling problems gREM was built to avoid, it provides quick insight
|
||||
to Ts. Initially using an evenly-spaced {lambda} distribution
|
||||
identifies regions where small changes in enthalpy lead to large
|
||||
temperature changes. Replicas are easily added where needed.
|
||||
|
||||
:line
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
No information about this fix is written to "binary restart
|
||||
files"_restart.html.
|
||||
|
||||
The "thermo_modify"_thermo_modify.html {press} option is supported
|
||||
by this fix to add the rescaled kinetic pressure as part of
|
||||
"thermodynamic output"_thermo_style.html.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This fix is part of the USER-MISC package. It is only enabled if
|
||||
LAMMPS was built with that package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"temper/grem"_temper_grem.html, "fix nvt"_fix_nh.html, "fix
|
||||
npt"_fix_nh.html, "thermo_modify"_thermo_modify.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
:line
|
||||
|
||||
:link(Kim2010)
|
||||
[(Kim)] Kim, Keyes, Straub, J Chem. Phys, 132, 224107 (2010).
|
||||
|
||||
:link(Malolepsza)
|
||||
[(Malolepsza)] Malolepsza, Secor, Keyes, J Phys Chem B 119 (42),
|
||||
13379-13384 (2015).
|
||||
@ -10,18 +10,19 @@ fix ipi command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID ipi address port \[unix\] :pre
|
||||
fix ID group-ID ipi address port \[unix\] \[reset\] :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command
|
||||
ipi = style name of this fix command
|
||||
address = internet address (FQDN or IP), or UNIX socket name
|
||||
port = port number (ignored for UNIX sockets)
|
||||
optional keyword = {unix}, if present uses a unix socket :ul
|
||||
optional keyword = {unix}, if present uses a unix socket
|
||||
optional keyword = {reset}, if present reset electrostatics at each call :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 all ipi my.server.com 12345
|
||||
fix 1 all ipi mysocket 666 unix
|
||||
fix 1 all ipi mysocket 666 unix reset
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -57,6 +58,15 @@ input are listed in the same order as in the data file of LAMMPS. The
|
||||
initial configuration is ignored, as it will be substituted with the
|
||||
coordinates received from i-PI before forces are ever evaluated.
|
||||
|
||||
A note of caution when using potentials that contain long-range
|
||||
electrostatics, or that contain parameters that depend on box size:
|
||||
all of these options will be initialized based on the cell size in the
|
||||
LAMMPS-side initial configuration and kept constant during the run.
|
||||
This is required to e.g. obtain reproducible and conserved forces.
|
||||
If the cell varies too wildly, it may be advisable to reinitialize
|
||||
these interactions at each call. This behavior can be requested by
|
||||
setting the {reset} switch.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
There is no restart information associated with this fix, since all
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
:line
|
||||
|
||||
fix momentum command :h3
|
||||
fix momentum/kk command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
@ -55,6 +56,29 @@ of atoms by rescaling the velocities after the momentum was removed.
|
||||
Note that the "velocity"_velocity.html command can be used to create
|
||||
initial velocities with zero aggregate linear and/or angular momentum.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
hardware, as discussed in "Section 5"_Section_accelerate.html
|
||||
of the manual. The accelerated styles take the same arguments and
|
||||
should produce the same results, except for round-off and precision
|
||||
issues.
|
||||
|
||||
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
|
||||
USER-OMP and OPT packages, respectively. They are only enabled if
|
||||
LAMMPS was built with those packages. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
You can specify the accelerated styles explicitly in your input script
|
||||
by including their suffix, or you can use the "-suffix command-line
|
||||
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
|
||||
use the "suffix"_suffix.html command in your input script.
|
||||
|
||||
See "Section 5"_Section_accelerate.html of the manual for
|
||||
more instructions on how to use the accelerated styles effectively.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
No information about this fix is written to "binary restart
|
||||
|
||||
130
doc/src/fix_mscg.txt
Normal file
@ -0,0 +1,130 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
fix mscg command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID mscg N keyword args ... :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
mscg = style name of this fix command :l
|
||||
N = envoke this fix every this many timesteps :l
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {range} or {name} or {max} :l
|
||||
{range} arg = {on} or {off}
|
||||
{on} = range finding functionality is performed
|
||||
{off} = force matching functionality is performed
|
||||
{name} args = name1 ... nameN
|
||||
name1,...,nameN = string names for each atom type (1-Ntype)
|
||||
{max} args = maxb maxa maxd
|
||||
maxb,maxa,maxd = maximum bonds/angles/dihedrals per atom :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 all mscg 1
|
||||
fix 1 all mscg 1 range name A B
|
||||
fix 1 all mscg 1 max 4 8 20 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
This fix applies the Multi-Scale Coarse-Graining (MSCG) method to
|
||||
snapshots from a dump file to generate potentials for coarse-grained
|
||||
simulations from all-atom simulations, using a force-matching
|
||||
technique ("Izvekov"_#Izvekov, "Noid"_#Noid).
|
||||
|
||||
It makes use of the MS-CG library, written and maintained by Greg
|
||||
Voth's group at the University of Chicago, which is freely available
|
||||
on their "MS-CG GitHub
|
||||
site"_https://github.com/uchicago-voth/MSCG-release. See instructions
|
||||
on obtaining and installing the MS-CG library in the src/MSCG/README
|
||||
file, which must be done before you build LAMMPS with this fix command
|
||||
and use the command in a LAMMPS input script.
|
||||
|
||||
An example script using this fix is provided the examples/mscg
|
||||
directory.
|
||||
|
||||
The general workflow for using LAMMPS in conjunction with the MS-CG
|
||||
library to create a coarse-grained model and run coarse-grained
|
||||
simulations is as follows:
|
||||
|
||||
Perform all-atom simulations on the system to be coarse grained.
|
||||
Generate a trajectory mapped to the coarse-grained model.
|
||||
Create input files for the MS-CG library.
|
||||
Run the range finder functionality of the MS-CG library.
|
||||
Run the force matching functionality of the MS-CG library.
|
||||
Check the results of the force matching.
|
||||
Run coarse-grained simulations using the new coarse-grained potentials. :ol
|
||||
|
||||
This fix can perform the range finding and force matching steps 4 and
|
||||
5 of the above workflow when used in conjunction with the
|
||||
"rerun"_rerun.html command. It does not perform steps 1-3 and 6-7.
|
||||
|
||||
Step 2 can be performed using a Python script (what is the name?)
|
||||
provided with the MS-CG library which defines the coarse-grained model
|
||||
and converts a standard LAMMPS dump file for an all-atom simulation
|
||||
(step 1) into a LAMMPS dump file which has the positions of and forces
|
||||
on the coarse-grained beads.
|
||||
|
||||
In step 3, an input file named "control.in" is needed by the MS-CG
|
||||
library which sets parameters for the range finding and force matching
|
||||
functionalities. See the examples/mscg/control.in file as an example.
|
||||
And see the documentation provided with the MS-CG library for more
|
||||
info on this file.
|
||||
|
||||
When this fix is used to perform steps 4 and 5, the MS-CG library also
|
||||
produces additional output files. The range finder functionality
|
||||
(step 4) outputs files defining pair and bonded interaction ranges.
|
||||
The force matching functionality (step 5) outputs tabulated force
|
||||
files for every interaction in the system. Other diagnostic files can
|
||||
also be output depending on the paramters in the MS-CG library input
|
||||
script. Again, see the documentation provided with the MS-CG library
|
||||
for more info.
|
||||
|
||||
:line
|
||||
|
||||
The {range} keyword specifies which MS-CG library functionality should
|
||||
be invoked. If {on}, the step 4 range finder functionality is invoked.
|
||||
{off}, the step 5 force matching functionality is invoked.
|
||||
|
||||
If the {name} keyword is used, string names are defined to associate
|
||||
with the integer atom types in LAMMPS. {Ntype} names must be
|
||||
provided, one for each atom type (1-Ntype).
|
||||
|
||||
The {max} keyword specifies the maximum number of bonds, angles, and
|
||||
dihedrals a bead can have in the coarse-grained model.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This fix is part of the MSCG package. It is only enabled if LAMMPS was
|
||||
built with that package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
The MS-CG library uses C++11, which may not be supported by older
|
||||
compilers. The MS-CG library also has some additional numeric library
|
||||
dependencies, which are describd in its documentation.
|
||||
|
||||
Currently, the MS-CG library is not setup to run in parallel with MPI,
|
||||
so this fix can only be used in a serial LAMMPS build and run
|
||||
on a single processor.
|
||||
|
||||
[Related commands:] none
|
||||
|
||||
[Default:]
|
||||
|
||||
The default keyword settings are range off, max 4 12 36.
|
||||
|
||||
:line
|
||||
|
||||
:link(Izvekov)
|
||||
[(Izvekov)] Izvekov, Voth, J Chem Phys 123, 134105 (2005).
|
||||
|
||||
:link(Noid)
|
||||
[(Noid)] Noid, Chu, Ayton, Krishna, Izvekov, Voth, Das, Andersen, J
|
||||
Chem Phys 128, 134105 (2008).
|
||||
71
doc/src/fix_nvk.txt
Normal file
@ -0,0 +1,71 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
fix nvk command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID nvk :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command
|
||||
nvk = style name of this fix command :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix 1 all nvk :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Perform constant kinetic energy integration using the Gaussian
|
||||
thermostat to update position and velocity for atoms in the group each
|
||||
timestep. V is volume; K is kinetic energy. This creates a system
|
||||
trajectory consistent with the isokinetic ensemble.
|
||||
|
||||
The equations of motion used are those of Minary et al in
|
||||
"(Minary)"_#nvk-Minary, a variant of those initially given by Zhang in
|
||||
"(Zhang)"_#nvk-Zhang.
|
||||
|
||||
The kinetic energy will be held constant at its value given when fix
|
||||
nvk is initiated. If a different kinetic energy is desired, the
|
||||
"velocity"_velocity.html command should be used to change the kinetic
|
||||
energy prior to this fix.
|
||||
|
||||
:line
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
No information about this fix is written to "binary restart
|
||||
files"_restart.html. None of the "fix_modify"_fix_modify.html options
|
||||
are relevant to this fix. No global or per-atom quantities are stored
|
||||
by this fix for access by various "output
|
||||
commands"_Section_howto.html#howto_15. No parameter of this fix can
|
||||
be used with the {start/stop} keywords of the "run"_run.html command.
|
||||
This fix is not invoked during "energy minimization"_minimize.html.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
The Gaussian thermostat only works when it is applied to all atoms in
|
||||
the simulation box. Therefore, the group must be set to all.
|
||||
|
||||
This fix has not yet been implemented to work with the RESPA integrator.
|
||||
|
||||
This fix is part of the USER-MISC package. It is only enabled if LAMMPS
|
||||
was built with that package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
[Related commands:] none
|
||||
|
||||
[Default:] none
|
||||
|
||||
:line
|
||||
|
||||
:link(nvk-Minary)
|
||||
[(Minary)] Minary, Martyna, and Tuckerman, J Chem Phys, 18, 2510 (2003).
|
||||
|
||||
:link(nvk-Zhang)
|
||||
[(Zhang)] Zhang, J Chem Phys, 106, 6102 (1997).
|
||||
@ -36,7 +36,7 @@ stable maximum time step.
|
||||
This fix inquires the minimum stable time increment across all particles contained in the group for which this
|
||||
fix is defined. An additional safety factor {s_fact} is applied to the time increment.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth Mach Dynamics in LAMMPS.
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth Mach Dynamics in LAMMPS.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
|
||||
@ -32,7 +32,7 @@ fix 1 all smd/integrate_tlsph limit_velocity 1000 :pre
|
||||
|
||||
The fix performs explicit time integration for particles which interact according with the Total-Lagrangian SPH pair style.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth Mach Dynamics in LAMMPS.
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth Mach Dynamics in LAMMPS.
|
||||
|
||||
The {limit_velocity} keyword will control the velocity, scaling the norm of
|
||||
the velocity vector to max_vel in case it exceeds this velocity limit.
|
||||
|
||||
@ -34,7 +34,7 @@ fix 1 all smd/integrate_ulsph limit_velocity 1000 :pre
|
||||
[Description:]
|
||||
|
||||
The fix performs explicit time integration for particles which interact with the updated Lagrangian SPH pair style.
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth Mach Dynamics in LAMMPS.
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth Mach Dynamics in LAMMPS.
|
||||
|
||||
The {adjust_radius} keyword activates dynamic adjustment of the per-particle SPH smoothing kernel radius such that the number of neighbors per particles remains
|
||||
within the interval {min_nn} to {max_nn}. The parameter {adjust_radius_factor} determines the amount of adjustment per timestep. Typical values are
|
||||
|
||||
@ -55,7 +55,7 @@ specified. This style also sets the velocity of each particle to (omega cross
|
||||
Rperp) where omega is its angular velocity around the rotation axis and
|
||||
Rperp is a perpendicular vector from the rotation axis to the particle.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to using Smooth Mach Dynamics in LAMMPS.
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to using Smooth Mach Dynamics in LAMMPS.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ It is possible to move the triangulated surface via the "smd/move_tri_surf"_fix_
|
||||
Immediately after a .STL file has been read, the simulation needs to be run for 0 timesteps in order to properly register the new particles
|
||||
in the system. See the "funnel_flow" example in the USER-SMD examples directory.
|
||||
|
||||
See "this PDF guide"_USER/smd/SMD_LAMMPS_userguide.pdf to use Smooth Mach Dynamics in LAMMPS.
|
||||
See "this PDF guide"_PDF/SMD_LAMMPS_userguide.pdf to use Smooth Mach Dynamics in LAMMPS.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
|
||||
@ -89,11 +89,7 @@ NOTE: The center of mass of a group of atoms is calculated in
|
||||
group can straddle a periodic boundary. See the "dump"_dump.html doc
|
||||
page for a discussion of unwrapped coordinates. It also means that a
|
||||
spring connecting two groups or a group and the tether point can cross
|
||||
a periodic boundary and its length be calculated correctly. One
|
||||
exception is for rigid bodies, which should not be used with the fix
|
||||
spring command, if the rigid body will cross a periodic boundary.
|
||||
This is because image flags for rigid bodies are used in a different
|
||||
way, as explained on the "fix rigid"_fix_rigid.html doc page.
|
||||
a periodic boundary and its length be calculated correctly.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
|
||||
@ -48,6 +48,7 @@ Fixes :h1
|
||||
fix_gld
|
||||
fix_gle
|
||||
fix_gravity
|
||||
fix_grem
|
||||
fix_halt
|
||||
fix_heat
|
||||
fix_imd
|
||||
@ -67,6 +68,7 @@ Fixes :h1
|
||||
fix_meso_stationary
|
||||
fix_momentum
|
||||
fix_move
|
||||
fix_mscg
|
||||
fix_msst
|
||||
fix_neb
|
||||
fix_nh
|
||||
@ -89,6 +91,7 @@ Fixes :h1
|
||||
fix_nve_noforce
|
||||
fix_nve_sphere
|
||||
fix_nve_tri
|
||||
fix_nvk
|
||||
fix_nvt_asphere
|
||||
fix_nvt_body
|
||||
fix_nvt_manifold_rattle
|
||||
|
||||
@ -23,6 +23,7 @@ Section_history.html
|
||||
|
||||
tutorial_drude.html
|
||||
tutorial_github.html
|
||||
tutorial_pylammps.html
|
||||
|
||||
body.html
|
||||
manifolds.html
|
||||
@ -113,6 +114,7 @@ special_bonds.html
|
||||
suffix.html
|
||||
tad.html
|
||||
temper.html
|
||||
temper_grem.html
|
||||
thermo.html
|
||||
thermo_modify.html
|
||||
thermo_style.html
|
||||
@ -172,6 +174,7 @@ fix_gcmc.html
|
||||
fix_gld.html
|
||||
fix_gle.html
|
||||
fix_gravity.html
|
||||
fix_grem.html
|
||||
fix_halt.html
|
||||
fix_heat.html
|
||||
fix_imd.html
|
||||
@ -191,6 +194,7 @@ fix_meso.html
|
||||
fix_meso_stationary.html
|
||||
fix_momentum.html
|
||||
fix_move.html
|
||||
fix_mscg.html
|
||||
fix_msst.html
|
||||
fix_neb.html
|
||||
fix_nh.html
|
||||
@ -213,6 +217,7 @@ fix_nve_manifold_rattle.html
|
||||
fix_nve_noforce.html
|
||||
fix_nve_sphere.html
|
||||
fix_nve_tri.html
|
||||
fix_nvk.html
|
||||
fix_nvt_asphere.html
|
||||
fix_nvt_body.html
|
||||
fix_nvt_manifold_rattle.html
|
||||
@ -310,6 +315,7 @@ compute_erotate_sphere.html
|
||||
compute_erotate_sphere_atom.html
|
||||
compute_event_displace.html
|
||||
compute_fep.html
|
||||
compute_global_atom.html
|
||||
compute_group_group.html
|
||||
compute_gyration.html
|
||||
compute_gyration_chunk.html
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
|
||||
pair_style eam command :h3
|
||||
pair_style eam/gpu command :h3
|
||||
pair_style eam/intel command :h3
|
||||
pair_style eam/kk command :h3
|
||||
pair_style eam/omp command :h3
|
||||
pair_style eam/opt command :h3
|
||||
|
||||
@ -10,16 +10,21 @@ pair_style exp6/rx command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
pair_style exp6/rx cutoff :pre
|
||||
pair_style exp6/rx cutoff ... :pre
|
||||
|
||||
cutoff = global cutoff for DPD interactions (distance units) :ul
|
||||
cutoff = global cutoff for DPD interactions (distance units)
|
||||
weighting = fractional or molecular (optional) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style exp6/rx 10.0
|
||||
pair_coeff * * exp6.params h2o h2o 1.0 1.0 10.0
|
||||
pair_coeff * * exp6.params h2o 1fluid 1.0 1.0 10.0
|
||||
pair_coeff * * exp6.params 1fluid 1fluid 1.0 1.0 10.0 :pre
|
||||
pair_style exp6/rx 10.0 fractional
|
||||
pair_style exp6/rx 10.0 molecular
|
||||
pair_coeff * * exp6.params h2o h2o exponent 1.0 1.0 10.0
|
||||
pair_coeff * * exp6.params h2o 1fluid exponent 1.0 1.0 10.0
|
||||
pair_coeff * * exp6.params 1fluid 1fluid exponent 1.0 1.0 10.0
|
||||
pair_coeff * * exp6.params 1fluid 1fluid none 10.0
|
||||
pair_coeff * * exp6.params 1fluid 1fluid polynomial filename 10.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -50,14 +55,36 @@ defined in the reaction kinetics files specified with the "fix
|
||||
rx"_fix_rx.html command or they must correspond to the tag "1fluid",
|
||||
signifying interaction with a product species mixture determined
|
||||
through a one-fluid approximation. The interaction potential is
|
||||
weighted by the geometric average of the concentrations of the two
|
||||
species. The coarse-grained potential is stored before and after the
|
||||
weighted by the geometric average of either the mole fraction concentrations
|
||||
or the number of molecules associated with the interacting coarse-grained
|
||||
particles (see the {fractional} or {molecular} weighting pair style options).
|
||||
The coarse-grained potential is stored before and after the
|
||||
reaction kinetics solver is applied, where the difference is defined
|
||||
to be the internal chemical energy (uChem).
|
||||
|
||||
The fourth and fifth arguments specify the {Rm} and {epsilon} scaling exponents.
|
||||
The fourth argument specifies the type of scaling that will be used
|
||||
to scale the EXP-6 paramters as reactions occur. Currently, there
|
||||
are three scaling options: {exponent}, {polynomial} and {none}.
|
||||
|
||||
The final argument specifies the interaction cutoff.
|
||||
Exponent scaling requires two additional arguments for scaling
|
||||
the {Rm} and {epsilon} parameters, respectively. The scaling factor
|
||||
is computed by phi^exponent, where phi is the number of molecules
|
||||
represented by the coarse-grain particle and exponent is specified
|
||||
as a pair coefficient argument for {Rm} and {epsilon}, respectively.
|
||||
The {Rm} and {epsilon} parameters are multiplied by the scaling
|
||||
factor to give the scaled interaction paramters for the CG particle.
|
||||
|
||||
Polynomial scaling requires a filename to be specified as a pair
|
||||
coeff argument. The file contains the coefficients to a fifth order
|
||||
polynomial for the {alpha}, {epsilon} and {Rm} parameters that depend
|
||||
upon phi (the number of molecules represented by the CG particle).
|
||||
The format of a polynomial file is provided below.
|
||||
|
||||
The {none} option to the scaling does not have any additional pair coeff
|
||||
arguments. This is equivalent to specifying the {exponent} option with
|
||||
{Rm} and {epsilon} exponents of 0.0 and 0.0, respectively.
|
||||
|
||||
The final argument specifies the interaction cutoff (optional).
|
||||
|
||||
:line
|
||||
|
||||
@ -70,6 +97,19 @@ no2 exp6 13.60 0.01 3.70
|
||||
...
|
||||
co2 exp6 13.00 0.03 3.20 :pre
|
||||
|
||||
The format of the polynomial scaling file as follows (without the
|
||||
parenthesized comments):
|
||||
|
||||
# POLYNOMIAL FILE (one or more comment or blank lines) :pre
|
||||
# General Functional Form:
|
||||
# A*phi^5 + B*phi^4 + C*phi^3 + D*phi^2 + E*phi + F
|
||||
#
|
||||
# Parameter A B C D E F
|
||||
(blank)
|
||||
alpha 0.0000 0.00000 0.00008 0.04955 -0.73804 13.63201
|
||||
epsilon 0.0000 0.00478 -0.06283 0.24486 -0.33737 2.60097
|
||||
rm 0.0001 -0.00118 -0.00253 0.05812 -0.00509 1.50106 :pre
|
||||
|
||||
A section begins with a non-blank line whose 1st character is not a
|
||||
"#"; blank lines or lines starting with "#" can be used as comments
|
||||
between sections.
|
||||
@ -117,4 +157,4 @@ LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
"pair_coeff"_pair_coeff.html
|
||||
|
||||
[Default:] none
|
||||
[Default:] fractional weighting
|
||||
|
||||
@ -13,11 +13,14 @@ pair_style multi/lucy/rx command :h3
|
||||
pair_style multi/lucy/rx style N keyword ... :pre
|
||||
|
||||
style = {lookup} or {linear} = method of interpolation
|
||||
N = use N values in {lookup}, {linear} tables :ul
|
||||
N = use N values in {lookup}, {linear} tables
|
||||
weighting = fractional or molecular (optional) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style multi/lucy/rx linear 1000
|
||||
pair_style multi/lucy/rx linear 1000 fractional
|
||||
pair_style multi/lucy/rx linear 1000 molecular
|
||||
pair_coeff * * multibody.table ENTRY1 h2o h2o 7.0
|
||||
pair_coeff * * multibody.table ENTRY1 h2o 1fluid 7.0 :pre
|
||||
|
||||
@ -94,8 +97,10 @@ tags must either correspond to the species defined in the reaction
|
||||
kinetics files specified with the "fix rx"_fix_rx.html command or they
|
||||
must correspond to the tag "1fluid", signifying interaction with a
|
||||
product species mixture determined through a one-fluid approximation.
|
||||
The interaction potential is weighted by the geometric average of the
|
||||
concentrations of the two species. The coarse-grained potential is
|
||||
The interaction potential is weighted by the geometric average of
|
||||
either the mole fraction concentrations or the number of molecules
|
||||
associated with the interacting coarse-grained particles (see the
|
||||
{fractional} or {molecular} weighting pair style options). The coarse-grained potential is
|
||||
stored before and after the reaction kinetics solver is applied, where
|
||||
the difference is defined to be the internal chemical energy (uChem).
|
||||
|
||||
@ -205,7 +210,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
"pair_coeff"_pair_coeff.html
|
||||
|
||||
[Default:] none
|
||||
[Default:] fractional weighting
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -39,7 +39,7 @@ invocation of the {tlsph} for a solid body would consist of an equation of state
|
||||
the pressure (the diagonal components of the stress tensor), and a material model to compute shear
|
||||
stresses (the off-diagonal components of the stress tensor). Damage and failure models can also be added.
|
||||
|
||||
Please see the "SMD user guide"_USER/smd/SMD_LAMMPS_userguide.pdf for a complete listing of the possible keywords and material models.
|
||||
Please see the "SMD user guide"_PDF/SMD_LAMMPS_userguide.pdf for a complete listing of the possible keywords and material models.
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -43,7 +43,7 @@ stresses (the off-diagonal components of the stress tensor).
|
||||
|
||||
Note that the use of *GRADIENT_CORRECTION can lead to severe numerical instabilities. For a general fluid simulation, *NO_GRADIENT_CORRECTION is recommended.
|
||||
|
||||
Please see the "SMD user guide"_USER/smd/SMD_LAMMPS_userguide.pdf for a complete listing of the possible keywords and material models.
|
||||
Please see the "SMD user guide"_PDF/SMD_LAMMPS_userguide.pdf for a complete listing of the possible keywords and material models.
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -10,16 +10,17 @@ pair_style table/rx command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
pair_style table style N :pre
|
||||
pair_style table style N ... :pre
|
||||
|
||||
style = {lookup} or {linear} or {spline} or {bitmap} = method of interpolation
|
||||
N = use N values in {lookup}, {linear}, {spline} tables
|
||||
N = use 2^N values in {bitmap} tables
|
||||
weighting = fractional or molecular (optional) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style table/rx linear 1000
|
||||
pair_style table/rx bitmap 12
|
||||
pair_style table/rx linear 1000 fractional
|
||||
pair_style table/rx linear 1000 molecular
|
||||
pair_coeff * * rxn.table ENTRY1 h2o h2o 10.0
|
||||
pair_coeff * * rxn.table ENTRY1 1fluid 1fluid 10.0
|
||||
pair_coeff * 3 rxn.table ENTRY1 h2o no2 10.0 :pre
|
||||
@ -84,8 +85,10 @@ tags must either correspond to the species defined in the reaction
|
||||
kinetics files specified with the "fix rx"_fix_rx.html command or they
|
||||
must correspond to the tag "1fluid", signifying interaction with a
|
||||
product species mixture determined through a one-fluid approximation.
|
||||
The interaction potential is weighted by the geometric average of the
|
||||
concentrations of the two species. The coarse-grained potential is
|
||||
The interaction potential is weighted by the geometric average of
|
||||
either the mole fraction concentrations or the number of molecules
|
||||
associated with the interacting coarse-grained particles (see the
|
||||
{fractional} or {molecular} weighting pair style options). The coarse-grained potential is
|
||||
stored before and after the reaction kinetics solver is applied, where
|
||||
the difference is defined to be the internal chemical energy (uChem).
|
||||
|
||||
@ -230,7 +233,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
"pair_coeff"_pair_coeff.html
|
||||
|
||||
[Default:] none
|
||||
[Default:] fractional weighting
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -14,7 +14,7 @@ python func keyword args ... :pre
|
||||
|
||||
func = name of Python function :ulb,l
|
||||
one or more keyword/args pairs must be appended :l
|
||||
keyword = {invoke} or {input} or {return} or {format} or {file} or {here} or {exists}
|
||||
keyword = {invoke} or {input} or {return} or {format} or {length} or {file} or {here} or {exists}
|
||||
{invoke} arg = none = invoke the previously defined Python function
|
||||
{input} args = N i1 i2 ... iN
|
||||
N = # of inputs to function
|
||||
@ -29,6 +29,8 @@ keyword = {invoke} or {input} or {return} or {format} or {file} or {here} or {ex
|
||||
M = N+1 if there is a return value
|
||||
fstring = each character (i,f,s,p) corresponds in order to an input or return value
|
||||
'i' = integer, 'f' = floating point, 's' = string, 'p' = SELF
|
||||
{length} arg = Nlen
|
||||
Nlen = max length of string returned from Python function
|
||||
{file} arg = filename
|
||||
filename = file of Python code, which defines func
|
||||
{here} arg = inline
|
||||
@ -165,6 +167,17 @@ equal-style variable as an argument, but only if the output of the
|
||||
Python function is flagged as a numeric value ("i" or "f") via the
|
||||
{format} keyword.
|
||||
|
||||
If the {return} keyword is used and the {format} keyword specifies the
|
||||
output as a string, then the default maximum length of that string is
|
||||
63 characters (64-1 for the string terminator). If you want to return
|
||||
a longer string, the {length} keyword can be specified with its {Nlen}
|
||||
value set to a larger number (the code allocates space for Nlen+1 to
|
||||
include the string terminator). If the Python function generates a
|
||||
string longer than the default 63 or the specified {Nlen}, it will be
|
||||
trunctated.
|
||||
|
||||
:line
|
||||
|
||||
Either the {file}, {here}, or {exists} keyword must be used, but only
|
||||
one of them. These keywords specify what Python code to load into the
|
||||
Python interpreter. The {file} keyword gives the name of a file,
|
||||
|
||||
@ -15,11 +15,12 @@ read_dump file Nstep field1 field2 ... keyword values ... :pre
|
||||
file = name of dump file to read :ulb,l
|
||||
Nstep = snapshot timestep to read from file :l
|
||||
one or more fields may be appended :l
|
||||
field = {x} or {y} or {z} or {vx} or {vy} or {vz} or {q} or {ix} or {iy} or {iz}
|
||||
field = {x} or {y} or {z} or {vx} or {vy} or {vz} or {q} or {ix} or {iy} or {iz} or {fx} or {fy} or {fz}
|
||||
{x},{y},{z} = atom coordinates
|
||||
{vx},{vy},{vz} = velocity components
|
||||
{q} = charge
|
||||
{ix},{iy},{iz} = image flags in each dimension :pre
|
||||
{ix},{iy},{iz} = image flags in each dimension
|
||||
{fx},{fy},{fz} = force components :pre
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {box} or {replace} or {purge} or {trim} or {add} or {label} or {scaled} or {wrapped} or {format} :l
|
||||
{box} value = {yes} or {no} = replace simulation box with dump box
|
||||
|
||||
109
doc/src/temper_grem.txt
Normal file
@ -0,0 +1,109 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
temper/grem command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
temper/grem N M lambda fix-ID thermostat-ID seed1 seed2 index :pre
|
||||
|
||||
N = total # of timesteps to run
|
||||
M = attempt a tempering swap every this many steps
|
||||
lambda = initial lambda for this ensemble
|
||||
fix-ID = ID of fix_grem
|
||||
thermostat-ID = ID of the thermostat that controls kinetic temperature
|
||||
seed1 = random # seed used to decide on adjacent temperature to partner with
|
||||
seed2 = random # seed for Boltzmann factor in Metropolis swap
|
||||
index = which temperature (0 to N-1) I am simulating (optional) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
temper/grem 100000 1000 ${lambda} fxgREM fxnvt 0 58728
|
||||
temper/grem 40000 100 ${lambda} fxgREM fxnpt 0 32285 ${walkers} :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Run a parallel tempering or replica exchange simulation in LAMMPS
|
||||
partition mode using multiple generalized replicas (ensembles) of a
|
||||
system defined by "fix grem"_fix_grem.html, which stands for the
|
||||
generalized replica exchange method (gREM) originally developed by
|
||||
"(Kim)"_#KimStraub. It uses non-Boltzmann ensembles to sample over first
|
||||
order phase transitions. The is done by defining replicas with an
|
||||
enthalpy dependent effective temperature
|
||||
|
||||
Two or more replicas must be used. See the "temper"_temper.html
|
||||
command for an explanation of how to run replicas on multiple
|
||||
partitions of one or more processors.
|
||||
|
||||
This command is a modification of the "temper"_temper.html command and
|
||||
has the same dependencies, restraints, and input variables which are
|
||||
discussed there in greater detail.
|
||||
|
||||
Instead of temperature, this command performs replica exchanges in
|
||||
lambda as per the generalized ensemble enforced by "fix
|
||||
grem"_fix_grem.html. The desired lambda is specified by {lambda},
|
||||
which is typically a variable previously set in the input script, so
|
||||
that each partition is assigned a different temperature. See the
|
||||
"variable"_variable.html command for more details. For example:
|
||||
|
||||
variable lambda world 400 420 440 460
|
||||
fix fxnvt all nvt temp 300.0 300.0 100.0
|
||||
fix fxgREM all grem ${lambda} -0.05 -50000 fxnvt
|
||||
temper 100000 100 ${lambda} fxgREM fxnvt 3847 58382 :pre
|
||||
|
||||
would define 4 lambdas with constant kinetic temperature but unique
|
||||
generalized temperature, and assign one of them to "fix
|
||||
grem"_fix_grem.html used by each replica, and to the grem command.
|
||||
|
||||
As the gREM simulation runs for {N} timesteps, a swap between adjacent
|
||||
ensembles will be attempted every {M} timesteps. If {seed1} is 0,
|
||||
then the swap attempts will alternate between odd and even pairings.
|
||||
If {seed1} is non-zero then it is used as a seed in a random number
|
||||
generator to randomly choose an odd or even pairing each time. Each
|
||||
attempted swap of temperatures is either accepted or rejected based on
|
||||
a Metropolis criterion, derived for gREM by "(Kim)"_#Kim, which uses
|
||||
{seed2} in the random number generator.
|
||||
|
||||
File management works identical to the "temper"_temper.html command.
|
||||
Dump files created by this fix contain continuous trajectories and
|
||||
require post-processing to obtain per-replica information.
|
||||
|
||||
The last argument {index} in the grem command is optional and is used
|
||||
when restarting a run from a set of restart files (one for each
|
||||
replica) which had previously swapped to new lambda. This is done
|
||||
using a variable. For example if the log file listed the following for
|
||||
a simulation with 5 replicas:
|
||||
|
||||
500000 2 4 0 1 3 :pre
|
||||
|
||||
then a setting of
|
||||
|
||||
variable walkers world 2 4 0 1 3 :pre
|
||||
|
||||
would be used to restart the run with a grem command like the example
|
||||
above with ${walkers} as the last argument. This functionality is
|
||||
identical to "temper"_temper.html.
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This command can only be used if LAMMPS was built with the USER-MISC
|
||||
package. See the "Making LAMMPS"_Section_start.html#start_3 section
|
||||
for more info on packages.
|
||||
|
||||
This command must be used with "fix grem"_fix_grem.html.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"fix grem"_fix_grem.html, "temper"_temper.html, "variable"_variable.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
:link(KimStraub)
|
||||
[(Kim)] Kim, Keyes, Straub, J Chem Phys, 132, 224107 (2010).
|
||||
@ -33,14 +33,14 @@ timer loop :pre
|
||||
Select the level of detail at which LAMMPS performs its CPU timings.
|
||||
Multiple keywords can be specified with the {timer} command. For
|
||||
keywords that are mutually exclusive, the last one specified takes
|
||||
effect.
|
||||
precedence.
|
||||
|
||||
During a simulation run LAMMPS collects information about how much
|
||||
time is spent in different sections of the code and thus can provide
|
||||
information for determining performance and load imbalance problems.
|
||||
This can be done at different levels of detail and accuracy. For more
|
||||
information about the timing output, see this "discussion of screen
|
||||
output"_Section_start.html#start_8.
|
||||
output in Section 2.8"_Section_start.html#start_8.
|
||||
|
||||
The {off} setting will turn all time measurements off. The {loop}
|
||||
setting will only measure the total time for a run and not collect any
|
||||
@ -52,20 +52,22 @@ procsessors. The {full} setting adds information about CPU
|
||||
utilization and thread utilization, when multi-threading is enabled.
|
||||
|
||||
With the {sync} setting, all MPI tasks are synchronized at each timer
|
||||
call which meaures load imbalance more accuractly, though it can also
|
||||
slow down the simulation. Using the {nosync} setting (which is the
|
||||
default) turns off this synchronization.
|
||||
call which measures load imbalance for each section more accuractly,
|
||||
though it can also slow down the simulation by prohibiting overlapping
|
||||
independent computations on different MPI ranks Using the {nosync}
|
||||
setting (which is the default) turns this synchronization off.
|
||||
|
||||
With the {timeout} keyword a walltime limit can be imposed that
|
||||
With the {timeout} keyword a walltime limit can be imposed, that
|
||||
affects the "run"_run.html and "minimize"_minimize.html commands.
|
||||
This can be convenient when runs have to confirm to time limits,
|
||||
e.g. when running under a batch system and you want to maximize
|
||||
the utilization of the batch time slot, especially when the time
|
||||
per timestep varies and is thus difficult to predict how many
|
||||
steps a simulation can perform, or for difficult to converge
|
||||
minimizations. The timeout {elapse} value should be somewhat smaller
|
||||
than the time requested from the batch system, as there is usually
|
||||
some overhead to launch jobs, and it may be advisable to write
|
||||
This can be convenient when calculations have to comply with execution
|
||||
time limits, e.g. when running under a batch system when you want to
|
||||
maximize the utilization of the batch time slot, especially for runs
|
||||
where the time per timestep varies much and thus it becomes difficult
|
||||
to predict how many steps a simulation can perform for a given walltime
|
||||
limit. This also applies for difficult to converge minimizations.
|
||||
The timeout {elapse} value should be somewhat smaller than the maximum
|
||||
wall time requested from the batch system, as there is usually
|
||||
some overhead to launch jobs, and it is advisable to write
|
||||
out a restart after terminating a run due to a timeout.
|
||||
|
||||
The timeout timer starts when the command is issued. When the time
|
||||
|
||||
@ -11,10 +11,22 @@ LAMMPS GitHub tutorial :h3
|
||||
|
||||
:line
|
||||
|
||||
This document briefly describes how to use GitHub to merge changes you
|
||||
make into LAMMPS, using GitHub. It assumes that you are familiar with
|
||||
git. You may want to have a look at the "Git
|
||||
book"_http://git-scm.com/book/ to reacquaint yourself.
|
||||
This document describes the process of how to use GitHub to integrate
|
||||
changes or additions you have made to LAMMPS into the official LAMMPS
|
||||
distribution. It uses the process of updating this very tutorial as
|
||||
an example to describe the individual steps and options. You need to
|
||||
be familiar with git and you may want to have a look at the
|
||||
"Git book"_http://git-scm.com/book/ to reacquaint yourself with some
|
||||
of the more advanced git features used below.
|
||||
|
||||
As of fall 2016, submitting contributions to LAMMPS via pull requests
|
||||
on GitHub is the preferred option for integrating contributed features
|
||||
or improvements to LAMMPS, as it significantly reduces the amount of
|
||||
work required by the LAMMPS developers. Consequently, creating a pull
|
||||
request will increase your chances to have your contribution included
|
||||
and will reduce the time until the integration is complete. For more
|
||||
information on the requirements to have your code included into LAMMPS
|
||||
please see "Section 10.15"_Section_modify.html#mod_15
|
||||
|
||||
:line
|
||||
|
||||
@ -30,106 +42,121 @@ username or e-mail address and password.
|
||||
|
||||
[Forking the repository]
|
||||
|
||||
To get changes into LAMMPS, you need to first fork the repository. At
|
||||
the time of writing, LAMMPS-ICMS is the preferred fork. Go to "LAMMPS
|
||||
on GitHub"_https://github.com/lammps/lammps and make sure branch is
|
||||
set to "lammps-icms", see the figure below.
|
||||
To get changes into LAMMPS, you need to first fork the `lammps/lammps`
|
||||
repository on GitHub. At the time of writing, {master} is the preferred
|
||||
target branch. Thus go to "LAMMPS on GitHub"_https://github.com/lammps/lammps
|
||||
and make sure branch is set to "master", as shown in the figure below.
|
||||
|
||||
:c,image(JPG/tutorial_branch.png)
|
||||
|
||||
Now, click on fork in the top right corner:
|
||||
If it is not, use the button to change it to {master}. Once it is, use the
|
||||
fork button to create a fork.
|
||||
|
||||
:c,image(JPG/tutorial_fork.png)
|
||||
|
||||
This will create your own fork of the LAMMPS repository. You can make
|
||||
changes in this fork and later file {pull requests} to allow the
|
||||
upstream repository to merge changes from your own fork into the one
|
||||
we just forked from. At the same time, you can set things up, so you
|
||||
can include changes from upstream into your repository.
|
||||
|
||||
This will create a fork (which is essentially a copy, but uses less
|
||||
resources) of the LAMMPS repository under your own GitHub account. You
|
||||
can make changes in this fork and later file {pull requests} to allow
|
||||
the upstream repository to merge changes from your own fork into the one
|
||||
we just forked from (or others that were forked from the same repository).
|
||||
At the same time, you can set things up, so you can include changes from
|
||||
upstream into your repository and thus keep it in sync with the ongoing
|
||||
LAMMPS development.
|
||||
|
||||
:line
|
||||
|
||||
[Adding changes to your own fork]
|
||||
|
||||
Before adding changes, it is better to first create a new branch that
|
||||
will contain these changes, a so-called feature branch.
|
||||
Additions to the upstream version of LAMMPS are handled using {feature
|
||||
branches}. For every new feature, a so-called feature branch is
|
||||
created, which contains only those modification relevant to one specific
|
||||
feature. For example, adding a single fix would consist of creating a
|
||||
branch with only the fix header and source file and nothing else. It is
|
||||
explained in more detail here: "feature branch
|
||||
workflow"_https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow.
|
||||
|
||||
[Feature branches]
|
||||
|
||||
Since LAMMPS is such a big project and most user contributions come in
|
||||
small portions, the most ideal workflow for LAMMPS is the so-called
|
||||
"Feature branch" workflow. It is explained in great detail here:
|
||||
"feature branch
|
||||
workflow"_https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow.
|
||||
First of all, create a clone of your version on github on your local
|
||||
machine via HTTPS:
|
||||
|
||||
The idea is that every new feature for LAMMPS gets its own
|
||||
branch. This way, it is fairly painless to incorporate new features
|
||||
into the upstream repository. I will explain briefly here how to do
|
||||
it. In this feature branch, I will add a USER-package.
|
||||
$ git clone https://github.com/<your user name>/lammps.git <some name> :pre
|
||||
|
||||
I assume that git is installed on the local machine and you know how
|
||||
to use a command line.
|
||||
or, if you have set up your GitHub account for using SSH keys, via SSH:
|
||||
|
||||
First of all, you need to clone your own fork of LAMMPS:
|
||||
|
||||
$ git clone https://github.com/<your user name>/lammps.git :pre
|
||||
|
||||
You can find the proper url to the right of the "HTTPS" block, see figure.
|
||||
$ git clone git@github.com:<your user name>/lammps.git :pre
|
||||
|
||||
You can find the proper URL by clicking the "Clone or download"-button:
|
||||
|
||||
:c,image(JPG/tutorial_https_block.png)
|
||||
|
||||
The above command copies ("clones") the git repository to your local
|
||||
machine. You can use this local clone to make changes and test them
|
||||
without interfering with the repository on github. First, however, it
|
||||
is recommended to make a new branch for a particular feature you would
|
||||
like added to LAMMPS. In this example, I will try adding a new
|
||||
USER-package called USER-MANIFOLD.
|
||||
machine to a directory with the name you chose. If none is given, it will
|
||||
default to "lammps". Typical names are "mylammps" or something similar.
|
||||
|
||||
To create a new branch, run the following git command in your repository:
|
||||
You can use this local clone to make changes and
|
||||
test them without interfering with the repository on Github.
|
||||
|
||||
$ git checkout -b add-user-manifold :pre
|
||||
To pull changes from upstream into this copy, you can go to the directory
|
||||
and use git pull:
|
||||
|
||||
The name of this new branch is "add-user-manifold" in my case. Just
|
||||
name it after something that resembles the feature you want added to
|
||||
LAMMPS.
|
||||
$ cd mylammps
|
||||
$ git checkout master
|
||||
$ git pull https://github.com/lammps/lammps :pre
|
||||
|
||||
Now that you've changed branches, you can edit the files as you see
|
||||
fit, add new files, and commit as much as you would like. Just
|
||||
remember that if halfway you decide to add another, unrelated feature,
|
||||
you should switch branches!
|
||||
You can also add this URL as a remote:
|
||||
|
||||
$ git remote add lammps_upstream https://www.github.com/lammps/lammps :pre
|
||||
|
||||
At this point, you typically make a feature branch from the updated master
|
||||
branch for the feature you want to work on. This tutorial contains the
|
||||
workflow that updated this tutorial, and hence we will call the branch
|
||||
"github-tutorial-update":
|
||||
|
||||
$ git checkout -b github-tutorial-update master :pre
|
||||
|
||||
Now that we have changed branches, we can make our changes to our local
|
||||
repository. Just remember that if you want to start working on another,
|
||||
unrelated feature, you should switch branches!
|
||||
|
||||
[After changes are made]
|
||||
|
||||
After everything is done, add the files to the branch and commit them:
|
||||
|
||||
$ git add src/USER-MANIFOLD examples/USER/manifold/
|
||||
$ git add doc/fix_nv\{t,e\}_manifold_rattle.txt
|
||||
$ git add doc/fix_manifoldforce.txt doc/user_manifolds.txt :pre
|
||||
$ git add doc/src/tutorial_github.txt
|
||||
$ git add doc/src/JPG/tutorial*.png :pre
|
||||
|
||||
After the files are added, the change should be comitted:
|
||||
IMPORTANT NOTE: Do not use {git commit -a} (or {git add -A}). The -a
|
||||
flag (or -A flag) will automatically include _all_ modified or new files
|
||||
and that is rarely the behavior you want. It can easily lead to
|
||||
accidentally adding unrelated and unwanted changes into the repository.
|
||||
Instead it is preferable to explicitly use {git add}, {git rm}, {git mv}
|
||||
for adding, removing, renaming individual files, respectively, and then
|
||||
{git commit} to finalize the commit. Carefully check all pending
|
||||
changes with {git status} before committing them. If you find doing
|
||||
this on the command line too tedious, consider using a GUI, for example
|
||||
the one included in git distributions written in Tk, i.e. use {git gui}
|
||||
(on some Linux distributions it may be required to install an additional
|
||||
package to use it).
|
||||
|
||||
$ git commit -m 'Added user-manifold package' :pre
|
||||
After adding all files, the change set can be committed with some
|
||||
useful message that explains the change.
|
||||
|
||||
The "-m" switch is used to add a message to the commit. Use this to
|
||||
indicate what type of change was commited.
|
||||
|
||||
[Wisdom by Axel]
|
||||
|
||||
{"Do not use "git commit -a". the -a flag will automatically include
|
||||
*all* modified or new files. mercurial does that and it find it
|
||||
hugely annoying and often leading to accidental commits of files you
|
||||
don't want. use git add, git rm, git mv for adding, removing,
|
||||
renaming and then git commit to finalize the commit. personally, i
|
||||
find it very convenient to use the bundled gui for commits, i.e. git
|
||||
gui. typically, i will do git add and other operations, but then
|
||||
verify and review them with git gui. git gui also allows to do
|
||||
line-by-line unstaging and other convenient operations."}
|
||||
$ git commit -m 'Finally updated the github tutorial' :pre
|
||||
|
||||
After the commit, the changes can be pushed to the same branch on GitHub:
|
||||
|
||||
$ git push :pre
|
||||
|
||||
Git will ask you for your user name and password on GitHub if you have
|
||||
not configured anything. If you correctly type your user name and
|
||||
password, the change should be added to your fork on GitHub.
|
||||
not configured anything. If your local branch is not present on Github yet,
|
||||
it will ask you to add it by running
|
||||
|
||||
$ git push --set-upstream origin github-tutorial-update :pre
|
||||
|
||||
If you correctly type your user name and
|
||||
password, the feature branch should be added to your fork on GitHub.
|
||||
|
||||
If you want to make really sure you push to the right repository
|
||||
(which is good practice), you can provide it explicitly:
|
||||
@ -140,16 +167,20 @@ or using an explicit URL:
|
||||
|
||||
$ git push git@github.com:Pakketeretet2/lammps.git :pre
|
||||
|
||||
After that, you can file a new pull request based on this
|
||||
branch. GitHub will now look like this:
|
||||
:line
|
||||
|
||||
:c,image(JPG/tutorial_pull_request_feature_branch1.png)
|
||||
[Filing a pull request]
|
||||
|
||||
Up to this point in the tutorial, all changes were to {your} clones of
|
||||
LAMMPS. Eventually, however, you want this feature to be included into
|
||||
the official LAMMPS version. To do this, you will want to file a pull
|
||||
request by clicking on the "New pull request" button:
|
||||
|
||||
:c,image(JPG/tutorial_new_pull_request.png)
|
||||
|
||||
Make sure that the current branch is set to the correct one, which, in
|
||||
this case, is "add-user-manifold". Now click "New pull request". If
|
||||
done correctly, the only changes you will see are those that were made
|
||||
on this branch, so in my case, I will see nothing related to
|
||||
$\mathrm{pair\_dzugatov}.$
|
||||
this case, is "github-tutorial-update". If done correctly, the only
|
||||
changes you will see are those that were made on this branch.
|
||||
|
||||
This will open up a new window that lists changes made to the
|
||||
repository. If you are just adding new files, there is not much to do,
|
||||
@ -158,36 +189,162 @@ changes in existing files. If all changes can automatically be merged,
|
||||
green text at the top will say so and you can click the "Create pull
|
||||
request" button, see image.
|
||||
|
||||
:c,image(JPG/tutorial_pull_request2.png)
|
||||
:c,image(JPG/tutorial_create_new_pull_request1.png)
|
||||
|
||||
After this you have to specify a short title and a comment with
|
||||
details about your pull request. I guess here you write what your
|
||||
modifications do and why they should be incorporated upstream. After
|
||||
that, click the "Create pull request" button, see image below.
|
||||
Before creating the pull request, make sure the short title is accurate
|
||||
and add a comment with details about your pull request. Here you write
|
||||
what your modifications do and why they should be incorporated upstream.
|
||||
|
||||
:c,image(JPG/tutorial_pull_request3.png)
|
||||
Note the checkbox that says "Allow edits from maintainers".
|
||||
This is checked by default checkbox (although in my version of Firefox, only the checkmark is visible):
|
||||
|
||||
Now just write some nice comments, click "Comment", and that is it. It
|
||||
is now up to the maintainer(s) of the upstream repository to
|
||||
incorporate the changes into the repository and to close the pull
|
||||
request.
|
||||
:c,image(JPG/tutorial_edits_maintainers.png)
|
||||
|
||||
:c,image(JPG/tutorial_pull_request4.png)
|
||||
If it is checked, maintainers can immediately add their own edits to the
|
||||
pull request. This helps the inclusion of your branch significantly, as
|
||||
simple/trivial changes can be added directly to your pull request branch
|
||||
by the LAMMPS maintainers. The alternative would be that they make
|
||||
changes on their own version of the branch and file a reverse pull
|
||||
request to you. Just leave this box checked unless you have a very good
|
||||
reason not to.
|
||||
|
||||
Now just write some nice comments and click on "Create pull request".
|
||||
|
||||
:c,image(JPG/tutorial_create_new_pull_request2.png)
|
||||
|
||||
:line
|
||||
|
||||
[After filing a pull request]
|
||||
|
||||
NOTE: When you submit a pull request (or ask for a pull request) for the
|
||||
first time, you will receive an invitation to become a LAMMPS project
|
||||
collaborator. Please accept this invite as being a collaborator will
|
||||
simplify certain administrative tasks and will probably speed up the
|
||||
merging of your feature, too.
|
||||
|
||||
You will notice that after filing the pull request, some checks are
|
||||
performed automatically:
|
||||
|
||||
:c,image(JPG/tutorial_automated_checks.png)
|
||||
|
||||
If all is fine, you will see this:
|
||||
|
||||
:c,image(JPG/tutorial_automated_checks_passed.png)
|
||||
|
||||
If any of the checks are failing, your pull request will not be
|
||||
processed, as your changes may break compilation for certain
|
||||
configurations or may not merge cleanly. It is your responsibility
|
||||
to remove the reason(s) for the failed test(s). If you need help
|
||||
with this, please contact the LAMMPS developers by adding a comment
|
||||
explaining your problems with resolving the failed tests.
|
||||
|
||||
A few further interesting things (can) happen to pull requests before
|
||||
they are included.
|
||||
|
||||
[Additional changes]
|
||||
|
||||
Before the pull request is accepted, any additional changes you push
|
||||
into your repository will automatically become part of the pull
|
||||
request.
|
||||
First of all, any additional changes you push into your branch in your
|
||||
repository will automatically become part of the pull request:
|
||||
|
||||
:c,image(JPG/tutorial_additional_changes.png)
|
||||
|
||||
This means you can add changes that should be part of the feature after
|
||||
filing the pull request, which is useful in case you have forgotten
|
||||
them, or if a developer has requested that something needs to be changed
|
||||
before the feature can be accepted into the official LAMMPS version.
|
||||
After each push, the automated checks are run again.
|
||||
|
||||
[Assignees]
|
||||
|
||||
There is an assignee label for pull requests. If the request has not
|
||||
been reviewed by any developer yet, it is not assigned to anyone. After
|
||||
revision, a developer can choose to assign it to either a) you, b) a
|
||||
LAMMPS developer (including him/herself) or c) Steve Plimpton (sjplimp).
|
||||
|
||||
Case a) happens if changes are required on your part :ulb,l
|
||||
Case b) means that at the moment, it is being tested and reviewed by a
|
||||
LAMMPS developer with the expectation that some changes would be required.
|
||||
After the review, the developer can choose to implement changes directly
|
||||
or suggest them to you. :l
|
||||
Case c) means that the pull request has been assigned to the lead
|
||||
developer Steve Plimpton and means it is considered ready for merging. :ule,l
|
||||
|
||||
In this case, Axel assigned the tutorial to Steve:
|
||||
|
||||
:c,image(JPG/tutorial_steve_assignee.png)
|
||||
|
||||
[Edits from LAMMPS maintainers]
|
||||
|
||||
If you allowed edits from maintainers (the default), any LAMMPS
|
||||
maintainer can add changes to your pull request. In this case, both
|
||||
Axel and Richard made changes to the tutorial:
|
||||
|
||||
:c,image(JPG/tutorial_changes_others.png)
|
||||
|
||||
[Reverse pull requests]
|
||||
|
||||
Sometimes, however, you might not feel comfortable having other people
|
||||
push changes into your own branch, or maybe the maintainers are not sure
|
||||
their idea was the right one. In such a case, they can make changes,
|
||||
reassign you as the assignee, and file a "reverse pull request", i.e.
|
||||
file a pull request in your GitHub repository to include changes in the
|
||||
branch, that you have submitted as a pull request yourself. In that
|
||||
case, you can choose to merge their changes back into your branch,
|
||||
possibly make additional changes or corrections and proceed from there.
|
||||
It looks something like this:
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request.png)
|
||||
|
||||
For some reason, the highlighted button didn't work in my case, but I
|
||||
can go to my own repository and merge the pull request from there:
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request2.png)
|
||||
|
||||
Be sure to check the changes to see if you agree with them by clicking
|
||||
on the tab button:
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request3.png)
|
||||
|
||||
In this case, most of it is changes in the markup and a short rewrite of
|
||||
Axel's explanation of the "git gui" and "git add" commands.
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request4.png)
|
||||
|
||||
Because the changes are OK with us, we are going to merge by clicking on
|
||||
"Merge pull request". After a merge it looks like this:
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request5.png)
|
||||
|
||||
Now, since in the meantime our local text for the tutorial also changed,
|
||||
we need to pull Axel's change back into our branch, and merge them:
|
||||
|
||||
$ git add tutorial_github.txt
|
||||
$ git add JPG/tutorial_reverse_pull_request*.png
|
||||
$ git commit -m "Updated text and images on reverse pull requests"
|
||||
$ git pull :pre
|
||||
|
||||
In this case, the merge was painless because git could auto-merge:
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request6.png)
|
||||
|
||||
With Axel's changes merged in and some final text updates, our feature
|
||||
branch is now perfect as far as we are concerned, so we are going to
|
||||
commit and push again:
|
||||
|
||||
$ git add tutorial_github.txt
|
||||
$ git add JPG/tutorial_reverse_pull_request6.png
|
||||
$ git commit -m "Merged Axel's suggestions and updated text"
|
||||
$ git push git@github.com:Pakketeretet2/lammps :pre
|
||||
|
||||
This merge also shows up on the lammps Github page:
|
||||
|
||||
:c,image(JPG/tutorial_reverse_pull_request7.png)
|
||||
|
||||
:line
|
||||
|
||||
[After a merge]
|
||||
|
||||
When everything is fine the feature branch is merged into the LAMMPS
|
||||
repositories:
|
||||
When everything is fine, the feature branch is merged into the master branch:
|
||||
|
||||
:c,image(JPG/tutorial_merged.png)
|
||||
|
||||
@ -198,17 +355,29 @@ It is in principle safe to delete them from your own fork. This helps
|
||||
keep it a bit more tidy. Note that you first have to switch to another
|
||||
branch!
|
||||
|
||||
$ git checkout lammps-icms
|
||||
$ git pull lammps-icms
|
||||
$ git branch -d add-user-manifold :pre
|
||||
$ git checkout master
|
||||
$ git pull master
|
||||
$ git branch -d github-tutorial-update :pre
|
||||
|
||||
If you do not pull first, it is not really a problem but git will warn
|
||||
you at the next statement that you are deleting a local branch that
|
||||
was not yet fully merged into HEAD. This is because git does not yet
|
||||
know your branch just got merged into lammps-icms upstream. If you
|
||||
know your branch just got merged into LAMMPS upstream. If you
|
||||
first delete and then pull, everything should still be fine.
|
||||
|
||||
Finally, if you delete the branch locally, you might want to push this
|
||||
to your remote(s) as well:
|
||||
|
||||
$ git push origin :add-user-manifold :pre
|
||||
$ git push origin :github-tutorial-update :pre
|
||||
|
||||
[Recent changes in the workflow]
|
||||
|
||||
Some changes to the workflow are not captured in this tutorial. For
|
||||
example, in addition to the master branch, to which all new features
|
||||
should be submitted, there is now also an "unstable" and a "stable"
|
||||
branch; these have the same content as "master", but are only updated
|
||||
after a patch release or stable release was made.
|
||||
Furthermore, the naming of the patches now follow the pattern
|
||||
"patch_<Day><Month><Year>" to simplify comparisons between releases.
|
||||
Finally, all patches and submissions are subject to automatic testing
|
||||
and code checks to make sure they at the very least compile.
|
||||
|
||||
462
doc/src/tutorial_pylammps.txt
Normal file
@ -0,0 +1,462 @@
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
PyLammps Tutorial :h1
|
||||
|
||||
<!-- RST
|
||||
.. contents::
|
||||
END_RST -->
|
||||
|
||||
Overview :h2
|
||||
|
||||
PyLammps is a Python wrapper class which can be created on its own or use an
|
||||
existing lammps Python object. It creates a simpler, Python-like interface to
|
||||
common LAMMPS functionality. Unlike the original flat C-types interface, it
|
||||
exposes a discoverable API. It no longer requires knowledge of the underlying
|
||||
C++ code implementation. Finally, the IPyLammps wrapper builds on top of
|
||||
PyLammps and adds some additional features for IPython integration into IPython
|
||||
notebooks, e.g. for embedded visualization output from dump/image.
|
||||
|
||||
Comparison of lammps and PyLammps interfaces :h3
|
||||
|
||||
lammps.lammps :h4
|
||||
|
||||
uses C-Types
|
||||
direct memory access to native C++ data
|
||||
provides functions to send and receive data to LAMMPS
|
||||
requires knowledge of how LAMMPS internally works (C pointers, etc) :ul
|
||||
|
||||
lammps.PyLammps :h4
|
||||
|
||||
higher-level abstraction built on top of original C-Types interface
|
||||
manipulation of Python objects
|
||||
communication with LAMMPS is hidden from API user
|
||||
shorter, more concise Python
|
||||
better IPython integration, designed for quick prototyping :ul
|
||||
|
||||
|
||||
Quick Start :h2
|
||||
|
||||
System-wide Installation :h3
|
||||
|
||||
Step 1: Building LAMMPS as a shared library :h4
|
||||
|
||||
To use LAMMPS inside of Python it has to be compiled as shared library. This
|
||||
library is then loaded by the Python interface. In this example, we use the
|
||||
Make.py utility to create a Makefile with C++ exceptions, PNG, JPEG and FFMPEG
|
||||
output support enabled. Finally, we also enable the MOLECULE package and compile
|
||||
using the generated {auto} Makefile.
|
||||
|
||||
cd $LAMMPS_DIR/src :pre
|
||||
|
||||
# generate custom Makefile
|
||||
python2 Make.py -jpg -png -s ffmpeg exceptions -m mpi -a file :pre
|
||||
|
||||
# add packages if necessary
|
||||
make yes-MOLECULE :pre
|
||||
|
||||
# compile shared library using Makefile
|
||||
make mode=shlib auto :pre
|
||||
|
||||
Step 2: Installing the LAMMPS Python package :h4
|
||||
|
||||
PyLammps is part of the lammps Python package. To install it simply install
|
||||
that package into your current Python installation.
|
||||
|
||||
cd $LAMMPS_DIR/python
|
||||
python install.py :pre
|
||||
|
||||
NOTE: Recompiling the shared library requires reinstalling the Python package
|
||||
|
||||
|
||||
Installation inside of a virtualenv :h3
|
||||
|
||||
You can use virtualenv to create a custom Python environment specifically tuned
|
||||
for your workflow.
|
||||
|
||||
Benefits of using a virtualenv :h4
|
||||
|
||||
isolation of your system Python installation from your development installation
|
||||
installation can happen in your user directory without root access (useful for HPC clusters)
|
||||
installing packages through pip allows you to get newer versions of packages than e.g., through apt-get or yum package managers (and without root access)
|
||||
you can even install specific old versions of a package if necessary :ul
|
||||
|
||||
[Prerequisite (e.g. on Ubuntu)]
|
||||
|
||||
apt-get install python-virtualenv :pre
|
||||
|
||||
Creating a virtualenv with lammps installed :h4
|
||||
|
||||
# create virtualenv name 'testing' :pre
|
||||
|
||||
# activate 'testing' environment
|
||||
source testing/bin/activate :pre
|
||||
|
||||
# install LAMMPS package in virtualenv
|
||||
(testing) cd $LAMMPS_DIR/python
|
||||
(testing) python install.py :pre
|
||||
|
||||
# install other useful packages
|
||||
(testing) pip install matplotlib jupyter mpi4py :pre
|
||||
|
||||
... :pre
|
||||
|
||||
# return to original shell
|
||||
(testing) deactivate :pre
|
||||
|
||||
|
||||
Creating a new instance of PyLammps :h2
|
||||
|
||||
To create a PyLammps object you need to first import the class from the lammps
|
||||
module. By using the default constructor, a new {lammps} instance is created.
|
||||
|
||||
from lammps import PyLammps
|
||||
L = PyLammps() :pre
|
||||
|
||||
You can also initialize PyLammps on top of this existing {lammps} object:
|
||||
|
||||
from lammps import lammps, PyLammps
|
||||
lmp = lammps()
|
||||
L = PyLammps(ptr=lmp) :pre
|
||||
|
||||
Commands :h2
|
||||
|
||||
Sending a LAMMPS command with the existing library interfaces is done using
|
||||
the command method of the lammps object instance.
|
||||
|
||||
For instance, let's take the following LAMMPS command:
|
||||
|
||||
region box block 0 10 0 5 -0.5 0.5 :pre
|
||||
|
||||
In the original interface this command can be executed with the following
|
||||
Python code if {L} was a lammps instance:
|
||||
|
||||
L.command("region box block 0 10 0 5 -0.5 0.5") :pre
|
||||
|
||||
With the PyLammps interface, any command can be split up into arbitrary parts
|
||||
separated by whitespace, passed as individual arguments to a region method.
|
||||
|
||||
L.region("box block", 0, 10, 0, 5, -0.5, 0.5) :pre
|
||||
|
||||
Note that each parameter is set as Python literal floating-point number. In the
|
||||
PyLammps interface, each command takes an arbitrary parameter list and transparently
|
||||
merges it to a single command string, separating individual parameters by whitespace.
|
||||
|
||||
The benefit of this approach is avoiding redundant command calls and easier
|
||||
parameterization. In the original interface parametrization needed to be done
|
||||
manually by creating formatted strings.
|
||||
|
||||
L.command("region box block %f %f %f %f %f %f" % (xlo, xhi, ylo, yhi, zlo, zhi)) :pre
|
||||
|
||||
In contrast, methods of PyLammps accept parameters directly and will convert
|
||||
them automatically to a final command string.
|
||||
|
||||
L.region("box block", xlo, xhi, ylo, yhi, zlo, zhi) :pre
|
||||
|
||||
System state :h2
|
||||
|
||||
In addition to dispatching commands directly through the PyLammps object, it
|
||||
also provides several properties which allow you to query the system state.
|
||||
|
||||
:dlb
|
||||
|
||||
L.system :dt
|
||||
|
||||
Is a dictionary describing the system such as the bounding box or number of atoms :dd
|
||||
|
||||
L.system.xlo, L.system.xhi :dt
|
||||
|
||||
bounding box limits along x-axis :dd
|
||||
|
||||
L.system.ylo, L.system.yhi :dt
|
||||
|
||||
bounding box limits along y-axis :dd
|
||||
|
||||
L.system.zlo, L.system.zhi :dt
|
||||
|
||||
bounding box limits along z-axis :dd
|
||||
|
||||
L.communication :dt
|
||||
|
||||
configuration of communication subsystem, such as the number of threads or processors :dd
|
||||
|
||||
L.communication.nthreads :dt
|
||||
|
||||
number of threads used by each LAMMPS process :dd
|
||||
|
||||
L.communication.nprocs :dt
|
||||
|
||||
number of MPI processes used by LAMMPS :dd
|
||||
|
||||
L.fixes :dt
|
||||
|
||||
List of fixes in the current system :dd
|
||||
|
||||
L.computes :dt
|
||||
|
||||
List of active computes in the current system :dd
|
||||
|
||||
L.dump :dt
|
||||
|
||||
List of active dumps in the current system :dd
|
||||
|
||||
L.groups :dt
|
||||
|
||||
List of groups present in the current system :dd
|
||||
|
||||
:dle
|
||||
|
||||
Working with LAMMPS variables :h2
|
||||
|
||||
LAMMPS variables can be both defined and accessed via the PyLammps interface.
|
||||
|
||||
To define a variable you can use the "variable"_variable.html command:
|
||||
|
||||
L.variable("a index 2") :pre
|
||||
|
||||
A dictionary of all variables is returned by L.variables
|
||||
|
||||
you can access an individual variable by retrieving a variable object from the
|
||||
L.variables dictionary by name
|
||||
|
||||
a = L.variables\['a'\] :pre
|
||||
|
||||
The variable value can then be easily read and written by accessing the value
|
||||
property of this object.
|
||||
|
||||
print(a.value)
|
||||
a.value = 4 :pre
|
||||
|
||||
Retrieving the value of an arbitrary LAMMPS expressions :h2
|
||||
|
||||
LAMMPS expressions can be immediately evaluated by using the eval method. The
|
||||
passed string parameter can be any expression containing global thermo values,
|
||||
variables, compute or fix data.
|
||||
|
||||
result = L.eval("ke") # kinetic energy
|
||||
result = L.eval("pe") # potential energy :pre
|
||||
|
||||
result = L.eval("v_t/2.0") :pre
|
||||
|
||||
Accessing atom data :h2
|
||||
|
||||
All atoms in the current simulation can be accessed by using the L.atoms list.
|
||||
Each element of this list is an object which exposes its properties (id, type,
|
||||
position, velocity, force, etc.).
|
||||
|
||||
# access first atom
|
||||
L.atoms\[0\].id
|
||||
L.atoms\[0\].type :pre
|
||||
|
||||
# access second atom
|
||||
L.atoms\[1\].position
|
||||
L.atoms\[1\].velocity
|
||||
L.atoms\[1\].force :pre
|
||||
|
||||
Some properties can also be used to set:
|
||||
|
||||
# set position in 2D simulation
|
||||
L.atoms\[0\].position = (1.0, 0.0) :pre
|
||||
|
||||
# set position in 3D simulation
|
||||
L.atoms\[0\].position = (1.0, 0.0, 1.) :pre
|
||||
|
||||
Evaluating thermo data :h2
|
||||
|
||||
Each simulation run usually produces thermo output based on system state,
|
||||
computes, fixes or variables. The trajectories of these values can be queried
|
||||
after a run via the L.runs list. This list contains a growing list of run data.
|
||||
The first element is the output of the first run, the second element that of
|
||||
the second run.
|
||||
|
||||
L.run(1000)
|
||||
L.runs\[0\] # data of first 1000 time steps :pre
|
||||
|
||||
L.run(1000)
|
||||
L.runs\[1\] # data of second 1000 time steps :pre
|
||||
|
||||
Each run contains a dictionary of all trajectories. Each trajectory is
|
||||
accessible through its thermo name:
|
||||
|
||||
L.runs\[0\].step # list of time steps in first run
|
||||
L.runs\[0\].ke # list of kinetic energy values in first run :pre
|
||||
|
||||
Together with matplotlib plotting data out of LAMMPS becomes simple:
|
||||
|
||||
import matplotlib.plot as plt
|
||||
|
||||
steps = L.runs\[0\].step
|
||||
ke = L.runs\[0\].ke
|
||||
plt.plot(steps, ke) :pre
|
||||
|
||||
Error handling with PyLammps :h2
|
||||
|
||||
Compiling the shared library with C++ exception support provides a better error
|
||||
handling experience. Without exceptions the LAMMPS code will terminate the
|
||||
current Python process with an error message. C++ exceptions allow capturing
|
||||
them on the C++ side and rethrowing them on the Python side. This way you
|
||||
can handle LAMMPS errors through the Python exception handling mechanism.
|
||||
|
||||
IMPORTANT NOTE: Capturing a LAMMPS exception in Python can still mean that the
|
||||
current LAMMPS process is in an illegal state and must be terminated. It is
|
||||
advised to save your data and terminate the Python instance as quickly as
|
||||
possible.
|
||||
|
||||
Using PyLammps in IPython notebooks and Jupyter :h2
|
||||
|
||||
If the LAMMPS Python package is installed for the same Python interpreter as
|
||||
IPython, you can use PyLammps directly inside of an IPython notebook inside of
|
||||
Jupyter. Jupyter is a powerful integrated development environment (IDE) for
|
||||
many dynamic languages like Python, Julia and others, which operates inside of
|
||||
any web browser. Besides auto-completion and syntax highlighting it allows you
|
||||
to create formatted documents using Markup, mathematical formulas, graphics and
|
||||
animations intermixed with executable Python code. It is a great format for
|
||||
tutorials and showcasing your latest research.
|
||||
|
||||
To launch an instance of Jupyter simply run the following command inside your
|
||||
Python environment (this assumes you followed the Quick Start instructions):
|
||||
|
||||
jupyter notebook :pre
|
||||
|
||||
IPyLammps Examples :h2
|
||||
|
||||
Examples of IPython notebooks can be found in the python/examples/pylammps
|
||||
subdirectory. To open these notebooks launch {jupyter notebook} inside this
|
||||
directory and navigate to one of them. If you compiled and installed
|
||||
a LAMMPS shared library with execeptions, PNG, JPEG and FFMPEG support
|
||||
you should be able to rerun all of these notebooks.
|
||||
|
||||
Validating a dihedral potential :h3
|
||||
|
||||
This example showcases how an IPython Notebook can be used to compare a simple
|
||||
LAMMPS simulation of a harmonic dihedral potential to its analytical solution.
|
||||
Four atoms are placed in the simulation and the dihedral potential is applied on
|
||||
them using a datafile. Then one of the atoms is rotated along the central axis by
|
||||
setting its position from Python, which changes the dihedral angle.
|
||||
|
||||
phi = \[d * math.pi / 180 for d in range(360)\] :pre
|
||||
|
||||
pos = \[(1.0, math.cos(p), math.sin(p)) for p in phi\] :pre
|
||||
|
||||
pe = \[\]
|
||||
for p in pos:
|
||||
L.atoms\[3\].position = p
|
||||
L.run(0)
|
||||
pe.append(L.eval("pe")) :pre
|
||||
|
||||
By evaluating the potential energy for each position we can verify that
|
||||
trajectory with the analytical formula. To compare both solutions, we plot
|
||||
both trajectories over each other using matplotlib, which embeds the generated
|
||||
plot inside the IPython notebook.
|
||||
|
||||
:c,image(JPG/pylammps_dihedral.jpg)
|
||||
|
||||
Running a Monte Carlo relaxation :h3
|
||||
|
||||
This second example shows how to use PyLammps to create a 2D Monte Carlo Relaxation
|
||||
simulation, computing and plotting energy terms and even embedding video output.
|
||||
|
||||
Initially, a 2D system is created in a state with minimal energy.
|
||||
|
||||
:c,image(JPG/pylammps_mc_minimum.jpg)
|
||||
|
||||
It is then disordered by moving each atom by a random delta.
|
||||
|
||||
random.seed(27848)
|
||||
deltaperturb = 0.2 :pre
|
||||
|
||||
for i in range(L.system.natoms):
|
||||
x, y = L.atoms\[i\].position
|
||||
dx = deltaperturb * random.uniform(-1, 1)
|
||||
dy = deltaperturb * random.uniform(-1, 1)
|
||||
L.atoms\[i\].position = (x+dx, y+dy) :pre
|
||||
|
||||
L.run(0) :pre
|
||||
|
||||
:c,image(JPG/pylammps_mc_disordered.jpg)
|
||||
|
||||
Finally, the Monte Carlo algorithm is implemented in Python. It continuously
|
||||
moves random atoms by a random delta and only accepts certain moves.
|
||||
|
||||
estart = L.eval("pe")
|
||||
elast = estart :pre
|
||||
|
||||
naccept = 0
|
||||
energies = \[estart\] :pre
|
||||
|
||||
niterations = 3000
|
||||
deltamove = 0.1
|
||||
kT = 0.05 :pre
|
||||
|
||||
natoms = L.system.natoms :pre
|
||||
|
||||
for i in range(niterations):
|
||||
iatom = random.randrange(0, natoms)
|
||||
current_atom = L.atoms\[iatom\] :pre
|
||||
|
||||
x0, y0 = current_atom.position :pre
|
||||
|
||||
dx = deltamove * random.uniform(-1, 1)
|
||||
dy = deltamove * random.uniform(-1, 1) :pre
|
||||
|
||||
current_atom.position = (x0+dx, y0+dy) :pre
|
||||
|
||||
L.run(1, "pre no post no") :pre
|
||||
|
||||
e = L.eval("pe")
|
||||
energies.append(e) :pre
|
||||
|
||||
if e <= elast:
|
||||
naccept += 1
|
||||
elast = e
|
||||
elif random.random() <= math.exp(natoms*(elast-e)/kT):
|
||||
naccept += 1
|
||||
elast = e
|
||||
else:
|
||||
current_atom.position = (x0, y0) :pre
|
||||
|
||||
The energies of each iteration are collected in a Python list and finally plotted using matplotlib.
|
||||
|
||||
:c,image(JPG/pylammps_mc_energies_plot.jpg)
|
||||
|
||||
The IPython notebook also shows how to use dump commands and embed video files
|
||||
inside of the IPython notebook.
|
||||
|
||||
Using PyLammps and mpi4py (Experimental) :h2
|
||||
|
||||
PyLammps can be run in parallel using mpi4py. This python package can be installed using
|
||||
|
||||
pip install mpi4py :pre
|
||||
|
||||
The following is a short example which reads in an existing LAMMPS input file and
|
||||
executes it in parallel. You can find in.melt in the examples/melt folder.
|
||||
|
||||
from mpi4py import MPI
|
||||
from lammps import PyLammps :pre
|
||||
|
||||
L = PyLammps()
|
||||
L.file("in.melt") :pre
|
||||
|
||||
if MPI.COMM_WORLD.rank == 0:
|
||||
print("Potential energy: ", L.eval("pe")) :pre
|
||||
|
||||
MPI.Finalize() :pre
|
||||
|
||||
To run this script (melt.py) in parallel using 4 MPI processes we invoke the
|
||||
following mpirun command:
|
||||
|
||||
mpirun -np 4 python melt.py :pre
|
||||
|
||||
IMPORTANT NOTE: Any command must be executed by all MPI processes. However, evaluations and querying the system state is only available on rank 0.
|
||||
|
||||
Feedback and Contributing :h2
|
||||
|
||||
If you find this Python interface useful, please feel free to provide feedback
|
||||
and ideas on how to improve it to Richard Berger (richard.berger@temple.edu). We also
|
||||
want to encourage people to write tutorial style IPython notebooks showcasing LAMMPS usage
|
||||
and maybe their latest research results.
|
||||
@ -7,6 +7,7 @@ Tutorials :h1
|
||||
|
||||
tutorial_drude
|
||||
tutorial_github
|
||||
tutorial_pylammps
|
||||
body
|
||||
manifolds
|
||||
|
||||
|
||||
@ -82,6 +82,7 @@ meam: MEAM test for SiC and shear (same as shear examples)
|
||||
melt: rapid melt of 3d LJ system
|
||||
micelle: self-assembly of small lipid-like molecules into 2d bilayers
|
||||
min: energy minimization of 2d LJ melt
|
||||
mscg: parameterize a multi-scale coarse-graining (MSCG) model
|
||||
msst: MSST shock dynamics
|
||||
nb3b: use of nonbonded 3-body harmonic pair style
|
||||
neb: nudged elastic band (NEB) calculation for barrier finding
|
||||
|
||||
@ -35,129 +35,133 @@ thermo_modify format float %24.16f
|
||||
|
||||
run 1000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check no
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 10.6
|
||||
ghost atom cutoff = 10.6
|
||||
binsize = 5.3 -> bins = 25 25 25
|
||||
Memory usage per processor = 3.36353 Mbytes
|
||||
binsize = 5.3, bins = 25 25 25
|
||||
1 neighbor lists, perpetual/occasional/extra = 1 0 0
|
||||
(1) pair dpd/fdt/energy, perpetual
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
Memory usage per processor = 4.28221 Mbytes
|
||||
Step Temp Press PotEng KinEng c_dpdU[1] c_dpdU[2] v_totEnergy c_dpdU[4]
|
||||
0 301.4391322267262012 1636.1776395935085020 1188.6488072196075336 394.4722035796053206 7852.5601874986105031 7852.5601874986105031 17288.2413857964347699 299.9999999999841407
|
||||
10 301.4791572483523510 1486.4422375141198245 1188.7147620806101713 394.5245815119678241 7852.5601874999802021 7852.3731942333779443 17288.1727253259377903 299.9960221120699089
|
||||
20 301.4275643919337426 1677.9356110821624952 1188.7839634625399867 394.4570655673388728 7852.5601874999938445 7852.3711851933012440 17288.1724017231754260 299.9955485734552099
|
||||
30 301.2240988054542186 1452.7304951528931269 1188.8550809767796181 394.1908044563202225 7852.5601875000002110 7852.5679666239848302 17288.1740395570850524 299.9988968405210130
|
||||
40 301.1023506886409677 1527.9758363521380033 1188.9264527568634549 394.0314812537677653 7852.5601874999947540 7852.6574764573806533 17288.1755979680056043 300.0001694462812338
|
||||
50 301.0409654880461972 1597.1737251233498682 1188.9944523606982330 393.9511507566391515 7852.5601875000029395 7852.6700547249911324 17288.1758453423317405 299.9999653064982681
|
||||
60 301.2904978886139133 1610.8630327676828529 1189.0651026961211301 394.2776962691256131 7852.5601874999829306 7852.2734988976435488 17288.1764853628737910 299.9919857290491905
|
||||
70 300.8575037843163500 1489.3259312130880971 1189.1295686642290548 393.7110673208616731 7852.5601874999856591 7852.7707182199101226 17288.1715417049854295 300.0010992278233175
|
||||
80 300.5955830326474825 1449.3896097889587509 1189.1880764967559116 393.3683100440913449 7852.5601875000411383 7853.0484238882281716 17288.1649979291178170 300.0059513551503301
|
||||
90 301.0092332775843147 1553.9266324350364812 1189.2470037925052111 393.9096250433288446 7852.5601875000420478 7852.4452067113825251 17288.1620230472581170 299.9940347326859182
|
||||
100 301.0478004479094238 1539.2270336322194453 1189.3010269201699884 393.9600951881690207 7852.5601875000074870 7852.3416236045995902 17288.1629332129450631 299.9916385566916119
|
||||
110 300.9609384905550087 1500.0429484565006533 1189.3524514939088021 393.8464250502817663 7852.5601874999983920 7852.4114980357189779 17288.1705620799075405 299.9925626482005327
|
||||
120 300.9625536631411933 1630.5065919443034090 1189.4006029528841282 393.8485387131115658 7852.5601875000575092 7852.3600810123671181 17288.1694101784196391 299.9911580775880680
|
||||
130 301.0373750247310340 1539.2267307640183844 1189.4426173625224692 393.9464521696795032 7852.5601874999993015 7852.2178388309775983 17288.1670958631802932 299.9879581026651749
|
||||
140 300.7465104415114752 1550.8353679735087098 1189.4887352231000932 393.5658181350791551 7852.5601874999920256 7852.5559582333216895 17288.1706990914935886 299.9939749909034958
|
||||
150 300.6667173911141617 1634.8987162883277051 1189.5368575067818711 393.4613985788388959 7852.5601874999920256 7852.6079668015609059 17288.1664103871735279 299.9946423938895350
|
||||
160 300.4684731724562425 1462.9400882126803936 1189.5825022927965620 393.2019703048678707 7852.5601874999847496 7852.8265187980177870 17288.1711788956672535 299.9983600613423960
|
||||
170 300.1439323338466920 1510.2352578813552100 1189.6305700279478970 392.7772665220106774 7852.5601874999802021 7853.2009671047335360 17288.1689911546709482 300.0051118582463232
|
||||
180 300.1074244553407198 1529.6307083879951279 1189.6764977580119194 392.7294912276224181 7852.5601874999729262 7853.2047509722533505 17288.1709274578606710 300.0047089238623812
|
||||
190 300.4193298066089142 1546.3205495807171701 1189.7172820166240399 393.1376598363699486 7852.5601874999847496 7852.7461854379371289 17288.1613147909156396 299.9954451643528728
|
||||
200 300.3353919251508728 1532.5496449337254035 1189.7600175880224924 393.0278162310690391 7852.5601874999683787 7852.8107089913455638 17288.1587303104060993 299.9962707550171785
|
||||
210 300.3276568499739483 1504.8178651700843602 1189.7998299597820733 393.0176938818990493 7852.5601875000156724 7852.7810130200659842 17288.1587243617614149 299.9953436245502871
|
||||
220 300.5768315696971626 1592.5896084568344122 1189.8391466344742184 393.3437713226064716 7852.5601875000329528 7852.4205574703573802 17288.1636629274726147 299.9880321846658831
|
||||
230 300.6587445618569063 1672.3049358942289473 1189.8766340798690635 393.4509650976162334 7852.5601874999847496 7852.2733199687863817 17288.1611066462573945 299.9848228571166828
|
||||
240 300.7517707836825025 1527.1722267937811921 1189.9126240081129708 393.5727019751183207 7852.5601875000065775 7852.1160682173085661 17288.1615817005440476 299.9814952182625802
|
||||
250 300.8473715548367409 1589.1847713095248764 1189.9441342461948352 393.6978079843565865 7852.5601875000047585 7851.9625847797888127 17288.1647145103452203 299.9782210858571148
|
||||
260 300.8450266408960942 1623.1896863377055524 1189.9636161513917614 393.6947393603111891 7852.5601874999820211 7851.9471828473988353 17288.1657258590821584 299.9775302202895659
|
||||
270 300.6663619570709898 1564.5160171187899323 1189.9764081239700317 393.4609334472908131 7852.5601875000193104 7852.1708276117251444 17288.1683566830033669 299.9812899253168439
|
||||
280 300.7668534205726019 1618.5400526904263643 1189.9872008155405183 393.5924395618274048 7852.5601875000184009 7852.0271568534708422 17288.1669847308585304 299.9781169783826158
|
||||
290 300.8462727198648849 1562.6765776748122789 1189.9918265985252219 393.6963700162682471 7852.5601875000211294 7851.9189772084127981 17288.1673613232269417 299.9756806168044250
|
||||
300 300.8095414073812890 1525.1785808192844343 1189.9873922767767453 393.6483023295390922 7852.5601875000020300 7851.9657301693578120 17288.1616122756749974 299.9761279889730758
|
||||
310 300.9496330741350221 1566.5597234051326723 1189.9752299662607129 393.8316304464934774 7852.5601875000056680 7851.7898117189633922 17288.1568596317229094 299.9723726900590464
|
||||
320 301.2370566356515837 1513.6869483705047514 1189.9626455872523820 394.2077614578674343 7852.5601874999929350 7851.4248466706330873 17288.1554412157456682 299.9650543775110236
|
||||
330 301.3279721508968692 1549.0667862452519330 1189.9513389477854162 394.3267362020337146 7852.5601874999929350 7851.3129955581916875 17288.1512582080031279 299.9625537201162615
|
||||
340 301.1145736537583844 1414.7930515101759283 1189.9408691169965095 394.0474765890400590 7852.5601874999993015 7851.6028846074832472 17288.1514178135184920 299.9677356565828745
|
||||
350 301.1651600907370039 1529.8016115175887535 1189.9314470205476937 394.1136755032911196 7852.5601874999929350 7851.5441417268757505 17288.1494517507089768 299.9662576716461331
|
||||
360 301.0550563185083206 1536.7721716375504002 1189.9200519814730796 393.9695904359920178 7852.5601875000074870 7851.7101209691463737 17288.1599508866202086 299.9690811750865009
|
||||
370 301.1008976932964742 1522.3385843459479929 1189.9109162496640693 394.0295798208944120 7852.5601875000211294 7851.6603423306560217 17288.1610259012340975 299.9677565060027860
|
||||
380 301.1656898730700505 1505.0548721701993600 1189.9005648244351505 394.1143687921909304 7852.5601875000056680 7851.5816827598300733 17288.1568038764598896 299.9659906785156522
|
||||
390 300.8379322662876802 1740.9151205755624687 1189.8851457594087151 393.6854554509390596 7852.5601875000238579 7852.0268864110385039 17288.1576751214088290 299.9741278188615752
|
||||
400 300.8663790447546376 1564.9461156870302148 1189.8690133470408909 393.7226817503372445 7852.5601875000411383 7852.0043792319993372 17288.1562618294192362 299.9732593416579789
|
||||
410 300.6263441860635908 1564.2840871092373618 1189.8566574093877080 393.4085650033033517 7852.5601874999892971 7852.3284491703725507 17288.1538590830532485 299.9792095875052951
|
||||
420 300.5302259436974168 1438.1569922368764765 1189.8406936554465574 393.2827818158641549 7852.5601875000302243 7852.4696075433648730 17288.1532705147074012 299.9815165752025337
|
||||
430 300.5877786105220935 1503.3641639033023694 1189.8251514530138593 393.3580969454444016 7852.5601874999802021 7852.4023373559457468 17288.1457732543858583 299.9798346272511935
|
||||
440 300.7289160804472772 1689.2527029957295781 1189.8035410609209066 393.5427936314976591 7852.5601875000029395 7852.2436462415198548 17288.1501684339418716 299.9764596782897570
|
||||
450 300.9487198282456575 1497.3668092174791582 1189.7808137689632986 393.8304353457919547 7852.5601874999938445 7851.9788323927432430 17288.1502690074921702 299.9710227473042323
|
||||
460 300.9359942496024587 1625.1573864018491804 1189.7615359247627111 393.8137822755282400 7852.5601875000147629 7852.0165192783370003 17288.1520249786408385 299.9713565393226986
|
||||
470 301.0000133856357252 1486.1561922844011860 1189.7439269526955741 393.8975596188205941 7852.5601874999656502 7851.9561324572268859 17288.1578065287103527 299.9697143418395626
|
||||
480 300.8568627175957886 1535.6080526199095857 1189.7237810071801505 393.7102284019063063 7852.5601874999601932 7852.1697010727630186 17288.1638979818089865 299.9732503057674080
|
||||
490 301.0608040775520067 1497.3221544489886128 1189.7062242497636362 393.9771121242308709 7852.5601874999974825 7851.9258988739011329 17288.1694227478947141 299.9682362511933320
|
||||
500 301.0232592587148019 1517.5854528541199215 1189.6911287485861521 393.9279798589197981 7852.5601875000247674 7851.9823225510326665 17288.1616186585633841 299.9690333355835037
|
||||
510 300.7038579923685120 1420.2615974401142012 1189.6747661513456933 393.5100018730125839 7852.5601874999674692 7852.4114869568047652 17288.1564424811294884 299.9768186576545759
|
||||
520 300.5917863355052759 1537.4862082427132464 1189.6604754398756540 393.3633415734188361 7852.5601875000029395 7852.5789017095057716 17288.1629062228021212 299.9795694302102333
|
||||
530 300.4751352158502868 1481.1071694751799441 1189.6453243069925065 393.2106884527691477 7852.5601874999811116 7852.7451655714066874 17288.1613658311471227 299.9823181268525900
|
||||
540 300.5380123640739498 1547.3461372766389559 1189.6261485232855648 393.2929713568877332 7852.5601875000375003 7852.6850583598352387 17288.1643657400454686 299.9808112190538623
|
||||
550 300.4253885005187499 1544.3485889749692888 1189.6033595464525661 393.1455884232119047 7852.5601874999756546 7852.8598718466746504 17288.1690073163154011 299.9835860164698147
|
||||
560 300.3263552442093101 1556.5150300058251105 1189.5759163336824713 393.0159905619273673 7852.5601875000111249 7853.0148613782675966 17288.1669557738860021 299.9861837797674866
|
||||
570 300.1977324643196425 1511.2320626303917379 1189.5441090918316149 392.8476709710407704 7852.5601875000102154 7853.2098259401755058 17288.1617935030590161 299.9896761688499964
|
||||
580 300.3543631005173893 1588.9566243200433746 1189.5094471319721379 393.0526424747489500 7852.5601875000156724 7853.0374555421631158 17288.1597326488990802 299.9859298211933378
|
||||
590 300.5019108864805730 1504.4406939723214691 1189.4809412920112663 393.2457278908070748 7852.5601874999874781 7852.8704277855340479 17288.1572844683396397 299.9823573257917815
|
||||
600 300.4791158523048011 1540.4690749004150803 1189.4551948503105905 393.2158976318902432 7852.5601875000220389 7852.9312239063838206 17288.1625038886049879 299.9832002920041987
|
||||
610 300.5939139841889869 1368.0565839211087678 1189.4252547652590692 393.3661258776944578 7852.5601874999574648 7852.8130977336286378 17288.1646658765384927 299.9807742697515778
|
||||
620 300.7674247480806002 1483.2566452708945235 1189.3941250938435132 393.5931872179773450 7852.5601875000193104 7852.6187967208716145 17288.1662965327122947 299.9766963671718258
|
||||
630 300.7920034341021278 1543.0699124130637756 1189.3598279316649950 393.6253516166882491 7852.5601875000302243 7852.6219971866230480 17288.1673642350069713 299.9762538437230432
|
||||
640 300.8032734267029014 1423.2549819291616586 1189.3293074476885067 393.6400998638143278 7852.5601874999847496 7852.6384826097782934 17288.1680774212654796 299.9762118202994543
|
||||
650 300.7516995878241346 1542.6559695158523482 1189.3021161045705867 393.5726088061030055 7852.5601874999720167 7852.7361949473242930 17288.1711073579681397 299.9775656396505497
|
||||
660 300.8699697098109596 1675.5121937767839881 1189.2687179804190691 393.7273806013013768 7852.5601874999802021 7852.6179739687149777 17288.1742600504148868 299.9750492262036801
|
||||
670 301.0255004186900578 1520.7397686587873977 1189.2284265783687260 393.9309127074437242 7852.5601874999847496 7852.4592279727157802 17288.1787547585117863 299.9715123049731460
|
||||
680 301.1071983488760679 1651.9751417063259851 1189.1858967311386550 394.0378250459656329 7852.5601875000002110 7852.3982826328638112 17288.1821919099675142 299.9699481289110850
|
||||
690 301.0027086454253435 1496.1607274163641250 1189.1436949551202815 393.9010867158519886 7852.5601875000293148 7852.5788938360938118 17288.1838630070960789 299.9731939774295597
|
||||
700 300.9009090279179759 1551.8182127127668082 1189.0993919251338866 393.7678687121208441 7852.5601875000102154 7852.7513665452252098 17288.1788146824910655 299.9761043445071209
|
||||
710 301.2325536720837817 1678.1546953970853338 1189.0528341066981284 394.2018687459686817 7852.5601874999956635 7852.3633298995819132 17288.1782202522445004 299.9683013583347133
|
||||
720 301.2122298224125529 1524.1415452491430642 1189.0046957644285612 394.1752723525083866 7852.5601875000093059 7852.4351629896145823 17288.1753186065616319 299.9693315350040734
|
||||
730 301.0763282392692304 1547.1987029633166912 1188.9602551214045434 393.9974275034455218 7852.5601874999883876 7852.6518053705112834 17288.1696754953518393 299.9732715774841267
|
||||
740 301.3262401480515109 1544.7045314021493141 1188.9131307177485724 394.3244696516559884 7852.5601874999965730 7852.3694201272974169 17288.1672079966992897 299.9674666811455950
|
||||
750 301.5740779122830304 1591.1785078054851965 1188.8637580645938669 394.6487975126887022 7852.5601875000029395 7852.0919529470393172 17288.1646960243233480 299.9616008527094095
|
||||
760 301.4385361878654521 1547.3218422039201414 1188.8113669183098864 394.4714235854450521 7852.5601874999838401 7852.3161911124070684 17288.1591691161447670 299.9656339783694534
|
||||
770 301.6110125684814420 1494.5039561806622714 1188.7581685915934031 394.6971313010439530 7852.5601875000083965 7852.1351720579104949 17288.1506594505553949 299.9619855799395509
|
||||
780 301.8360352039435384 1588.1458619705292676 1188.7039178696472845 394.9916026067776329 7852.5601874999956635 7851.9015195838428554 17288.1572275602629816 299.9572350302977952
|
||||
790 302.1008324754310479 1545.4409171812178556 1188.6491103416560691 395.3381241828382144 7852.5601875000138534 7851.6150048936624444 17288.1624269181702402 299.9513959104631340
|
||||
800 301.9660372380565718 1563.9565804790736365 1188.5964649891604950 395.1617271307158035 7852.5601874999874781 7851.8461249560614306 17288.1645045759250934 299.9555810527747326
|
||||
810 302.0507207347627627 1511.4560763489957935 1188.5468477146612258 395.2725464702810996 7852.5601875000120344 7851.7904104899025697 17288.1699921748586348 299.9541551776504775
|
||||
820 302.4700213214911741 1458.5135514273570152 1188.4981381693974072 395.8212556746473751 7852.5601875000202199 7851.2935886962204677 17288.1731700402851857 299.9441803241180651
|
||||
830 302.2853997979337350 1496.2544527963129894 1188.4496917372191547 395.5796544641875698 7852.5601875000447762 7851.5862641793482908 17288.1757978808018379 299.9494768794835977
|
||||
840 302.0840465730901201 1518.8301331998704882 1188.3994383226176978 395.3161576523596636 7852.5601875000038490 7851.8962146812327774 17288.1719981562127941 299.9550476592922337
|
||||
850 301.8910942560261788 1469.8827850510901953 1188.3489956121345585 395.0636545180261692 7852.5601874999829306 7852.2025804631493884 17288.1754180932912277 299.9606927700139067
|
||||
860 301.7284384160519153 1657.6802015862324424 1188.3052233777652873 394.8507982536594341 7852.5601875000093059 7852.4644669022691232 17288.1806760337058222 299.9652835238809985
|
||||
870 301.6331619894115192 1501.5829953208524330 1188.2628815714097072 394.7261166912876433 7852.5601875000202199 7852.6378180648598573 17288.1870038275774277 299.9682811831179379
|
||||
880 301.3703918424367316 1499.1595903074553462 1188.2195190931643083 394.3822478705861272 7852.5601874999956635 7853.0266423250832304 17288.1885967888301820 299.9755099056966401
|
||||
890 301.4157954313303662 1598.8758859042511631 1188.1845892608291706 394.4416643558612918 7852.5601875000065775 7853.0036606192506952 17288.1901017359487014 299.9745322513492738
|
||||
900 301.4752150615485675 1621.2148728756822038 1188.1517520946135846 394.5194226492019993 7852.5601874999711072 7852.9579580608560718 17288.1893203046420240 299.9733125337182287
|
||||
910 301.4308816315938770 1538.4823217911632582 1188.1159856659232901 394.4614066057066566 7852.5601875000002110 7853.0558695713261841 17288.1934493429580471 299.9748317405193916
|
||||
920 301.4323110133492492 1594.7193046491217956 1188.0835779842032025 394.4632771371357762 7852.5601875000202199 7853.0942701464364291 17288.2013127677964803 299.9751127806911200
|
||||
930 301.4801256941950101 1387.6885377097617038 1188.0464206196895702 394.5258488489681099 7852.5601875000229484 7853.0656502842994087 17288.1981072529815719 299.9740698440909910
|
||||
940 301.8075611840245074 1534.2487040663793323 1188.0124217312886685 394.9543406584059539 7852.5601874999701977 7852.6729444202819650 17288.1998943099461030 299.9660570413493588
|
||||
950 301.6915970126173647 1567.7725992489238251 1187.9790455470049437 394.8025864986412898 7852.5601875000274958 7852.8619557087595240 17288.2037752544347313 299.9694678653150959
|
||||
960 301.6392594677008105 1504.8502165144939227 1187.9439133338105421 394.7340960325207675 7852.5601874999711072 7852.9728807988849439 17288.2110776651898050 299.9711546356286362
|
||||
970 301.6049535791644303 1514.0198965433548892 1187.9094123369413865 394.6892023276233772 7852.5601874999765641 7853.0497909819878259 17288.2085931465298927 299.9722547114341751
|
||||
980 301.2982841679705643 1634.1208149125807267 1187.8768454876480973 394.2878856256063500 7852.5601874999856591 7853.4862008383515786 17288.2111194515891839 299.9802110109069986
|
||||
990 301.2573007350166563 1489.7316698898257528 1187.8432331161868660 394.2342534877078606 7852.5601875000047585 7853.5840096862748396 17288.2216837901723920 299.9819468620868292
|
||||
1000 301.3195135766228532 1562.6587211933920116 1187.8034267774903583 394.3156670604516307 7852.5601874999356369 7853.5372636956635688 17288.2165450335414789 299.9807651637231629
|
||||
Loop time of 21.3308 on 1 procs for 1000 steps with 10125 atoms
|
||||
0 301.4391322267262012 1636.1776395935080473 1188.6488072196075336 394.4722035796053206 0.0000000000000000 15705.1203749972210062 17288.2413857964347699 299.9999999999841407
|
||||
10 301.4791572483523510 1486.4422375141214161 1188.7147620806101713 394.5245815119678241 0.0000000000000000 15704.9333817333845218 17288.1727253259632562 299.9960221120699089
|
||||
20 301.4275643919337995 1677.9356110821622678 1188.7839634625399867 394.4570655673389865 -0.0000000000000000 15704.9313726932996360 17288.1724017231790640 299.9955485734552667
|
||||
30 301.2240988054542186 1452.7304951528922174 1188.8550809767796181 394.1908044563202225 -0.0000000000000000 15705.1281541239713988 17288.1740395570705005 299.9988968405209562
|
||||
40 301.1023506886409109 1527.9758363521384581 1188.9264527568634549 394.0314812537677085 -0.0000000000000000 15705.2176639573335706 17288.1755979679655866 300.0001694462812907
|
||||
50 301.0409654880461972 1597.1737251233505503 1188.9944523606984603 393.9511507566391515 -0.0000000000000000 15705.2302422249904339 17288.1758453423281026 299.9999653064982112
|
||||
60 301.2904978886138565 1610.8630327676828529 1189.0651026961211301 394.2776962691255562 -0.0000000000000000 15704.8336863976528548 17288.1764853628992569 299.9919857290491905
|
||||
70 300.8575037843164068 1489.3259312130892340 1189.1295686642290548 393.7110673208617300 0.0000000000000000 15705.3309057198275696 17288.1715417049199459 300.0010992278232607
|
||||
80 300.5955830326474825 1449.3896097889576140 1189.1880764967559116 393.3683100440913449 -0.0000000000000000 15705.6086113882302016 17288.1649979290777992 300.0059513551502164
|
||||
90 301.0092332775843147 1553.9266324350371633 1189.2470037925056658 393.9096250433288446 -0.0000000000000000 15705.0053942113881931 17288.1620230472217372 299.9940347326859182
|
||||
100 301.0478004479094238 1539.2270336322201274 1189.3010269201699884 393.9600951881690207 -0.0000000000000000 15704.9018111045588739 17288.1629332128977694 299.9916385566916119
|
||||
110 300.9609384905550655 1500.0429484565015628 1189.3524514939088021 393.8464250502818231 -0.0000000000000000 15704.9716855356964516 17288.1705620798857126 299.9925626482006464
|
||||
120 300.9625536631413070 1630.5065919443020448 1189.4006029528841282 393.8485387131116795 0.0000000000000000 15704.9202685123345873 17288.1694101783286897 299.9911580775880680
|
||||
130 301.0373750247309772 1539.2267307640188392 1189.4426173625224692 393.9464521696794463 -0.0000000000000000 15704.7780263310032751 17288.1670958632057591 299.9879581026650044
|
||||
140 300.7465104415114183 1550.8353679735089372 1189.4887352231000932 393.5658181350790983 0.0000000000000000 15705.1161457332873397 17288.1706990914681228 299.9939749909034958
|
||||
150 300.6667173911142186 1634.8987162883267956 1189.5368575067818711 393.4613985788390096 0.0000000000000000 15705.1681543015274656 17288.1664103871480620 299.9946423938894213
|
||||
160 300.4684731724561857 1462.9400882126797114 1189.5825022927965620 393.2019703048678139 0.0000000000000000 15705.3867062980680203 17288.1711788957327371 299.9983600613422254
|
||||
170 300.1439323338466920 1510.2352578813547552 1189.6305700279476696 392.7772665220106774 -0.0000000000000000 15705.7611546046609874 17288.1689911546200165 300.0051118582463232
|
||||
180 300.1074244553407766 1529.6307083879964921 1189.6764977580119194 392.7294912276225318 -0.0000000000000000 15705.7649384723172261 17288.1709274579516205 300.0047089238623812
|
||||
190 300.4193298066088573 1546.3205495807169427 1189.7172820166242673 393.1376598363698349 0.0000000000000000 15705.3063729379555298 17288.1613147909483814 299.9954451643527022
|
||||
200 300.3353919251508728 1532.5496449337249487 1189.7600175880224924 393.0278162310690391 -0.0000000000000000 15705.3708964914076205 17288.1587303105006868 299.9962707550172922
|
||||
210 300.3276568499739483 1504.8178651700850423 1189.7998299597820733 393.0176938818990493 0.0000000000000000 15705.3412005200552812 17288.1587243617359491 299.9953436245502871
|
||||
220 300.5768315696972195 1592.5896084568353217 1189.8391466344739911 393.3437713226065284 -0.0000000000000000 15704.9807449702821032 17288.1636629273634753 299.9880321846658262
|
||||
230 300.6587445618569063 1672.3049358942282652 1189.8766340798690635 393.4509650976162334 0.0000000000000000 15704.8335074687693123 17288.1611066462537565 299.9848228571169102
|
||||
240 300.7517707836825025 1527.1722267937814195 1189.9126240081131982 393.5727019751183207 -0.0000000000000000 15704.6762557172896777 17288.1615817005222198 299.9814952182625802
|
||||
250 300.8473715548367409 1589.1847713095232848 1189.9441342461948352 393.6978079843565865 0.0000000000000000 15704.5227722798481409 17288.1647145103997900 299.9782210858571148
|
||||
260 300.8450266408959806 1623.1896863377055524 1189.9636161513917614 393.6947393603110186 0.0000000000000000 15704.5073703474117792 17288.1657258591149002 299.9775302202894522
|
||||
270 300.6663619570710466 1564.5160171187892502 1189.9764081239700317 393.4609334472908699 0.0000000000000000 15704.7310151116998895 17288.1683566829597112 299.9812899253167302
|
||||
280 300.7668534205727155 1618.5400526904256822 1189.9872008155405183 393.5924395618275184 0.0000000000000000 15704.5873443533891987 17288.1669847307566670 299.9781169783825590
|
||||
290 300.8462727198648281 1562.6765776748138705 1189.9918265985252219 393.6963700162681334 0.0000000000000000 15704.4791647084566648 17288.1673613232487696 299.9756806168042544
|
||||
300 300.8095414073812890 1525.1785808192844343 1189.9873922767767453 393.6483023295390922 0.0000000000000000 15704.5259176693853078 17288.1616122757004632 299.9761279889731327
|
||||
310 300.9496330741349652 1566.5597234051326723 1189.9752299662607129 393.8316304464933637 0.0000000000000000 15704.3499992189717887 17288.1568596317265474 299.9723726900589327
|
||||
320 301.2370566356514132 1513.6869483705036146 1189.9626455872523820 394.2077614578672069 0.0000000000000000 15703.9850341706151085 17288.1554412157347542 299.9650543775107394
|
||||
330 301.3279721508969260 1549.0667862452526151 1189.9513389477854162 394.3267362020338282 0.0000000000000000 15703.8731830581982649 17288.1512582080176799 299.9625537201162615
|
||||
340 301.1145736537582707 1414.7930515101757010 1189.9408691169962822 394.0474765890398885 0.0000000000000000 15704.1630721074998291 17288.1514178135366819 299.9677356565827040
|
||||
350 301.1651600907369470 1529.8016115175894356 1189.9314470205474663 394.1136755032910628 0.0000000000000000 15704.1043292268568621 17288.1494517506944248 299.9662576716459625
|
||||
360 301.0550563185083206 1536.7721716375513097 1189.9200519814730796 393.9695904359920178 0.0000000000000000 15704.2703084691693221 17288.1599508866347605 299.9690811750866146
|
||||
370 301.1008976932965311 1522.3385843459491298 1189.9109162496640693 394.0295798208944689 0.0000000000000000 15704.2205298306434997 17288.1610259012013557 299.9677565060027860
|
||||
380 301.1656898730701073 1505.0548721701995873 1189.9005648244356053 394.1143687921909873 -0.0000000000000000 15704.1418702597857191 17288.1568038764125959 299.9659906785157091
|
||||
390 300.8379322662877371 1740.9151205755633782 1189.8851457594089425 393.6854554509391164 -0.0000000000000000 15704.5870739109432179 17288.1576751212924137 299.9741278188614046
|
||||
400 300.8663790447545239 1564.9461156870302148 1189.8690133470406636 393.7226817503371308 0.0000000000000000 15704.5645667319495260 17288.1562618293282867 299.9732593416576947
|
||||
410 300.6263441860637045 1564.2840871092375892 1189.8566574093874806 393.4085650033035222 -0.0000000000000000 15704.8886366703736712 17288.1538590830641624 299.9792095875053519
|
||||
420 300.5302259436973031 1438.1569922368769312 1189.8406936554461026 393.2827818158640412 0.0000000000000000 15705.0297950433650840 17288.1532705146746594 299.9815165752024768
|
||||
430 300.5877786105221503 1503.3641639033021420 1189.8251514530136319 393.3580969454445153 -0.0000000000000000 15704.9625248558968451 17288.1457732543567545 299.9798346272512504
|
||||
440 300.7289160804472772 1689.2527029957295781 1189.8035410609209066 393.5427936314976591 -0.0000000000000000 15704.8038337415237038 17288.1501684339418716 299.9764596782894728
|
||||
450 300.9487198282456006 1497.3668092174784761 1189.7808137689632986 393.8304353457918978 -0.0000000000000000 15704.5390198927143501 17288.1502690074703423 299.9710227473042323
|
||||
460 300.9359942496024019 1625.1573864018473614 1189.7615359247631659 393.8137822755281263 0.0000000000000000 15704.5767067783035600 17288.1520249785935448 299.9713565393225849
|
||||
470 301.0000133856357252 1486.1561922844020955 1189.7439269526958014 393.8975596188205941 0.0000000000000000 15704.5163199572089070 17288.1578065287249046 299.9697143418395058
|
||||
480 300.8568627175958454 1535.6080526199100404 1189.7237810071803779 393.7102284019064200 -0.0000000000000000 15704.7298885727686866 17288.1638979818562802 299.9732503057675785
|
||||
490 301.0608040775520067 1497.3221544489890675 1189.7062242497640909 393.9771121242308709 -0.0000000000000000 15704.4860863739140768 17288.1694227479092660 299.9682362511933889
|
||||
500 301.0232592587148019 1517.5854528541185573 1189.6911287485863795 393.9279798589197981 -0.0000000000000000 15704.5425100510510674 17288.1616186585561081 299.9690333355832195
|
||||
510 300.7038579923685120 1420.2615974401142012 1189.6747661513456933 393.5100018730125839 -0.0000000000000000 15704.9716744568013382 17288.1564424811585923 299.9768186576548032
|
||||
520 300.5917863355052759 1537.4862082427125642 1189.6604754398761088 393.3633415734188361 -0.0000000000000000 15705.1390892093895673 17288.1629062226857059 299.9795694302102902
|
||||
530 300.4751352158504574 1481.1071694751785799 1189.6453243069920518 393.2106884527693751 -0.0000000000000000 15705.3053530714041699 17288.1613658311653126 299.9823181268525900
|
||||
540 300.5380123640739498 1547.3461372766387285 1189.6261485232855648 393.2929713568877332 0.0000000000000000 15705.2452458598490921 17288.1643657400236407 299.9808112190538623
|
||||
550 300.4253885005187499 1544.3485889749688340 1189.6033595464525661 393.1455884232119047 0.0000000000000000 15705.4200593467012368 17288.1690073163663328 299.9835860164698147
|
||||
560 300.3263552442091395 1556.5150300058239736 1189.5759163336820166 393.0159905619271399 0.0000000000000000 15705.5750488783432957 17288.1669557739514858 299.9861837797674298
|
||||
570 300.1977324643196994 1511.2320626303924200 1189.5441090918316149 392.8476709710408272 0.0000000000000000 15705.7700134401693504 17288.1617935030408262 299.9896761688500533
|
||||
580 300.3543631005173893 1588.9566243200420104 1189.5094471319723652 393.0526424747489500 -0.0000000000000000 15705.5976430422142585 17288.1597326489354600 299.9859298211932810
|
||||
590 300.5019108864805730 1504.4406939723210144 1189.4809412920112663 393.2457278908070748 -0.0000000000000000 15705.4306152855297114 17288.1572844683469157 299.9823573257918952
|
||||
600 300.4791158523048011 1540.4690749004137160 1189.4551948503108179 393.2158976318902432 0.0000000000000000 15705.4914114063831221 17288.1625038885831600 299.9832002920041418
|
||||
610 300.5939139841890437 1368.0565839211083130 1189.4252547652597514 393.3661258776945715 0.0000000000000000 15705.3732852337052464 17288.1646658766585460 299.9807742697515209
|
||||
620 300.7674247480806002 1483.2566452708929319 1189.3941250938437406 393.5931872179773450 0.0000000000000000 15705.1789842209145718 17288.1662965327341226 299.9766963671719395
|
||||
630 300.7920034341022415 1543.0699124130630935 1189.3598279316649950 393.6253516166883628 -0.0000000000000000 15705.1821846865786938 17288.1673642349305737 299.9762538437231001
|
||||
640 300.8032734267029014 1423.2549819291609765 1189.3293074476887341 393.6400998638143278 -0.0000000000000000 15705.1986701098048798 17288.1680774213091354 299.9762118202993975
|
||||
650 300.7516995878240209 1542.6559695158514387 1189.3021161045703593 393.5726088061028349 0.0000000000000000 15705.2963824473390559 17288.1711073580117954 299.9775656396504360
|
||||
660 300.8699697098108459 1675.5121937767842155 1189.2687179804192965 393.7273806013012063 0.0000000000000000 15705.1781614686860848 17288.1742600504076108 299.9750492262035095
|
||||
670 301.0255004186899441 1520.7397686587889893 1189.2284265783694082 393.9309127074436105 0.0000000000000000 15705.0194154727287241 17288.1787547585408902 299.9715123049731460
|
||||
680 301.1071983488761248 1651.9751417063253029 1189.1858967311388824 394.0378250459656897 0.0000000000000000 15704.9584701329349627 17288.1821919100402738 299.9699481289110281
|
||||
690 301.0027086454255141 1496.1607274163641250 1189.1436949551202815 393.9010867158522160 0.0000000000000000 15705.1390813360922039 17288.1838630070633371 299.9731939774292755
|
||||
700 300.9009090279178622 1551.8182127127668082 1189.0993919251338866 393.7678687121206735 -0.0000000000000000 15705.3115540452217829 17288.1788146824765136 299.9761043445070641
|
||||
710 301.2325536720837817 1678.1546953970841969 1189.0528341066981284 394.2018687459686817 0.0000000000000000 15704.9235173995584773 17288.1782202522263105 299.9683013583346565
|
||||
720 301.2122298224125529 1524.1415452491437463 1189.0046957644283339 394.1752723525083866 0.0000000000000000 15704.9953504895402148 17288.1753186064779584 299.9693315350040734
|
||||
730 301.0763282392692304 1547.1987029633176007 1188.9602551214045434 393.9974275034455218 0.0000000000000000 15705.2119928705469647 17288.1696754953954951 299.9732715774840699
|
||||
740 301.3262401480515109 1544.7045314021493141 1188.9131307177485724 394.3244696516559884 0.0000000000000000 15704.9296076272603386 17288.1672079966665478 299.9674666811455950
|
||||
750 301.5740779122830872 1591.1785078054849691 1188.8637580645940943 394.6487975126887591 0.0000000000000000 15704.6521404470349808 17288.1646960243160720 299.9616008527092959
|
||||
760 301.4385361878655658 1547.3218422039212783 1188.8113669183098864 394.4714235854451658 0.0000000000000000 15704.8763786124927719 17288.1591691162466304 299.9656339783693966
|
||||
770 301.6110125684815557 1494.5039561806624988 1188.7581685915934031 394.6971313010441236 0.0000000000000000 15704.6953595579507237 17288.1506594505881367 299.9619855799396646
|
||||
780 301.8360352039435384 1588.1458619705304045 1188.7039178696477393 394.9916026067776329 0.0000000000000000 15704.4617070838321524 17288.1572275602593436 299.9572350302976247
|
||||
790 302.1008324754310479 1545.4409171812180830 1188.6491103416560691 395.3381241828382144 0.0000000000000000 15704.1751923936917592 17288.1624269181847922 299.9513959104630771
|
||||
800 301.9660372380565718 1563.9565804790738639 1188.5964649891604950 395.1617271307158035 0.0000000000000000 15704.4063124560707365 17288.1645045759469212 299.9555810527747326
|
||||
810 302.0507207347627059 1511.4560763489960209 1188.5468477146607711 395.2725464702810427 0.0000000000000000 15704.3505979898400255 17288.1699921747822373 299.9541551776507617
|
||||
820 302.4700213214913447 1458.5135514273563331 1188.4981381693974072 395.8212556746476025 0.0000000000000000 15703.8537761962070363 17288.1731700402524439 299.9441803241177809
|
||||
830 302.2853997979336214 1496.2544527963145811 1188.4496917372191547 395.5796544641873993 0.0000000000000000 15704.1464516793694202 17288.1757978807763720 299.9494768794834840
|
||||
840 302.0840465730901201 1518.8301331998702608 1188.3994383226179252 395.3161576523596636 0.0000000000000000 15704.4564021812439023 17288.1719981562200701 299.9550476592922337
|
||||
850 301.8910942560260082 1469.8827850510904227 1188.3489956121347859 395.0636545180259986 0.0000000000000000 15704.7627679631386854 17288.1754180932985037 299.9606927700136794
|
||||
860 301.7284384160518016 1657.6802015862315329 1188.3052233777652873 394.8507982536592635 0.0000000000000000 15705.0246544022065791 17288.1806760336330626 299.9652835238807711
|
||||
870 301.6331619894114624 1501.5829953208508414 1188.2628815714099346 394.7261166912875865 0.0000000000000000 15705.1980055648327834 17288.1870038275301340 299.9682811831179947
|
||||
880 301.3703918424367316 1499.1595903074555736 1188.2195190931643083 394.3822478705861272 0.0000000000000000 15705.5868298250898079 17288.1885967888410960 299.9755099056964127
|
||||
890 301.4157954313303662 1598.8758859042509357 1188.1845892608291706 394.4416643558612918 0.0000000000000000 15705.5638481192290783 17288.1901017359195976 299.9745322513492738
|
||||
900 301.4752150615486812 1621.2148728756842502 1188.1517520946144941 394.5194226492021699 0.0000000000000000 15705.5181455608308170 17288.1893203046492999 299.9733125337182287
|
||||
910 301.4308816315937634 1538.4823217911621214 1188.1159856659228353 394.4614066057064861 0.0000000000000000 15705.6160570713091147 17288.1934493429398572 299.9748317405192779
|
||||
920 301.4323110133492492 1594.7193046491240693 1188.0835779842032025 394.4632771371357762 0.0000000000000000 15705.6544576464475540 17288.2013127677855664 299.9751127806913473
|
||||
930 301.4801256941949532 1387.6885377097596574 1188.0464206196900250 394.5258488489680531 0.0000000000000000 15705.6258377843460039 17288.1981072530033998 299.9740698440912183
|
||||
940 301.8075611840245074 1534.2487040663797870 1188.0124217312888959 394.9543406584059539 0.0000000000000000 15705.2331319202457962 17288.1998943099388271 299.9660570413491882
|
||||
950 301.6915970126175353 1567.7725992489226883 1187.9790455470049437 394.8025864986415172 0.0000000000000000 15705.4221432087451831 17288.2037752543910756 299.9694678653152096
|
||||
960 301.6392594677008105 1504.8502165144939227 1187.9439133338107695 394.7340960325207675 0.0000000000000000 15705.5330682989206252 17288.2110776652516506 299.9711546356285226
|
||||
970 301.6049535791644871 1514.0198965433535250 1187.9094123369409317 394.6892023276234909 0.0000000000000000 15705.6099784820144123 17288.2085931465771864 299.9722547114341751
|
||||
980 301.2982841679706780 1634.1208149125800446 1187.8768454876478700 394.2878856256065205 0.0000000000000000 15706.0463883383199573 17288.2111194515746320 299.9802110109068849
|
||||
990 301.2573007350166563 1489.7316698898262075 1187.8432331161866387 394.2342534877078606 0.0000000000000000 15706.1441971863041545 17288.2216837901978579 299.9819468620868292
|
||||
1000 301.3195135766228532 1562.6587211933931485 1187.8034267774903583 394.3156670604516307 0.0000000000000000 15706.0974511956701463 17288.2165450336106005 299.9807651637235040
|
||||
Loop time of 17.0881 on 1 procs for 1000 steps with 10125 atoms
|
||||
|
||||
Performance: 4.050 ns/day, 5.925 hours/ns, 46.880 timesteps/s
|
||||
99.8% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
Performance: 5.056 ns/day, 4.747 hours/ns, 58.520 timesteps/s
|
||||
100.0% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 10.099 | 10.099 | 10.099 | 0.0 | 47.34
|
||||
Neigh | 10.145 | 10.145 | 10.145 | 0.0 | 47.56
|
||||
Comm | 0.49807 | 0.49807 | 0.49807 | 0.0 | 2.33
|
||||
Output | 0.011203 | 0.011203 | 0.011203 | 0.0 | 0.05
|
||||
Modify | 0.28296 | 0.28296 | 0.28296 | 0.0 | 1.33
|
||||
Other | | 0.295 | | | 1.38
|
||||
Pair | 8.0541 | 8.0541 | 8.0541 | 0.0 | 47.13
|
||||
Neigh | 8.1306 | 8.1306 | 8.1306 | 0.0 | 47.58
|
||||
Comm | 0.39415 | 0.39415 | 0.39415 | 0.0 | 2.31
|
||||
Output | 0.01103 | 0.01103 | 0.01103 | 0.0 | 0.06
|
||||
Modify | 0.24061 | 0.24061 | 0.24061 | 0.0 | 1.41
|
||||
Other | | 0.2576 | | | 1.51
|
||||
|
||||
Nlocal: 10125 ave 10125 max 10125 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
@ -170,4 +174,4 @@ Total # of neighbors = 114682
|
||||
Ave neighs/atom = 11.3266
|
||||
Neighbor list builds = 1000
|
||||
Dangerous builds not checked
|
||||
Total wall time: 0:00:21
|
||||
Total wall time: 0:00:17
|
||||
|
||||
@ -18,7 +18,7 @@ neigh_modify every 1 delay 0 check no once no
|
||||
timestep 0.001
|
||||
|
||||
compute dpdU all dpd
|
||||
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[1]+press*vol
|
||||
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[2]+press*vol
|
||||
|
||||
thermo 1
|
||||
thermo_style custom step temp press vol pe ke v_totEnergy cella cellb cellc
|
||||
|
||||
@ -22,7 +22,7 @@ neigh_modify every 1 delay 0 check no once no
|
||||
timestep 0.001
|
||||
|
||||
compute dpdU all dpd
|
||||
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[1]+press*vol
|
||||
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[2]+press*vol
|
||||
|
||||
thermo 1
|
||||
thermo_style custom step temp press vol pe ke v_totEnergy cella cellb cellc
|
||||
@ -34,129 +34,137 @@ fix 2 all eos/cv 0.0005
|
||||
|
||||
run 100
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check no
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 12
|
||||
ghost atom cutoff = 12
|
||||
binsize = 6 -> bins = 22 22 22
|
||||
Memory usage per processor = 6.48143 Mbytes
|
||||
binsize = 6, bins = 22 22 22
|
||||
2 neighbor lists, perpetual/occasional/extra = 2 0 0
|
||||
(1) pair dpd/fdt/energy, perpetual
|
||||
pair build: half/bin/newton
|
||||
stencil: half/bin/3d/newton
|
||||
bin: standard
|
||||
(2) fix shardlow, perpetual, ssa
|
||||
pair build: half/bin/newton/ssa
|
||||
stencil: half/bin/3d/newton/ssa
|
||||
bin: ssa
|
||||
Memory usage per processor = 8.55503 Mbytes
|
||||
Step Temp Press Volume PotEng KinEng v_totEnergy Cella Cellb Cellc
|
||||
0 239.4274282976 2817.4421750949 2146689.0000000000 2639.8225470740 313.3218455755 6048176597.3066043854 129.0000000000 129.0000000000 129.0000000000
|
||||
1 239.4771405316 2817.4798146419 2146689.0000581890 2639.8304543632 313.3869004818 6048257397.9450111389 129.0000000012 129.0000000012 129.0000000012
|
||||
2 239.5643955010 2817.5423194969 2146689.0002327557 2639.8379071907 313.5010849268 6048391577.0431985855 129.0000000047 129.0000000047 129.0000000047
|
||||
3 239.6633839196 2817.6123662396 2146689.0005237064 2639.8445238058 313.6306241122 6048541946.5712032318 129.0000000105 129.0000000105 129.0000000105
|
||||
4 239.5371222027 2817.5355424336 2146689.0009310376 2639.8505035043 313.4653942786 6048377030.7404460907 129.0000000186 129.0000000186 129.0000000186
|
||||
5 239.6512678169 2817.6153097076 2146689.0014547524 2639.8561498340 313.6147686202 6048548267.9007377625 129.0000000291 129.0000000291 129.0000000291
|
||||
6 239.5617886781 2817.5624195435 2146689.0020948485 2639.8617493725 313.4976735610 6048434730.8592004776 129.0000000420 129.0000000420 129.0000000420
|
||||
7 239.5228587856 2817.5420009502 2146689.0028513218 2639.8666590407 313.4467287471 6048390900.5748577118 129.0000000571 129.0000000571 129.0000000571
|
||||
8 239.6066877934 2817.6008649264 2146689.0037241788 2639.8710757645 313.5564298772 6048517265.7987136841 129.0000000746 129.0000000746 129.0000000746
|
||||
9 239.5719861485 2817.5823530300 2146689.0047134170 2639.8752557893 313.5110182737 6048477529.2603597641 129.0000000944 129.0000000944 129.0000000944
|
||||
10 239.5800176776 2817.5915671176 2146689.0058190385 2639.8793778438 313.5215285712 6048497312.1706552505 129.0000001166 129.0000001166 129.0000001166
|
||||
11 239.6299830954 2817.6281223139 2146689.0070410441 2639.8829762049 313.5869148014 6048575788.3208351135 129.0000001410 129.0000001410 129.0000001410
|
||||
12 239.6011995911 2817.6132377273 2146689.0083794324 2639.8860704236 313.5492478526 6048543839.4788360596 129.0000001678 129.0000001678 129.0000001678
|
||||
13 239.6407681166 2817.6427924824 2146689.0098342048 2639.8889816934 313.6010284005 6048607288.5005025864 129.0000001970 129.0000001970 129.0000001970
|
||||
14 239.6981172055 2817.6844100046 2146689.0114053637 2639.8913405110 313.6760771219 6048696632.8825626373 129.0000002285 129.0000002285 129.0000002285
|
||||
15 239.8563971968 2817.7922519039 2146689.0130929090 2639.8934358481 313.8832070208 6048928140.8671455383 129.0000002623 129.0000002623 129.0000002623
|
||||
16 239.8561894618 2817.7971208197 2146689.0148968464 2639.8950496967 313.8829351726 6048938597.9994916916 129.0000002984 129.0000002984 129.0000002984
|
||||
17 239.8816520361 2817.8185621543 2146689.0168171758 2639.8961257823 313.9162562538 6048984631.3226108551 129.0000003369 129.0000003369 129.0000003369
|
||||
18 239.9099966096 2817.8417368960 2146689.0188538977 2639.8965743204 313.9533488047 6049034386.0627622604 129.0000003777 129.0000003777 129.0000003777
|
||||
19 240.0514024347 2817.9389205774 2146689.0210070144 2639.8966103811 314.1383966683 6049243015.4568052292 129.0000004208 129.0000004208 129.0000004208
|
||||
20 239.8802541140 2817.8327386176 2146689.0232765260 2639.8962085210 313.9144268914 6049015081.9802341461 129.0000004662 129.0000004662 129.0000004662
|
||||
21 239.8462621903 2817.8160306167 2146689.0256624296 2639.8953174755 313.8699440502 6048979221.7758703232 129.0000005140 129.0000005140 129.0000005140
|
||||
22 240.0487944678 2817.9533849157 2146689.0281647225 2639.8938590354 314.1349838054 6049274086.0571212769 129.0000005642 129.0000005642 129.0000005642
|
||||
23 240.0966314441 2817.9897873787 2146689.0307834130 2639.8918104774 314.1975846937 6049352238.2649183273 129.0000006166 129.0000006166 129.0000006166
|
||||
24 240.1765312516 2818.0463843765 2146689.0335185044 2639.8891292321 314.3021439554 6049473742.2287187576 129.0000006714 129.0000006714 129.0000006714
|
||||
25 240.1500705973 2818.0336048048 2146689.0363699966 2639.8858785483 314.2675167572 6049446316.4600162506 129.0000007285 129.0000007285 129.0000007285
|
||||
26 240.2681423500 2818.1151708195 2146689.0393378921 2639.8825176506 314.4220289603 6049621421.8445177078 129.0000007880 129.0000007880 129.0000007880
|
||||
27 240.4728815247 2818.2527327079 2146689.0424221945 2639.8784158747 314.6899567267 6049916733.3989181519 129.0000008498 129.0000008498 129.0000008498
|
||||
28 240.4793027032 2818.2613348477 2146689.0456229053 2639.8736089473 314.6983596717 6049935208.5421981812 129.0000009139 129.0000009139 129.0000009139
|
||||
29 240.5020619198 2818.2805472685 2146689.0489400285 2639.8681043704 314.7281430587 6049976461.0082206726 129.0000009803 129.0000009803 129.0000009803
|
||||
30 240.5513721776 2818.3167157263 2146689.0523735629 2639.8623484053 314.7926719270 6050054113.1760177612 129.0000010491 129.0000010491 129.0000010491
|
||||
31 240.7340393104 2818.4391703712 2146689.0559235099 2639.8563442170 315.0317155636 6050316995.4599781036 129.0000011202 129.0000011202 129.0000011202
|
||||
32 240.8254719483 2818.5014640740 2146689.0595898777 2639.8498122053 315.1513670299 6050450731.1168394089 129.0000011936 129.0000011936 129.0000011936
|
||||
33 240.9681573541 2818.5965480750 2146689.0633726656 2639.8425779528 315.3380893908 6050654857.7432861328 129.0000012694 129.0000012694 129.0000012694
|
||||
34 241.0039494187 2818.6217008564 2146689.0672718794 2639.8347174393 315.3849279499 6050708863.9733209610 129.0000013475 129.0000013475 129.0000013475
|
||||
35 241.0314566197 2818.6411150538 2146689.0712875174 2639.8262983643 315.4209246902 6050750551.5649127960 129.0000014279 129.0000014279 129.0000014279
|
||||
36 241.0829173424 2818.6763455617 2146689.0754195810 2639.8174397481 315.4882677207 6050826192.2165899277 129.0000015107 129.0000015107 129.0000015107
|
||||
37 241.2845682012 2818.8087982181 2146689.0796680767 2639.8080129872 315.7521540252 6051110539.1171846390 129.0000015958 129.0000015958 129.0000015958
|
||||
38 241.3214712920 2818.8336260248 2146689.0840330068 2639.7981963574 315.8004465062 6051163849.0412235260 129.0000016833 129.0000016833 129.0000016833
|
||||
39 241.3392127125 2818.8456991528 2146689.0885143690 2639.7879618658 315.8236634561 6051189778.9386901855 129.0000017730 129.0000017730 129.0000017730
|
||||
40 241.5383770555 2818.9753950055 2146689.0931121684 2639.7769824244 316.0842958321 6051468208.8210506439 129.0000018651 129.0000018651 129.0000018651
|
||||
41 241.5059730674 2818.9543817992 2146689.0978264087 2639.7656512498 316.0418910106 6051423113.2358427048 129.0000019595 129.0000019595 129.0000019595
|
||||
42 241.3907605672 2818.8793800508 2146689.1026570834 2639.7541331920 315.8911205101 6051262121.2551422119 129.0000020563 129.0000020563 129.0000020563
|
||||
43 241.5095917610 2818.9559595711 2146689.1076041958 2639.7424355740 316.0466265406 6051426527.7663059235 129.0000021554 129.0000021554 129.0000021554
|
||||
44 241.6271631762 2819.0312325531 2146689.1126677482 2639.7297705654 316.2004839873 6051588129.8722610474 129.0000022568 129.0000022568 129.0000022568
|
||||
45 241.5702411838 2818.9923790176 2146689.1178477411 2639.7163554760 316.1259941770 6051504737.9250564575 129.0000023606 129.0000023606 129.0000023606
|
||||
46 241.7029985068 2819.0771124986 2146689.1231441777 2639.7024246704 316.2997243538 6051686649.4576120377 129.0000024667 129.0000024667 129.0000024667
|
||||
47 241.7966144965 2819.1357830868 2146689.1285570571 2639.6882106593 316.4222330191 6051812612.3391046524 129.0000025751 129.0000025751 129.0000025751
|
||||
48 241.8573480255 2819.1726205120 2146689.1340863821 2639.6735287925 316.5017107195 6051891706.4921989441 129.0000026859 129.0000026859 129.0000026859
|
||||
49 241.9611147338 2819.2374095379 2146689.1397321564 2639.6583357477 316.6375029166 6052030804.4275226593 129.0000027990 129.0000027990 129.0000027990
|
||||
50 242.1023518806 2819.3259059811 2146689.1454943856 2639.6424863169 316.8223300428 6052220795.1955394745 129.0000029144 129.0000029144 129.0000029144
|
||||
51 242.1174105473 2819.3319633044 2146689.1513730693 2639.6264141131 316.8420362613 6052233814.9634265900 129.0000030321 129.0000030321 129.0000030321
|
||||
52 242.2534914901 2819.4164594322 2146689.1573682069 2639.6098392670 317.0201158259 6052415218.9485445023 129.0000031522 129.0000031522 129.0000031522
|
||||
53 242.3504633236 2819.4754119996 2146689.1634798055 2639.5930076506 317.1470160479 6052541789.1274013519 129.0000032746 129.0000032746 129.0000032746
|
||||
54 242.2982323323 2819.4368568264 2146689.1697078613 2639.5756353782 317.0786650211 6052459040.6286897659 129.0000033994 129.0000033994 129.0000033994
|
||||
55 242.3452896272 2819.4623310219 2146689.1760523771 2639.5575918586 317.1402455951 6052513743.7400159836 129.0000035265 129.0000035265 129.0000035265
|
||||
56 242.4181903333 2819.5048897011 2146689.1825133534 2639.5390347547 317.2356456249 6052605122.2894439697 129.0000036559 129.0000036559 129.0000036559
|
||||
57 242.5317091656 2819.5739975787 2146689.1890907930 2639.5199828249 317.3841997413 6052753494.0979280472 129.0000037876 129.0000037876 129.0000037876
|
||||
58 242.5478978740 2819.5796954935 2146689.1957846982 2639.5006137388 317.4053847660 6052765744.6257629395 129.0000039217 129.0000039217 129.0000039217
|
||||
59 242.6655316466 2819.6519225743 2146689.2025950695 2639.4808234811 317.5593238156 6052920813.0568208694 129.0000040582 129.0000040582 129.0000040582
|
||||
60 242.8126131177 2819.7431588157 2146689.2095219092 2639.4607996998 317.7517989980 6053116688.6155729294 129.0000041969 129.0000041969 129.0000041969
|
||||
61 242.7957124913 2819.7275989047 2146689.2165652174 2639.4406312730 317.7296823362 6053083306.1403274536 129.0000043380 129.0000043380 129.0000043380
|
||||
62 242.9276177041 2819.8088790098 2146689.2237249981 2639.4201279058 317.9022974164 6053257809.6067762375 129.0000044814 129.0000044814 129.0000044814
|
||||
63 243.0465445938 2819.8814758895 2146689.2310012528 2639.3991657500 318.0579286774 6053413673.1989650726 129.0000046272 129.0000046272 129.0000046272
|
||||
64 242.9890585501 2819.8387587817 2146689.2383939880 2639.3781767844 317.9827007328 6053321993.5937871933 129.0000047752 129.0000047752 129.0000047752
|
||||
65 242.9653746583 2819.8180104181 2146689.2459031967 2639.3568184374 317.9517072884 6053277474.4272727966 129.0000049256 129.0000049256 129.0000049256
|
||||
66 243.0259297024 2819.8514334947 2146689.2535288804 2639.3352568621 318.0309514181 6053349244.9473772049 129.0000050784 129.0000050784 129.0000050784
|
||||
67 242.9638979697 2819.8046112742 2146689.2612710390 2639.3134547096 317.9497748498 6053248753.9180717468 129.0000052335 129.0000052335 129.0000052335
|
||||
68 243.0283540775 2819.8395632725 2146689.2691296688 2639.2912303374 318.0341240273 6053323807.2197017670 129.0000053909 129.0000053909 129.0000053909
|
||||
69 243.2256418664 2819.9609646019 2146689.2771047787 2639.2684509205 318.2923006889 6053584440.8757400513 129.0000055506 129.0000055506 129.0000055506
|
||||
70 243.2507495334 2819.9706145524 2146689.2851963686 2639.2450126010 318.3251573278 6053605179.1483964920 129.0000057127 129.0000057127 129.0000057127
|
||||
71 243.4287155518 2820.0794853386 2146689.2934044413 2639.2213699915 318.5580489464 6053838914.2552747726 129.0000058771 129.0000058771 129.0000058771
|
||||
72 243.5097518574 2820.1249498194 2146689.3017290002 2639.1971212009 318.6640954635 6053936535.9274711609 129.0000060439 129.0000060439 129.0000060439
|
||||
73 243.5356790969 2820.1337977544 2146689.3101700447 2639.1723394661 318.6980246193 6053955553.5090074539 129.0000062130 129.0000062130 129.0000062130
|
||||
74 243.5479180498 2820.1331964183 2146689.3187275808 2639.1473868749 318.7140408766 6053954286.7515821457 129.0000063844 129.0000063844 129.0000063844
|
||||
75 243.7115573025 2820.2314361523 2146689.3274016059 2639.1220411207 318.9281840641 6054165201.5909118652 129.0000065581 129.0000065581 129.0000065581
|
||||
76 243.7457279618 2820.2454531429 2146689.3361921217 2639.0963868224 318.9729008040 6054195316.5254154205 129.0000067342 129.0000067342 129.0000067342
|
||||
77 243.8345031069 2820.2948644965 2146689.3450991292 2639.0700900389 319.0890745962 6054301412.5615310669 129.0000069126 129.0000069126 129.0000069126
|
||||
78 244.0193931195 2820.4067881628 2146689.3541226317 2639.0435094409 319.3310271594 6054541703.5689058304 129.0000070934 129.0000070934 129.0000070934
|
||||
79 243.9919100078 2820.3799166166 2146689.3632626338 2639.0164249037 319.2950619430 6054484044.4218587875 129.0000072765 129.0000072765 129.0000072765
|
||||
80 244.0965612207 2820.4387335935 2146689.3725191355 2638.9888176882 319.4320116291 6054610332.4174261093 129.0000074619 129.0000074619 129.0000074619
|
||||
81 244.1334315951 2820.4535208568 2146689.3818921377 2638.9608330195 319.4802612965 6054642102.5347270966 129.0000076496 129.0000076496 129.0000076496
|
||||
82 244.3029520408 2820.5543485196 2146689.3913816395 2638.9318525796 319.7021007878 6054858575.1664342880 129.0000078397 129.0000078397 129.0000078397
|
||||
83 244.3445761189 2820.5713690935 2146689.4009876498 2638.9021684795 319.7565712929 6054895140.1710596085 129.0000080321 129.0000080321 129.0000080321
|
||||
84 244.2696671559 2820.5125763350 2146689.4107101629 2638.8720941742 319.6585431986 6054768957.6739044189 129.0000082269 129.0000082269 129.0000082269
|
||||
85 244.5161919319 2820.6629431352 2146689.4205491822 2638.8415194387 319.9811528443 6055091776.5361995697 129.0000084240 129.0000084240 129.0000084240
|
||||
86 244.5641090282 2820.6838080201 2146689.4305047127 2638.8103612394 320.0438585800 6055136595.0767974854 129.0000086234 129.0000086234 129.0000086234
|
||||
87 244.5348240638 2820.6541129118 2146689.4405767513 2638.7789728309 320.0055354056 6055072877.2416200638 129.0000088251 129.0000088251 129.0000088251
|
||||
88 244.6939431427 2820.7468233396 2146689.4507653015 2638.7470269267 320.2137633592 6055271926.6536149979 129.0000090292 129.0000090292 129.0000090292
|
||||
89 244.8800201091 2820.8567117003 2146689.4610703662 2638.7147520097 320.4572692055 6055507852.1186332703 129.0000092356 129.0000092356 129.0000092356
|
||||
90 244.8804280382 2820.8451141876 2146689.4714919478 2638.6820441173 320.4578030336 6055482985.2258749008 129.0000094444 129.0000094444 129.0000094444
|
||||
91 244.9558851986 2820.8815975090 2146689.4820300462 2638.6491836104 320.5565485155 6055561333.3803453445 129.0000096555 129.0000096555 129.0000096555
|
||||
92 244.9965893140 2820.8949614294 2146689.4926846647 2638.6159817170 320.6098151301 6055590051.6433181763 129.0000098689 129.0000098689 129.0000098689
|
||||
93 245.1381056687 2820.9732811388 2146689.5034558061 2638.5824451870 320.7950076360 6055758210.2774200439 129.0000100846 129.0000100846 129.0000100846
|
||||
94 245.2954807041 2821.0619342131 2146689.5143434699 2638.5485198222 321.0009532826 6055948551.7882709503 129.0000103027 129.0000103027 129.0000103027
|
||||
95 245.3535822199 2821.0860553731 2146689.5253476589 2638.5144817512 321.0769866522 6056000363.5151576996 129.0000105232 129.0000105232 129.0000105232
|
||||
96 245.5013476026 2821.1682908185 2146689.5364683764 2638.4801107361 321.2703568219 6056176929.0169925690 129.0000107459 129.0000107459 129.0000107459
|
||||
97 245.4166531417 2821.0989038023 2146689.5477056229 2638.4453663061 321.1595231342 6056028008.1910057068 129.0000109710 129.0000109710 129.0000109710
|
||||
98 245.4121937790 2821.0817490953 2146689.5590593945 2638.4097762390 321.1536874797 6055991214.3494396210 129.0000111984 129.0000111984 129.0000111984
|
||||
99 245.4532592994 2821.0946353191 2146689.5705296928 2638.3738037546 321.2074270397 6056018909.4480972290 129.0000114282 129.0000114282 129.0000114282
|
||||
100 245.7500657390 2821.2735939427 2146689.5821165247 2638.3375549051 321.5958367642 6056403111.1006488800 129.0000116603 129.0000116603 129.0000116603
|
||||
Loop time of 4.05006 on 1 procs for 100 steps with 10125 atoms
|
||||
0 239.4274282976 2817.4421750949 2146689.0000000000 2639.8225470740 313.3218455755 6048176597.3066034317 129.0000000000 129.0000000000 129.0000000000
|
||||
1 239.4771405316 2817.4798146419 2146689.0000581890 2639.8304543632 313.3869004818 6048257397.8720483780 129.0000000012 129.0000000012 129.0000000012
|
||||
2 239.5643955010 2817.5423194969 2146689.0002327557 2639.8379071907 313.5010849268 6048391576.8485937119 129.0000000047 129.0000000047 129.0000000047
|
||||
3 239.6633839196 2817.6123662396 2146689.0005237064 2639.8445238058 313.6306241122 6048541946.2404479980 129.0000000105 129.0000000105 129.0000000105
|
||||
4 239.5371222027 2817.5355424336 2146689.0009310376 2639.8505035043 313.4653942786 6048377030.5689325333 129.0000000186 129.0000000186 129.0000000186
|
||||
5 239.6512678169 2817.6153097076 2146689.0014547524 2639.8561498340 313.6147686202 6048548267.5742130280 129.0000000291 129.0000000291 129.0000000291
|
||||
6 239.5617886781 2817.5624195435 2146689.0020948485 2639.8617493725 313.4976735610 6048434730.6441593170 129.0000000420 129.0000000420 129.0000000420
|
||||
7 239.5228587856 2817.5420009502 2146689.0028513218 2639.8666590407 313.4467287471 6048390900.4058599472 129.0000000571 129.0000000571 129.0000000571
|
||||
8 239.6066877934 2817.6008649264 2146689.0037241788 2639.8710757645 313.5564298772 6048517265.5155982971 129.0000000746 129.0000000746 129.0000000746
|
||||
9 239.5719861485 2817.5823530300 2146689.0047134170 2639.8752557893 313.5110182737 6048477529.0184717178 129.0000000944 129.0000000944 129.0000000944
|
||||
10 239.5800176776 2817.5915671176 2146689.0058190385 2639.8793778438 313.5215285712 6048497311.9141387939 129.0000001166 129.0000001166 129.0000001166
|
||||
11 239.6299830954 2817.6281223139 2146689.0070410441 2639.8829762049 313.5869148014 6048575787.9953098297 129.0000001410 129.0000001410 129.0000001410
|
||||
12 239.6011995911 2817.6132377273 2146689.0083794324 2639.8860704236 313.5492478526 6048543839.1878814697 129.0000001678 129.0000001678 129.0000001678
|
||||
13 239.6407681166 2817.6427924824 2146689.0098342048 2639.8889816934 313.6010284005 6048607288.1548709869 129.0000001970 129.0000001970 129.0000001970
|
||||
14 239.6981172055 2817.6844100046 2146689.0114053637 2639.8913405110 313.6760771219 6048696632.4595127106 129.0000002285 129.0000002285 129.0000002285
|
||||
15 239.8563971968 2817.7922519039 2146689.0130929090 2639.8934358481 313.8832070208 6048928140.2348766327 129.0000002623 129.0000002623 129.0000002623
|
||||
16 239.8561894618 2817.7971208196 2146689.0148968464 2639.8950496967 313.8829351726 6048938597.3658657074 129.0000002984 129.0000002984 129.0000002984
|
||||
17 239.8816520361 2817.8185621543 2146689.0168171758 2639.8961257823 313.9162562538 6048984630.6545839310 129.0000003369 129.0000003369 129.0000003369
|
||||
18 239.9099966096 2817.8417368960 2146689.0188538977 2639.8965743204 313.9533488047 6049034385.3571958542 129.0000003777 129.0000003777 129.0000003777
|
||||
19 240.0514024347 2817.9389205774 2146689.0210070144 2639.8966103811 314.1383966683 6049243014.5661621094 129.0000004208 129.0000004208 129.0000004208
|
||||
20 239.8802541140 2817.8327386176 2146689.0232765260 2639.8962085210 313.9144268914 6049015081.3139505386 129.0000004662 129.0000004662 129.0000004662
|
||||
21 239.8462621903 2817.8160306167 2146689.0256624296 2639.8953174755 313.8699440502 6048979221.1549577713 129.0000005140 129.0000005140 129.0000005140
|
||||
22 240.0487944678 2817.9533849157 2146689.0281647225 2639.8938590354 314.1349838054 6049274085.1726217270 129.0000005642 129.0000005642 129.0000005642
|
||||
23 240.0966314441 2817.9897873787 2146689.0307834130 2639.8918104774 314.1975846937 6049352237.3198652267 129.0000006166 129.0000006166 129.0000006166
|
||||
24 240.1765312516 2818.0463843765 2146689.0335185044 2639.8891292321 314.3021439554 6049473741.1817827225 129.0000006714 129.0000006714 129.0000006714
|
||||
25 240.1500705973 2818.0336048048 2146689.0363699966 2639.8858785483 314.2675167572 6049446315.4509468079 129.0000007285 129.0000007285 129.0000007285
|
||||
26 240.2681423500 2818.1151708195 2146689.0393378921 2639.8825176506 314.4220289603 6049621420.6842966080 129.0000007880 129.0000007880 129.0000007880
|
||||
27 240.4728815247 2818.2527327079 2146689.0424221945 2639.8784158747 314.6899567267 6049916731.9748563766 129.0000008498 129.0000008498 129.0000008498
|
||||
28 240.4793027032 2818.2613348477 2146689.0456229053 2639.8736089473 314.6983596717 6049935207.1145420074 129.0000009139 129.0000009139 129.0000009139
|
||||
29 240.5020619198 2818.2805472685 2146689.0489400285 2639.8681043704 314.7281430587 6049976459.5562763214 129.0000009803 129.0000009803 129.0000009803
|
||||
30 240.5513721776 2818.3167157263 2146689.0523735629 2639.8623484053 314.7926719270 6050054111.6652946472 129.0000010491 129.0000010491 129.0000010491
|
||||
31 240.7340393104 2818.4391703712 2146689.0559235099 2639.8563442170 315.0317155636 6050316993.7162160873 129.0000011202 129.0000011202 129.0000011202
|
||||
32 240.8254719483 2818.5014640740 2146689.0595898777 2639.8498122053 315.1513670299 6050450729.2599506378 129.0000011936 129.0000011936 129.0000011936
|
||||
33 240.9681573541 2818.5965480750 2146689.0633726656 2639.8425779528 315.3380893908 6050654855.7068986893 129.0000012694 129.0000012694 129.0000012694
|
||||
34 241.0039494187 2818.6217008564 2146689.0672718794 2639.8347174393 315.3849279499 6050708861.8979463577 129.0000013475 129.0000013475 129.0000013475
|
||||
35 241.0314566197 2818.6411150538 2146689.0712875174 2639.8262983643 315.4209246902 6050750549.4619541168 129.0000014279 129.0000014279 129.0000014279
|
||||
36 241.0829173424 2818.6763455617 2146689.0754195810 2639.8174397481 315.4882677207 6050826190.0551443100 129.0000015107 129.0000015107 129.0000015107
|
||||
37 241.2845682012 2818.8087982181 2146689.0796680767 2639.8080129872 315.7521540252 6051110536.7012710571 129.0000015958 129.0000015958 129.0000015958
|
||||
38 241.3214712920 2818.8336260248 2146689.0840330068 2639.7981963574 315.8004465062 6051163846.5868301392 129.0000016833 129.0000016833 129.0000016833
|
||||
39 241.3392127125 2818.8456991528 2146689.0885143690 2639.7879618658 315.8236634561 6051189776.4712991714 129.0000017730 129.0000017730 129.0000017730
|
||||
40 241.5383770555 2818.9753950055 2146689.0931121684 2639.7769824244 316.0842958321 6051468206.1039972305 129.0000018651 129.0000018651 129.0000018651
|
||||
41 241.5059730674 2818.9543817992 2146689.0978264087 2639.7656512498 316.0418910106 6051423110.5725250244 129.0000019595 129.0000019595 129.0000019595
|
||||
42 241.3907605672 2818.8793800508 2146689.1026570834 2639.7541331920 315.8911205101 6051262118.7541017532 129.0000020563 129.0000020563 129.0000020563
|
||||
43 241.5095917610 2818.9559595711 2146689.1076041958 2639.7424355740 316.0466265406 6051426525.1214485168 129.0000021554 129.0000021554 129.0000021554
|
||||
44 241.6271631762 2819.0312325531 2146689.1126677482 2639.7297705654 316.2004839873 6051588127.0861988068 129.0000022568 129.0000022568 129.0000022568
|
||||
45 241.5702411838 2818.9923790176 2146689.1178477411 2639.7163554760 316.1259941770 6051504735.2269029617 129.0000023606 129.0000023606 129.0000023606
|
||||
46 241.7029985068 2819.0771124986 2146689.1231441777 2639.7024246704 316.2997243538 6051686646.5996389389 129.0000024667 129.0000024667 129.0000024667
|
||||
47 241.7966144965 2819.1357830868 2146689.1285570571 2639.6882106593 316.4222330191 6051812609.3728218079 129.0000025751 129.0000025751 129.0000025751
|
||||
48 241.8573480255 2819.1726205120 2146689.1340863821 2639.6735287925 316.5017107195 6051891703.4611186981 129.0000026859 129.0000026859 129.0000026859
|
||||
49 241.9611147338 2819.2374095379 2146689.1397321564 2639.6583357477 316.6375029166 6052030801.2758235931 129.0000027990 129.0000027990 129.0000027990
|
||||
50 242.1023518806 2819.3259059811 2146689.1454943856 2639.6424863169 316.8223300428 6052220791.8748512268 129.0000029144 129.0000029144 129.0000029144
|
||||
51 242.1174105473 2819.3319633044 2146689.1513730693 2639.6264141131 316.8420362613 6052233811.6391019821 129.0000030321 129.0000030321 129.0000030321
|
||||
52 242.2534914901 2819.4164594322 2146689.1573682069 2639.6098392671 317.0201158259 6052415215.4627037048 129.0000031522 129.0000031522 129.0000031522
|
||||
53 242.3504633236 2819.4754119996 2146689.1634798055 2639.5930076506 317.1470160479 6052541785.5314817429 129.0000032746 129.0000032746 129.0000032746
|
||||
54 242.2982323323 2819.4368568264 2146689.1697078613 2639.5756353782 317.0786650211 6052459037.1184797287 129.0000033994 129.0000033994 129.0000033994
|
||||
55 242.3452896272 2819.4623310219 2146689.1760523771 2639.5575918586 317.1402455951 6052513740.1862611771 129.0000035265 129.0000035265 129.0000035265
|
||||
56 242.4181903333 2819.5048897011 2146689.1825133534 2639.5390347547 317.2356456249 6052605118.6588287354 129.0000036559 129.0000036559 129.0000036559
|
||||
57 242.5317091656 2819.5739975787 2146689.1890907930 2639.5199828249 317.3841997413 6052753490.3378009796 129.0000037876 129.0000037876 129.0000037876
|
||||
58 242.5478978740 2819.5796954935 2146689.1957846982 2639.5006137388 317.4053847660 6052765740.8638200760 129.0000039217 129.0000039217 129.0000039217
|
||||
59 242.6655316466 2819.6519225743 2146689.2025950695 2639.4808234811 317.5593238156 6052920809.1607065201 129.0000040582 129.0000040582 129.0000040582
|
||||
60 242.8126131177 2819.7431588157 2146689.2095219092 2639.4607996998 317.7517989980 6053116684.5470046997 129.0000041969 129.0000041969 129.0000041969
|
||||
61 242.7957124913 2819.7275989047 2146689.2165652174 2639.4406312730 317.7296823362 6053083302.1140241623 129.0000043380 129.0000043380 129.0000043380
|
||||
62 242.9276177041 2819.8088790098 2146689.2237249981 2639.4201279058 317.9022974164 6053257805.4283437729 129.0000044814 129.0000044814 129.0000044814
|
||||
63 243.0465445938 2819.8814758895 2146689.2310012528 2639.3991657500 318.0579286774 6053413668.8858547211 129.0000046272 129.0000046272 129.0000046272
|
||||
64 242.9890585501 2819.8387587817 2146689.2383939880 2639.3781767844 317.9827007328 6053321989.3768787384 129.0000047752 129.0000047752 129.0000047752
|
||||
65 242.9653746583 2819.8180104181 2146689.2459031967 2639.3568184374 317.9517072884 6053277470.2627182007 129.0000049256 129.0000049256 129.0000049256
|
||||
66 243.0259297024 2819.8514334947 2146689.2535288804 2639.3352568621 318.0309514181 6053349240.7251205444 129.0000050784 129.0000050784 129.0000050784
|
||||
67 242.9638979697 2819.8046112742 2146689.2612710390 2639.3134547096 317.9497748498 6053248749.7987766266 129.0000052335 129.0000052335 129.0000052335
|
||||
68 243.0283540775 2819.8395632725 2146689.2691296688 2639.2912303374 318.0341240273 6053323803.0382738113 129.0000053909 129.0000053909 129.0000053909
|
||||
69 243.2256418664 2819.9609646019 2146689.2771047787 2639.2684509205 318.2923006889 6053584436.4588871002 129.0000055506 129.0000055506 129.0000055506
|
||||
70 243.2507495334 2819.9706145524 2146689.2851963686 2639.2450126010 318.3251573278 6053605174.7221174240 129.0000057127 129.0000057127 129.0000057127
|
||||
71 243.4287155518 2820.0794853386 2146689.2934044413 2639.2213699915 318.5580489464 6053838909.6197280884 129.0000058771 129.0000058771 129.0000058771
|
||||
72 243.5097518574 2820.1249498194 2146689.3017290002 2639.1971212009 318.6640954635 6053936531.2101163864 129.0000060439 129.0000060439 129.0000060439
|
||||
73 243.5356790969 2820.1337977544 2146689.3101700447 2639.1723394661 318.6980246193 6053955548.7824945450 129.0000062130 129.0000062130 129.0000062130
|
||||
74 243.5479180498 2820.1331964183 2146689.3187275808 2639.1473868749 318.7140408766 6053954282.0339813232 129.0000063844 129.0000063844 129.0000063844
|
||||
75 243.7115573025 2820.2314361523 2146689.3274016059 2639.1220411207 318.9281840641 6054165196.6845111847 129.0000065581 129.0000065581 129.0000065581
|
||||
76 243.7457279618 2820.2454531429 2146689.3361921217 2639.0963868224 318.9729008040 6054195311.5999307632 129.0000067342 129.0000067342 129.0000067342
|
||||
77 243.8345031069 2820.2948644965 2146689.3450991292 2639.0700900389 319.0890745962 6054301407.5461502075 129.0000069126 129.0000069126 129.0000069126
|
||||
78 244.0193931195 2820.4067881628 2146689.3541226317 2639.0435094409 319.3310271594 6054541698.3381366730 129.0000070934 129.0000070934 129.0000070934
|
||||
79 243.9919100078 2820.3799166166 2146689.3632626338 2639.0164249037 319.2950619430 6054484039.2541246414 129.0000072765 129.0000072765 129.0000072765
|
||||
80 244.0965612207 2820.4387335935 2146689.3725191355 2638.9888176882 319.4320116291 6054610327.1403293610 129.0000074619 129.0000074619 129.0000074619
|
||||
81 244.1334315951 2820.4535208568 2146689.3818921377 2638.9608330195 319.4802612965 6054642097.2373485565 129.0000076496 129.0000076496 129.0000076496
|
||||
82 244.3029520408 2820.5543485196 2146689.3913816395 2638.9318525796 319.7021007878 6054858569.6761827469 129.0000078397 129.0000078397 129.0000078397
|
||||
83 244.3445761189 2820.5713690935 2146689.4009876498 2638.9021684795 319.7565712929 6054895134.6560049057 129.0000080321 129.0000080321 129.0000080321
|
||||
84 244.2696671559 2820.5125763350 2146689.4107101629 2638.8720941742 319.6585431986 6054768952.2869329453 129.0000082269 129.0000082269 129.0000082269
|
||||
85 244.5161919319 2820.6629431352 2146689.4205491822 2638.8415194387 319.9811528443 6055091770.8571672440 129.0000084240 129.0000084240 129.0000084240
|
||||
86 244.5641090282 2820.6838080201 2146689.4305047127 2638.8103612394 320.0438585800 6055136589.3662166595 129.0000086234 129.0000086234 129.0000086234
|
||||
87 244.5348240638 2820.6541129118 2146689.4405767513 2638.7789728309 320.0055354056 6055072871.6007261276 129.0000088251 129.0000088251 129.0000088251
|
||||
88 244.6939431427 2820.7468233396 2146689.4507653015 2638.7470269267 320.2137633592 6055271920.8364210129 129.0000090292 129.0000090292 129.0000090292
|
||||
89 244.8800201091 2820.8567117003 2146689.4610703662 2638.7147520097 320.4572692055 6055507846.0901927948 129.0000092356 129.0000092356 129.0000092356
|
||||
90 244.8804280382 2820.8451141876 2146689.4714919478 2638.6820441173 320.4578030336 6055482979.2295818329 129.0000094444 129.0000094444 129.0000094444
|
||||
91 244.9558851986 2820.8815975090 2146689.4820300462 2638.6491836104 320.5565485155 6055561327.3181543350 129.0000096555 129.0000096555 129.0000096555
|
||||
92 244.9965893140 2820.8949614294 2146689.4926846647 2638.6159817170 320.6098151301 6055590045.5610351562 129.0000098689 129.0000098689 129.0000098689
|
||||
93 245.1381056687 2820.9732811388 2146689.5034558061 2638.5824451870 320.7950076360 6055758204.0434722900 129.0000100846 129.0000100846 129.0000100846
|
||||
94 245.2954807041 2821.0619342131 2146689.5143434699 2638.5485198222 321.0009532826 6055948545.3822879791 129.0000103027 129.0000103027 129.0000103027
|
||||
95 245.3535822199 2821.0860553731 2146689.5253476589 2638.5144817512 321.0769866522 6056000357.0671482086 129.0000105232 129.0000105232 129.0000105232
|
||||
96 245.5013476026 2821.1682908185 2146689.5364683764 2638.4801107361 321.2703568219 6056176922.4099712372 129.0000107459 129.0000107459 129.0000107459
|
||||
97 245.4166531417 2821.0989038023 2146689.5477056229 2638.4453663061 321.1595231342 6056028001.7295455933 129.0000109710 129.0000109710 129.0000109710
|
||||
98 245.4121937790 2821.0817490953 2146689.5590593945 2638.4097762390 321.1536874797 6055991207.9293851852 129.0000111984 129.0000111984 129.0000111984
|
||||
99 245.4532592994 2821.0946353191 2146689.5705296928 2638.3738037546 321.2074270397 6056018903.0102539062 129.0000114282 129.0000114282 129.0000114282
|
||||
100 245.7500657390 2821.2735939427 2146689.5821165247 2638.3375549051 321.5958367642 6056403104.3106222153 129.0000116603 129.0000116603 129.0000116603
|
||||
Loop time of 5.22601 on 1 procs for 100 steps with 10125 atoms
|
||||
|
||||
Performance: 2.133 ns/day, 11.250 hours/ns, 24.691 timesteps/s
|
||||
99.8% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
Performance: 1.653 ns/day, 14.517 hours/ns, 19.135 timesteps/s
|
||||
99.7% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.46587 | 0.46587 | 0.46587 | 0.0 | 11.50
|
||||
Neigh | 1.4713 | 1.4713 | 1.4713 | 0.0 | 36.33
|
||||
Comm | 0.05567 | 0.05567 | 0.05567 | 0.0 | 1.37
|
||||
Output | 0.011364 | 0.011364 | 0.011364 | 0.0 | 0.28
|
||||
Modify | 2.0158 | 2.0158 | 2.0158 | 0.0 | 49.77
|
||||
Other | | 0.03004 | | | 0.74
|
||||
Pair | 0.44045 | 0.44045 | 0.44045 | 0.0 | 8.43
|
||||
Neigh | 2.669 | 2.669 | 2.669 | 0.0 | 51.07
|
||||
Comm | 0.056143 | 0.056143 | 0.056143 | 0.0 | 1.07
|
||||
Output | 0.012469 | 0.012469 | 0.012469 | 0.0 | 0.24
|
||||
Modify | 2.0163 | 2.0163 | 2.0163 | 0.0 | 38.58
|
||||
Other | | 0.03168 | | | 0.61
|
||||
|
||||
Nlocal: 10125 ave 10125 max 10125 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
@ -172,4 +180,4 @@ Dangerous builds not checked
|
||||
|
||||
Please see the log.cite file for references relevant to this simulation
|
||||
|
||||
Total wall time: 0:00:04
|
||||
Total wall time: 0:00:05
|
||||
|
||||
@ -37,7 +37,7 @@ timestep 0.001
|
||||
|
||||
pair_style hybrid/overlay dpd/fdt/energy 16.00 234324 exp6/rx 16.00
|
||||
pair_coeff * * dpd/fdt/energy 0.0 0.05 10.0 16.00
|
||||
pair_coeff * * exp6/rx params.exp6 1fluid 1fluid 1.0 1.0 16.00
|
||||
pair_coeff * * exp6/rx params.exp6 1fluid 1fluid exponent 1.0 1.0 16.00
|
||||
|
||||
fix 1 all shardlow
|
||||
fix 2 all nve
|
||||
|
||||