Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
The semiPermeableBaffleMassFraction boundary condition can now calculate
the mass flux as proportional to the difference in mole fraction or
partial pressure. A mass fraction difference driven transfer is also
still possible. An additional keyword, "input" has been added which is
used to select the variable used to calculate the transfer. An example
specification is as follows:
baffle
{
type semiPermeableBaffleMassFraction;
samplePatch membranePipe;
c 0.1;
input massFraction;
value uniform 0;
}
In order to facilitate this, a "W" method to get the molar mass on a
patch has been added to the thermodynamics. To avoid name-clashes,
methods that generate per-species molar masses have been renamed "Wi".
This work was supported by Georg Skillas, at Evonik
The nonRandomTwoLiquid and Roult interface composition models have been
instantiated (and updated so that they compile), and a fuller set of
multi-component liquids and multi-component and reacting gases have been
used.
The selection name of the saturated and nonRandomTwoLiquid models have
also been changed to remove the capitalisation from the first letter, as
is consistent with other sub-models that are not proper nouns.
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this. The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:
GREAT -> great
ROOTGREAT -> rootGreat
VGREAT -> vGreat
ROOTVGREAT -> rootVGreat
SMALL -> small
ROOTSMALL -> rootSmall
VSMALL -> vSmall
ROOTVSMALL -> rootVSmall
The original capitalized are still currently supported but their use is
deprecated.
which provides access to the current phase and the corresponding other phase for
each of the phases in the pair. This allows some simplification of the phase
pair loops in several sub-models and avoids the need for pointer swaps.
- Thermal phase change and wall boiling functionality has been generalized to
support two- and multi- phase simulations.
- Thermal phase change now also allows purePhaseModel, which simplifies case setup.
- The phaseSystem templates have been restructured in preparation of multiple
simultaneous mass transfer mechanisms. For example, combination of thermal phase
and inhomogeneous population balance models.
Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).