The "Refresh Times" button now triggers a re-render of the visualisation
as well as scanning for new times and fields. This prevents old
overwritten data from remaining on screen despite everything else having
been updated.
ParaView has been updated to version 5.4.0. The C++ panel has been
deleted and replaced with a panel based on the new(er) XML API. This
reader works for ParaView-4.0.1 and newer. The ParaView 3 reader remains
unchanged.
Update issues have also been fixed. All the time directories are now
scanned for fields and clouds when filling the selection lists. This
stops fields from disappearing when the time is changed. The scan is
only done on startup and when the refresh button is pressed.
The list of available Lagrangian fields also now shows a combined set of
all the clouds. Previously, only fields from the first cloud were shown.
If a field does not apply to all the clouds, ParaView will display it's
name in the dropdown menu with a "(partial)" qualifier.
Some undocumented and incomplete bits of code, which were not being
compiled, have been removed.
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
Updated the tetrahedron and triangle classes to use the barycentric
primitives. Removed duplicate code for generating random positions in
tets and tris, and fixed bug in tri random position.
Provides better context for the available boundary conditions, fvOptions,
functionObjects etc. and thus returns only those available to and compatible
with the particular application.
e.g.
pimpleFoam -help
Usage: pimpleFoam [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-listFunctionObjects
List functionObjects
-listFvOptions List fvOptions
-listRegisteredSwitches
List switches registered for run-time modification
-listScalarBCs List scalar field boundary conditions (fvPatchField<scalar>)
-listSwitches List switches declared in libraries but not set in
etc/controlDict
-listTurbulenceModels
List turbulenceModels
-listUnsetSwitches
List switches declared in libraries but not set in
etc/controlDict
-listVectorBCs List vector field boundary conditions (fvPatchField<vector>)
-noFunctionObjects
do not execute functionObjects
-parallel run in parallel
-postProcess Execute functionObjects only
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
pimpleFoam listTurbulenceModels
pimpleFoam -listTurbulenceModels
/*---------------------------------------------------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
Build : dev-39c46019e44f
Exec : pimpleFoam -listTurbulenceModels
Date : Jun 10 2017
Time : 21:37:49
Host : "dm"
PID : 675
Case : /home/dm2/henry/OpenFOAM/OpenFOAM-dev
nProcs : 1
sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).
SetNaN : Initialising allocated memory to NaN (FOAM_SETNAN).
fileModificationChecking : Monitoring run-time modified files using timeStampMaster (fileModificationSkew 10)
allowSystemOperations : Allowing user-supplied system call operations
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Turbulence models
3
(
LES
RAS
laminar
)
RAS models
18
(
LRR
LamBremhorstKE
LaunderSharmaKE
LienCubicKE
LienLeschziner
RNGkEpsilon
SSG
ShihQuadraticKE
SpalartAllmaras
kEpsilon
kOmega
kOmegaSST
kOmegaSSTLM
kOmegaSSTSAS
kkLOmega
qZeta
realizableKE
v2f
)
LES models
10
(
DeardorffDiffStress
Smagorinsky
SpalartAllmarasDDES
SpalartAllmarasDES
SpalartAllmarasIDDES
WALE
dynamicKEqn
dynamicLagrangian
kEqn
kOmegaSSTDES
)
Further work will be needed to support the -listTurbulenceModels option in
multiphase solvers.
This addition allows for theoretical wave models to be utilised for
initialisation and as boundary conditions. Multiple models can be used
simultaneously, each with differing phases and orientations. If multiple
models are used the shapes and velocities are superimposed.
The wave models are specified in the velocity boundary condition. The
phase fraction boundary condition and the set utility both look up the
velocity condition in order to access the wave model. A velocity
boundary may be specified as follows:
inlet
{
type waveVelocity;
origin (0 0 0);
direction (1 0 0);
speed 2;
waves
(
Airy
{
length 300;
amplitude 2.5;
depth 150;
phase 0;
angle 0;
}
);
scale table ((1200 1) (1800 0));
crossScale constant 1;
}
The alpha boundary only requires the type, unless the name of the
velocity field is non-standard, in which case a "U" entry will also be
needed. The setWaves utility does not require a dictionary file; non-
standard field names can be specified as command-line arguments.
Wave models currently available are Airy (1st order) and Stokes2 (second
order). If a depth is specified, and it is not too large, then shallow
terms will be included, otherwise the models assume that the liquid is
deep.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
now possible with level-sets as well as planes. Removed tetPoints class
as this wasn't really used anywhere except for the old tet-cutting
routines. Restored tetPointRef.H to be consistent with other primitive
shapes. Re-wrote tet-overlap mapping in terms of the new cutting.
terms of the local barycentric coordinates of the current tetrahedron,
rather than the global coordinate system.
Barycentric tracking works on any mesh, irrespective of mesh quality.
Particles do not get "lost", and tracking does not require ad-hoc
"corrections" or "rescues" to function robustly, because the calculation
of particle-face intersections is unambiguous and reproducible, even at
small angles of incidence.
Each particle position is defined by topology (i.e. the decomposed tet
cell it is in) and geometry (i.e. where it is in the cell). No search
operations are needed on restart or reconstruct, unlike when particle
positions are stored in the global coordinate system.
The particle positions file now contains particles' local coordinates
and topology, rather than the global coordinates and cell. This change
to the output format is not backwards compatible. Existing cases with
Lagrangian data will not restart, but they will still run from time
zero without any modification. This change was necessary in order to
guarantee that the loaded particle is valid, and therefore
fundamentally prevent "loss" and "search-failure" type bugs (e.g.,
2517, 2442, 2286, 1836, 1461, 1341, 1097).
The tracking functions have also been converted to function in terms
of displacement, rather than end position. This helps remove floating
point error issues, particularly towards the end of a tracking step.
Wall bounded streamlines have been removed. The implementation proved
incompatible with the new tracking algorithm. ParaView has a surface
LIC plugin which provides equivalent, or better, functionality.
Additionally, bug report <https://bugs.openfoam.org/view.php?id=2517>
is resolved by this change.
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
The standard naming convention for heat flux is "q" and this is used for the
conductive and convective heat fluxes is OpenFOAM. The use of "Qr" for
radiative heat flux is an anomaly which causes confusion, particularly for
boundary conditions in which "Q" is used to denote power in Watts. The name of
the radiative heat flux has now been corrected to "qr" and all models, boundary
conditions and tutorials updated.
e.g.
ramp
{
type quadratic;
start 200;
duration 1.6;
}
but the old format is supported for backward compatibility:
ramp linear;
rampCoeffs
{
start 200;
duration 1.6;
}
Using
decomposePar -copyZero
The mesh is decomposed as usual but the '0' directory is recursively copied to
the 'processor.*' directories rather than decomposing the fields. This is a
convenient option to handle cases where the initial field files are generic and
can be used for serial or parallel running. See for example the
incompressible/simpleFoam/motorBike tutorial case.
Description
Base-class for thermophysical properties of solids, liquids and gases
providing an interface compatible with the templated thermodynamics
packages.
liquidProperties, solidProperties and thermophysicalFunction libraries have been
combined with the new thermophysicalProperties class into a single
thermophysicalProperties library to simplify compilation and linkage of models,
libraries and applications dependent on these classes.
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass. This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties. In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties. This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based. Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.
This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.
Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing
nMoles 1;
entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet. The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions. This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO
// Reactants (mole-based)
thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();
// Oxidant (mole-based)
thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
thermo N2(thermoData.subDict("N2")); N2 *= N2.W();
// Intermediates (mole-based)
thermo H2(thermoData.subDict("H2")); H2 *= H2.W();
// Products (mole-based)
thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
thermo CO(thermoData.subDict("CO")); CO *= CO.W();
// Product dissociation reactions
thermo CO2BreakUp
(
CO2 == CO + 0.5*O2
);
thermo H2OBreakUp
(
H2O == H2 + 0.5*O2
);
Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org
Henry G. Weller
CFD Direct Ltd.
By default snappyHexMesh writes files relating to the hex-splitting process into
the polyMesh directory: cellLevel level0Edge pointLevel surfaceIndex
but by setting the noRefinement flag:
writeFlags
(
noRefinement
.
.
.
);
these optional files which are generally not needed are not written.
If you run the three stages of snappyHexMesh separately or run a dynamic mesh
solver supporting refinement and unrefinement these files are needed
and "noRefinement" should not be set.
unless the blockMeshDict is in the polyMesh directory or the "-noClean" option
is specified.
This avoids problems running snappyHexMesh without first clearing files from
polyMesh which interfere with the operation of snappyHexMesh.