This mixture allows a reacting solver to be used with a single component
fluid without the additional case files usually required for reacting
thermodynamics.
The absolute value of the the time has been added to the rigid body
model state. This value is not directly necessary for calculating the
evolution of the rigid body system, it just facilitates the
implementation of sub-models which are in some way time-dependent.
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
for incompressible flow simulated using simpleFoam, pimpleFoam or pisoFoam.
Description
Calculates and write the estimated incompressible flow heat transfer
coefficient at wall patches as the volScalarField field
'wallHeatTransferCoeff'.
All wall patches are included by default; to restrict the calculation to
certain patches, use the optional 'patches' entry.
Example of function object specification:
wallHeatTransferCoeff1
{
type wallHeatTransferCoeff;
libs ("libfieldFunctionObjects.so");
...
region fluid;
patches (".*Wall");
rho 1.225;
Cp 1005;
Prl 0.707;
Prt 0.9;
}
Usage
Property | Description | Required | Default value
type | Type name: wallHeatTransferCoeff | yes |
patches | List of patches to process | no | all wall patches
region | Region to be evaluated | no | default region
rho | Fluid density | yes |
Cp | Fluid heat capacity | yes |
Prl | Fluid laminar Prandtl number | yes |
Prt | Fluid turbulent Prandtl number| yes |
Note
Writing field 'wallHeatTransferCoeff' is done by default, but it can be
overridden by defining an empty \c objects list. For details see
writeLocalObjects.
This generalizes and replaces the previous "noBanner" option provided by argList
and is extended to include the messages printed by Time.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2782
Mixture molecular weight is now evaluated in heThermo like everything
else, relying on the low level specie mixing rules. Units have also been
corrected.
This is a quick fix. What actually needs doing is the Random and
cachedRandom classes need rewriting in terms of the random number
functionality in the C++11 STL. These can be initialised/seeded
per-object, which makes this sort of bug go away.
This resolves bug report https://bugs.openfoam.org/view.php?id=2772
The integration splitting implemented in commit a5806207 has been shown
to be incorrect in some cases. A new procedure has been implemented
which can correctly split the implicit-explicit integral into a number
of pieces, in order to calculate the contribution of each. This is
intended for integrating coupled and non-coupled particle momentum and
heat transfers.
However, currently there is only ever one implicit coefficient used in
these transfers (there is no implicit non-coupled contribution). The
evaluation has therefore been short-cutted to only do the integration
with respect to the coupled contributions. The splitting functionality
has been retained in case additional separate implicit coefficients are
required in the future.
This change was made with help from Timo Niemi, VTT
This resolves bug report https://bugs.openfoam.org/view.php?id=2666
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);
and replaced pimpleDyMFoam with a script which reports this change.
The pimpleDyMFoam tutorials have been moved into the pimpleFoam directory.
This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
Now pimpleDyMFoam is exactly equivalent to pimpleFoam when running on a
staticFvMesh. Also when the constant/dynamicMeshDict is not present a
staticFvMesh is automatically constructed so that the pimpleDyMFoam solver can
run any pimpleFoam case without change.
The method used to calculate area overlaps between coupled AMI patches
has been made run-time selectable from the polyPatch dictionary. This
has primarily been done to facilitate the selection of the new swept AMI
method. The selection can be made within the constant/polyMesh/boundary
file as follows:
AMI1
{
type cyclicAMI;
inGroups 2(cyclicAMI rotating);
nFaces 524;
startFace 37176;
matchTolerance 0.0001;
transform unknown;
neighbourPatch AMI2;
method sweptFaceAreaWeightAMI; // <-- new entry
}
AMI2
{
type cyclicAMI;
inGroups 2(cyclicAMI rotating);
nFaces 524;
startFace 37700;
matchTolerance 0.0001;
transform unknown;
neighbourPatch AMI1;
method sweptFaceAreaWeightAMI; // <-- new entry
}
This can also be done within the patch specification section of the
blockMeshDict, or within a createBafflesDict.
The default remains the faceAreaWeightAMI method.
This change tests all edges when breaking strings, not just those
connected to collapsing cells. In rare cases a cell can collapse despite
none of it's connected edges being marked as collapsing, because enough
of it's points collapse together via other edges.
Another exception has been added to globalIndexAndTransform to prevent
transformations being generated from coupled patch pairs marked with
coincident-full-match transformations. Foamy generates such patches, and
the faces on them at intermediate stages of meshing can be degenerate,
making the calculation of transformations unreliable. This change
enforces the definition that coincident-full-match patch pairs are not
transformed.